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For a simple digraph G , let β(G) be the size of the smallest subset X ⊆ E(G) such that
G − X has no directed cycles, and let γ (G) be the number of unordered pairs of nonad-
jacent vertices in G . A digraph G is called m-free if G has no directed cycles of length at
most m. This paper proves that β(G) � 1

m−2 γ (G) for any m-free digraph G , which gener-
alizes some known results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a digraph without loops and parallel
edges, where V = V (G) is the vertex-set and E = E(G) is
the edge-set. A graph G is said to be acyclic if it has no
directed cycles. A subset X ⊆ E(G) is said a feedback arc set
of G if G − X is acyclic. Let β(G) be the cardinality of the
minimum feedback arc set of G .

The minimum feedback arc set problem for a digraph
was proven by Karp to be NP-complete (see the 8th of 21
problems in [8]). But the analogue for undirected graph
is much easier. It is well known that the cycle rank of
an undirected graph G is the minimum number of edges
that must be removed in order to eliminate all of the cy-
cles in the graph. That is, if G has υ vertices, ε edges,
and ω connected components, then the minimum number
of edges whose deletion from G leaves an acyclic graph
equals the cycle rank (or Betti number) ρ(G) = ε − υ + ω
(see Xu [12]).
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A digraph G is called to be m-free if there is no directed
cycle of G with length at most m. Let γ (G) be the number
of unordered pairs of nonadjacent vertices in G , called the
number of missing edges of G .

Chudnovsky, Seymour, and Sullivan [4] proved that
β(G) � γ (G) if G is a 3-free digraph and gave the fol-
lowing conjecture.

Conjecture 1.1. If G is a 3-free digraph, then β(G) � 1
2 γ (G).

Concerning this conjecture, Dunkum, Hamburger, and
Pór [5] proved that β(G) � 0.88γ (G). Very recently, Chen
et al. [3] improved the result to β(G) � 0.8616γ (G). Con-
jecture 1.1 is closely related to the following special case
of the conjecture proposed by Caccetta and Häggkvist [2].

Conjecture 1.2. Any digraph on n vertices with minimum out-
degree at least n/3 contains a directed triangle.

Short of proving the conjecture, one may seek as small
a value of c as possible such that every digraph on n ver-
tices with minimum out-degree at least cn contains a tri-
angle. This was the strategy of Caccetta and Häggkvist [2],
who obtained the value c � 0.3819. Bondy [1] showed that
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c � 0.3797, and Shen [10] improved it to c � 0.3542. Ham-
burger, Haxell, and Kostochka [6] improved it to 0.35312.
In 2009, Hladký et al. [7] further improved this bound to
0.3465. Namely, any digraph on n vertices with minimum
out-degree at least 0.3465n contains a directed triangle.

More generally, Sullivan [11] proposed the following
conjecture, and gave an example showing that this would
be best possible if this conjecture is true. Conjecture 1.1 is
the special case when m = 3.

Conjecture 1.3. If G is an m-free digraph with m � 3, then

β(G) � 2

(m + 1)(m − 2)
γ (G).

Sullivan proved partial results of Conjecture 1.3, and
showed that β(G) � 1

m−2 γ (G) for m = 4,5. Very recently,

we have improved these results to β(G) � 3−√
5

2 γ (G) for

m = 4 and β(G) � (2 − √
3 )γ (G) for m = 5 [9]. In this

article, we prove the following theorem, which extends
Sullivan’s result to more general m-free digraphs for m � 4.

Theorem 1.4. If G is an m-free digraph with m � 3, then
β(G) � 1

m−2 γ (G).

2. Some lemmas

Let G be a simple digraph. For two disjoint subsets
A, B ⊆ V (G), let E(A, B) denote the set of directed edges
from A to B , that is, E(A, B) = {(a,b) | a ∈ A, b ∈ B}. Let
Ē(A, B) be the missing edges between A and B . It follows
that∣∣Ē(A, B)

∣∣ = ∣∣Ē(B, A)
∣∣ = |A| · |B| − ∣∣E(A, B)

∣∣ − ∣∣E(B, A)
∣∣.

A directed (v0, vk)-path P in G is a sequence of dis-
tinct vertices (v0, v1, . . . , vk−1, vk), where (vi, vi+1) is a
directed edge for each i = 0, . . . ,k − 1, its length is k.
Clearly, the subsequence (v1, . . . , vk−1) is a (v1, vk−1)-
path, denoted by P ′ . We can denote P = (v0, P ′, vk). A di-
rected path P is said to be induced if every edge in the
subgraph induced by vertices of P is contained in P .

For v ∈ V (G), let N+
i (v) be the set of vertices u such

that the shortest directed (v, u)-path has length i. Simi-
larly, let N−

i (v) be the set of vertices whose shortest di-
rected path to v has length i. An induced directed (v0, vk)-
path is called to be shortest if vk ∈ N+

k (v0). From definition,
we immediately have the following result.

Lemma 2.1. If (v0, v1, . . . , vk−1, vk) is a shortest induced di-
rected (v0, vk)-path, then for any i and j with 0 � i < j � k,

v j ∈ N+
j−i(vi) and vi ∈ N−

j−i(v j).

Let P(G) be the set of shortest induced directed paths
of G , and m be an integer with m � 4. For any v ∈ V (G)

and integer k with 1 � k � m − 3, let Pk(v) be the set of
the triples (x, y, z) of vertices of G with x = v and so that
there exists a path P ∈ P(G) of length k − 1, such that
(x, P , y, z) ∈ P(G). Similarly, let Q k(v) be the set of the

triples (x, y, z) of vertices of G with y = v and so that
there exists a path P ∈ P(G) of length k − 1, such that
(x, P , y, z) ∈ P(G), and Rk(v) be the set of such triples
with z = v . Also, let P ′

k(v) be the set of the triples (x, y, z)
of vertices of G with x = v and so that there exists a path
P ∈ P(G) of length k − 1, such that (x, y, P , z) ∈ P(G).
Let Q ′

k(v) and R ′
k(v) be the set of such triples with y = v

and z = v , respectively. Set

pk(v) = ∣∣Pk(v)
∣∣, qk(v) = ∣∣Q k(v)

∣∣,
rk(v) = ∣∣Rk(v)

∣∣,
and

p′
k(v) = ∣∣P ′

k(v)
∣∣, q′

k(v) = ∣∣Q ′
k(v)

∣∣,
r′

k(v) = ∣∣R ′
k(v)

∣∣.
Lemma 2.2. For any integer k with 1 � k � m − 3, we have∑
v∈V (G)

pk(v) =
∑

v∈V (G)

qk(v) =
∑

v∈V (G)

rk(v), (2.1)

and∑
v∈V (G)

p′
k(v) =

∑
v∈V (G)

q′
k(v) =

∑
v∈V (G)

r′
k(v). (2.2)

Proof. For each integer k with 1 � k � m − 3,∑
v∈V (G)

pk(v),
∑

v∈V (G)

qk(v),
∑

v∈V (G)

rk(v)

are all equal to the number of triples (x, y, z) of distinct
vertices so that there exists a path P ∈ P(G) of length
k − 1, such that (x, P , y, z) ∈ P(G). Thus (2.1) holds. The
proof of (2.2) is similar. �
Lemma 2.3. If G is an m-free digraph, then for any v ∈ V (G)

and any integer k with 1 � k � m − 3,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk(v) = ∣∣E
(
N+

k+1(v), N+
k+2(v)

)∣∣,
qk(v) �

∣∣Ē
(
N−

k+1(v), N+
1 (v)

)∣∣,
rk(v) �

∣∣Ē
(
N−

1 (v), N−
k+2(v)

)∣∣,
p′

k(v) �
∣∣Ē

(
N+

1 (v), N+
k+2(v)

)∣∣,
q′

k(v) �
∣∣Ē

(
N+

k+1(v), N−
1 (v)

)∣∣,
r′

k(v) = ∣∣E
(
N−

k+2(v), N−
k+1(v)

)∣∣.
Proof. We prove the three first inequalities. By definition,
for each edge (u, w) ∈ E(N+

k+1(v), N+
k+2(v)), there exists

vi ∈ N+
i (v), for each i = 1,2, . . . ,k, such that (v, v1, . . . ,

vk−1, vk, u, w) is a directed (v, w)-path of length k + 2.
Since G is m-free and 1 � k � m − 3, it is easy to see
that (v, v1, . . . , vk−1, vk, u, w) is a shortest induced di-
rected path. It follows that (v, u, w) ∈ Pk(v) and

pk(v) �
∣∣E

(
N+

k+1(v), N+
k+2(v)

)∣∣. (2.3)

On the other hand, for each (v, u, w) ∈ Pk(v), from
the definition of Pk(v) and Lemma 2.1, u ∈ N+

k+1(v) and
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w ∈ N+
k+2(v). Thus (u, w) ∈ E(N+

k+1(v), N+
k+2(v)). It follows

that

pk(v) �
∣∣E

(
N+

k+1(v), N+
k+2(v)

)∣∣. (2.4)

Combining (2.3) and (2.4), we have that

pk(v) = ∣∣E
(
N+

k+1(v), N+
k+2(v)

)∣∣.
For each (u, v, w) ∈ Q k(v), from the definition of

Q k(v) and Lemma 2.1, we have u ∈ N−
k+1(v), w ∈ N+

1 (v)

and uw /∈ E(G). Since G is m-free, we have (w, u) /∈
E(G). If not, there exists a directed cycle (v, w, u, . . . , v)

with length l = k + 3 � m, a contradiction. So (u, w) ∈
Ē(N−

k+1(v), N+
1 (v)). Thus, qk(v) � |Ē(N−

k+1(v), N+
1 (v))|.

For each (u, w, v) ∈ Rk(v), from the definition of
Rk(v) and Lemma 2.1, we have u ∈ N−

k+2(v), w ∈ N−
1 (v)

and (u, w) /∈ E(G). Since G is m-free, (w, u) /∈ E(G).
Otherwise, there exists a directed cycle (w, u, . . . , w)

with length l = k + 2 � m − 1, a contradiction. Thus we
have (u, w) ∈ Ē(N−

1 (v), N−
k+2(v)). It derives that rk(v) �

|Ē(N−
1 (v), N−

k+2(v))|.
The proof of the three last inequalities is exactly the

same as the three first ones applied to G ′ which obtained
from G by reversing all the arcs. �

For any v ∈ V (G) and any integer k with 1 � k � m − 3,
set

αk(v) = pk(v)

sk(v)
and α′

k(v) = r′
k(v)

tk(v)
.

Here

sk(v) =
m−3∑
i=k

p′
i(v) +

k∑
i=1

q′
i(v) and

tk(v) =
m−3∑
i=k

ri(v) +
k∑

i=1

qi(v). (2.5)

The following lemma is obvious.

Lemma 2.4. If ai � 0, bi � 0 for each i = 1,2, . . . ,n, and∑n
i=1 bi > 0, then

min
1�i�n

{
ai

bi

}
�

∑n
i=1 ai∑n
i=1 bi

.

Let

α = min
v∈V (G)

1�k�m−3

{
αk(v)

}
and

α′ = min
v∈V (G)

1�k�m−3

{
α′

k(v)
}
. (2.6)

Applying Lemma 2.4, we obtain the following bound about
α and α′ .

Lemma 2.5. If G is an m-free digraph, then

min
{
α,α′} � 1

m − 2
.

Proof. Applying Lemma 2.4 to the collections of quotients
{αk(v) | v ∈ V (G), 1 � k � m − 3} ∪ {α′

k(v) | v ∈ V (G), 1 �
k � m − 3}, we immediately have that

min
{
α,α′} �

∑m−3
k=1 (

∑
v∈V (G) pk(v) + ∑

v∈V (G) r′
k(v))∑m−3

k=1 (
∑

v∈V (G) sk(v) + ∑
v∈V (G) tk(v))

.

(2.7)

Summing sk(v) and tk(v) over all v ∈ V (G) and not-
ing (2.5), we have

m−3∑
k=1

∑
v∈V (G)

sk(v)

=
m−3∑
k=1

(
m−3∑
i=k

∑
v∈V (G)

p′
i(v)

)
+

m−3∑
k=1

(
k∑

i=1

∑
v∈V (G)

q′
i(v)

)

=
m−3∑
k=1

(
m−3∑
i=k

∑
v∈V (G)

r′
i(v)

)
+

m−3∑
k=1

(
k∑

i=1

∑
v∈V (G)

r′
i(v)

)

=
m−3∑
k=1

(
m−3∑
i=1

∑
v∈V (G)

r′
i(v) +

∑
v∈V (G)

r′
k(v)

)

= (m − 2)

m−3∑
k=1

∑
v∈V (G)

r′
k(v)

and

m−3∑
k=1

∑
v∈V (G)

tk(v)

=
m−3∑
k=1

(
m−3∑
i=k

∑
v∈V (G)

ri(v)

)
+

m−3∑
k=1

(
k∑

i=1

∑
v∈V (G)

qi(v)

)

=
m−3∑
k=1

(
m−3∑
i=k

∑
v∈V (G)

pi(v)

)
+

m−3∑
k=1

(
k∑

i=1

∑
v∈V (G)

pi(v)

)

=
m−3∑
k=1

(
m−3∑
i=1

∑
v∈V (G)

pi(v) +
∑

v∈V (G)

pk(v)

)

= (m − 2)

m−3∑
k=1

∑
v∈V (G)

pk(v).

It follows that

m−3∑
k=1

( ∑
v∈V (G)

sk(v) +
∑

v∈V (G)

tk(v)

)

= (m − 2)

m−3∑
k=1

( ∑
v∈V (G)

pk(v) +
∑

v∈V (G)

r′
k(v)

)
.

Substituting this equality into (2.7) yields

min
{
α,α′} � 1

m − 2
.

The lemma follows. �
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3. Proof of Theorem 1.4

Clearly Theorem 1.4 holds for |V (G)| � m. We pro-
ceed the proof by induction on |V (G)| under the as-
sumption that Theorem 1.4 holds for all digraphs with
|V (G)| < n, here n > m. Now let G be an m-free digraph
with |V (G)| = n, we may assume that for any v ∈ V (G),
N+

1 (v) �= ∅ and N−
1 (v) �= ∅. Otherwise, if there exists v ∈

V (G) such that N+
1 (v) = ∅ or N−

1 (v) = ∅, then v is not
in a directed cycle. From the inductive hypothesis, we can
choose X ⊆ E(G − v) with |X | � 1

m−2 γ (G − v) such that
(G − v) − X is acyclic, then G − X has no directed cycles.
It follows that

β(G) � |X | � 1

m − 2
γ (G − v) � 1

m − 2
γ (G).

From Lemma 2.5, we have that α � 1
m−2 or α′ � 1

m−2 .
For each case, we prove that there exists X ⊆ E(G) satisfy-
ing |X | � 1

m−2 γ (G) and G − X has no directed cycles.

Case 1. α � 1
m−2 .

By (2.6), there exists a vertex v ∈ V (G) and an integer k
with 1 � k � m − 3 such that

α = αk(v) = pk(v)

sk(v)
� 1

m − 2
.

We consider the partition {V 1, V 2} of V (G), where

V 1 =
k+1⋃
i=1

N+
i (v), V 2 = V (G) \ V 1.

Clearly,
⋃m−1

i=k+2 N+
i (v) ⊂ V 2. Since G is an m-free digraph,

it follows that N−
1 (v) ⊂ V 2. We claim

N−
1 (v) ∩

m−1⋃
i=1

N+
i (v) = ∅.

Otherwise, let u ∈ N−
1 (v) ∩ ⋃m−1

i=1 N+
i (v). Then (u, v) ∈

E(G) and there exists a directed (v, u)-path P with length
l1 � m − 1. Then P + (u, v) is a directed cycle with length
l1 + 1 � m, a contradiction.

By Lemma 2.3, the number of missing edges between
V 1 and V 2 satisfies∣∣Ē(V 1, V 2)

∣∣
�

∣∣∣∣∣Ē

(
k+1⋃
i=1

N+
i (v), N−

1 (v) ∪
(

m−1⋃
i=k+2

N+
i (v)

))∣∣∣∣∣
�

m−1∑
i=k+2

∣∣Ē
(
N+

1 (v), N+
i (v)

)∣∣ +
k+1∑
i=2

∣∣Ē
(
N+

i (v), N−
1 (v)

)∣∣

�
m−3∑
i=k

p′
i(v) +

k∑
i=1

q′
i(v)

= sk(v).

Let Gi be the subgraph induced by V i for each i = 1,2. It
follows that

γ (G) = γ (G1) + γ (G2) + ∣∣Ē(V 1, V 2)
∣∣

� γ (G1) + γ (G2) + sk(v). (3.1)

Since |V 1| < n and |V 2| < n, from the inductive hypoth-
esis, we have β(G1) � 1

m−2 γ (G1) and β(G2) � 1
m−2 γ (G2).

We can choose Xi ⊆ E(Gi) with

|Xi | � 1

m − 2
γ (Gi) for each i = 1,2 (3.2)

such that Gi − Xi is acyclic.
Let X3 = E(V 1, V 2). Then

X3 = E
(
N+

k+1(v), V 2
) = E

(
N+

k+1(v), N+
k+2(v)

)
,

and

|X3| =
∣∣E

(
N+

k+1(v), N+
k+2(v)

)∣∣ = pk(v). (3.3)

Let X = X1 ∪ X2 ∪ X3. Then G − X has no directed cycles
and, by (3.1)–(3.3),

|X | = |X1| + |X2| + |X3|
= |X1| + |X2| + pk(v)

� 1

m − 2
γ (G1) + 1

m − 2
γ (G2) + 1

m − 2
sk(v)

= 1

m − 2

(
γ (G1) + γ (G2) + sk(v)

)
� 1

m − 2
γ (G).

Case 2. α′ � 1
m−2 .

This case can be immediately reduced to Case 1 applied
to G ′ the graph obtained by G by reversing the orientation
of every arc.

For each case, there exists X ⊆ E(G) satisfying |X | �
1

m−2 γ (G) and G − X has no directed cycles. This im-

plies that β(G) � |X | � 1
m−2 γ (G), and Theorem 1.4 fol-

lows.
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