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The exchanged hypercube EH(s, t), proposed by Loh et al. [P.K.K. Loh, W.J. Hsu, Y. Pan, The
exchanged hypercube, IEEE Transactions on Parallel and Distributed Systems 16 (9) (2005)
866–874], is obtained by removing edges from a hypercube Q s+t+1. This paper considers
a kind of generalized measures κ(h) and λ(h) of fault tolerance in EH(s, t) with 1 � s � t
and determines κ(h)(EH(s, t)) = λ(h)(EH(s, t)) = 2h(s + 1 − h) for any h with 0 � h � s. The
results show that at least 2h(s + 1 − h) vertices (resp. 2h(s + 1 − h) edges) of EH(s, t) have
to be removed to get a disconnected graph that contains no vertices of degree less than h,
and generalizes some known results.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that interconnection networks play
an important role in parallel computing/communication
systems. An interconnection network can be modeled by
a graph G = (V , E), where V is the set of processors and
E is the set of communication links in the network. For
graph terminology and notation not defined here we fol-
low [15].

A subset S ⊂ V (G) (resp. F ⊂ E(G)) of a connected
graph G is called a vertex-cut (resp. edge-cut) if G − S
(resp. G − F ) is disconnected. The connectivity κ(G) (resp.
edge-connectivity λ(G)) of G is defined as the minimum
cardinality over all vertex-cuts (resp. edge-cuts) of G . The
connectivity κ(G) and edge-connectivity λ(G) of a graph G
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are two important measurements for fault tolerance of the
network since the larger κ(G) or λ(G) is, the more reliable
the network is.

Because the connectivity has some shortcomings, Esfa-
hanian [1] proposed the concept of restricted connectivity,
Latifi et al. [3] generalized it to restricted h-connectivity
which can measure fault tolerance of an interconnection
network more accurately than the classical connectiv-
ity. The concepts stated here are slightly different from
theirs.

A subset S ⊂ V (G) (resp. F ⊂ E(G)) of a connected
graph G , if any, is called an h-vertex-cut (resp. edge-cut),
if G − S (resp. G − F ) is disconnected and has the min-
imum degree at least h. The h-connectivity (resp. edge-
connectivity) of G , denoted by κ(h)(G) (resp. λ(h)(G)), is
defined as the minimum cardinality over all h-vertex-
cuts (resp. h-edge-cut) of G . It is clear that, for h � 1, if
κ(h)(G) and λ(h)(G) exist, then κ(h−1)(G) � κ(h)(G) and
λ(h−1)(G) � λ(h)(G). For any graph G and any integer h, de-
termining κ(h)(G) and λ(h)(G) is quite difficult. In fact, the
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Fig. 1. Two exchanged hypercubes EH(1,1) and EH(1,2).
existence of κ(h)(G) and λ(h)(G) is an open problem so far
when h � 1. Only a little knowledge of results have been
known on κ(h) and λ(h) for particular classes of graphs and
small h’s, such as [2,4,5,8,10–14,16,17,19,20].

It is widely known that the hypercube Q n has been one
of the most popular interconnection networks for paral-
lel computer/communication system. Xu [14] determined
λ(h)(Q n) = 2h(n − h) for h � n − 1, and Oh et al. [11]
and Wu et al. [13] independently determined κ(h)(Q n) =
2h(n − h) for h � n − 2.

This paper is concerned about the exchanged hyper-
cubes EH(s, t), proposed by Loh et al. [7]. As a vari-
ant of the hypercube, EH(s, t) is a graph obtained by
removing edges from a hypercube Q s+t+1. It not only
keeps numerous desirable properties of the hypercube,
but also reduced the interconnection complexity. Very re-
cently, Ma et al. [10] have determined κ(1)(EH(s, t)) =
λ(1)(EH(s, t)) = 2s. We, in this paper, will generalize this
result by proving that κ(h)(EH(s, t)) = λ(h)(EH(s, t)) =
2h(s + 1 − h) for any h with 0 � h � s.

The proof of this result is in Section 3. In Section 2, we
recall the structure of EH(s, t) and some lemmas used in
our proofs.

2. Definitions and lemmas

For a given position integer n, let In = {1,2, . . . ,n}. The
sequence xnxn−1 · · · x1 is called a binary string of length n
if xr ∈ {0,1} for each r ∈ In . Let x = xnxn−1 · · · x1 and y =
yn yn−1 · · · y1 be two distinct binary strings of length n.
Hamming distance between x and y, denoted by H(x, y),
is the number of r’s for which |xr − yr | = 1 for r ∈ In .

For a binary string u = unun−1 · · · u1u0 of length n + 1,
we call ur the r-th bit of u for r ∈ In , and u0 the last bit
of u, denote sub-sequence u ju j−1 · · · ui+1ui of u by u[ j : i],
i.e., u[ j, i] = u ju j−1 · · · ui+1ui . Let

V (s, t) = {
us+t · · · ut+1ut · · · u1u0

∣∣ u0, ui ∈ {0,1},
i ∈ Is+t

}
.

Definition 2.1. The exchanged hypercube is an undirected
graph EH(s, t) = (V , E), where s � 1 and t � 1 are integers.
The set of vertices V is V (s, t), and the set of edges E is
composed of three disjoint types E1, E2 and E3:
E1 = {
uv ∈ V × V

∣∣ u[s + t : 1] = v[s + t : 1], u0 �= v0
}
,

E2 = {
uv ∈ V × V

∣∣ u[s + t : t + 1] = v[s + t : t + 1],
H

(
u[t : 1], v[t : 1]) = 1, u0 = v0 = 1

}
,

E3 = {
uv ∈ V × V

∣∣ u[t : 1] = v[t : 1], H
(
u[s + t : t + 1],

v[s + t : t + 1]) = 1, u0 = v0 = 0
}
.

Now we give an alternative definition of EH(s, t).

Definition 2.2. An exchanged hypercube EH(s, t) consists
of the vertex-set V (s, t) and the edge-set E , two vertices
u = us+t · · · ut+1ut · · · u1u0 and v = vs+t · · · vt+1 vt · · · v1 v0
linked by an edge, called r-dimensional edge, if and only if
the following conditions are satisfied:

(a) u and v differ exactly in one bit on the r-th bit or on
the last bit,

(b) if r ∈ It , then u0 = v0 = 1,
(c) if r ∈ Is+t − It , then u0 = v0 = 0.

The exchanged hypercubes EH(1,1) and EH(1,2) are
shown in Fig. 1.

From Definition 2.2, it is easy to see that EH(s, t) can be
obtained from a hypercube Q s+t+1 with vertex-set V (s, t)
by removing all r-dimensional edges that link two vertices
with the last bit 0 if r ∈ It and two vertices with the last
bit 1 if r ∈ Is+t − It . Thus, EH(s, t) is a bipartite graph
with minimum degree min{s, t} + 1 and maximum degree
max{s, t} + 1. The following three lemmas obtained by Loh
et al. [7] and Ma [8] are very useful for our proofs.

Lemma 2.3. (See Loh et al. [7].) EH(s, t) is isomorphic to
EH(t, s).

By Lemma 2.3, without loss of generality, we can as-
sume s � t in the following discussion, and so EH(s, t) has
the minimum degree s + 1. For fixed r ∈ Is+t and i ∈ {0,1},
let Hr

i denote a subgraph of EH(s, t) induced by all vertices
whose r-th bits are i.

Lemma 2.4. (See Loh et al. [7].) For a fixed r ∈ Is+t , EH(s, t)
can be decomposed into 2 isomorphic subgraphs Hr and Hr ,
0 1



X.-J. Li, J.-M. Xu / Information Processing Letters 113 (2013) 533–537 535
which are isomorphic to EH(s, t − 1) if r ∈ It and t � 2, and
isomorphic to EH(s − 1, t) if r ∈ Is+t − It and s � 2. Moreover,
there are 2s+t−1 independent edges between Hr

0 and Hr
1 .

Lemma 2.5. (See Ma [8].) κ(EH(s, t)) = λ(EH(s, t)) = s + 1 for
any s and t with 1 � s � t.

3. Main results

In this section, we present our main results, that is,
we determine the h-connectivity and h-edge-connectivity
of the exchanged hypercube EH(s, t).

Lemma 3.1. κ(h)(EH(s, t)) � 2h(s+1−h) and λ(h)(EH(s, t)) �
2h(s + 1 − h) for h � s.

Proof. Let X be a subset of vertices in EH(s, t) whose the
rightmost s + t + 1 − h bits are zeros and the leftmost h
bits do not care, denoted by

X = {∗h0s+t+1−h
∣∣ ∗ ∈ {0,1}}.

Then the subgraph of EH(s, t) induced by X is a hyper-
cube Q h . Let S be the neighbor-set of X in EH(s, t) − X
and F the edge-sets between X and S . By Definition 2.2,
S has the form

S = {∗h 0p10s−h−p−1︸ ︷︷ ︸
s−h

0t+1
∣∣ 0 � p � s − h − 1,

h � s − 1
} ∪ {∗h0s+t−h1

}
,

where ∗ ∈ {0,1}. On the one hand, since every vertex of X
has degree s + 1 in EH(s, t) and h neighbors in X , it has
exactly s − h + 1 neighbors in S . On the other hand, every
vertex of S has exactly one neighbor in X . It follows that

|S| = |F | = 2h(s + 1 − h).

We show that S is an h-vertex-cut of EH(s, t). Clearly,
S is a vertex-cut of EH(s, t) since |X ∪ S| = 2h(s + 2 − h) <

2s+t+1. Let Y = EH(s, t)− (X ∪ S) and v be any vertex in Y .
We only need to show that the vertex v has degree at
least h in Y . In fact, it is easy to see from the formal def-
inition of S that if v is adjacent to some vertex in S then
it has only the form

v = ∗h 0p10s−h−p−1︸ ︷︷ ︸
s−h

0t1 or ∗h0s−h 0r10t−r−1︸ ︷︷ ︸
t

1 or

∗h 0p10q10s−h−p−q−2︸ ︷︷ ︸
s−h

0t+1.

If v has the former two forms, then v has one neighbor
in S , thus v has at least (s + 1 − 1 = s �)h neighbors
in Y . If v has the last form, then s − h � 2 and v has two
neighbors in S . Thus, v has at least (s + 1 − 2 = s − 1 >)h
neighbors in Y .

By the arbitrariness of v ∈ Y , S is an h-vertex-cut of
EH(s, t), and so

κ(h)
(
EH(s, t)

)
� |S| = 2h(s + 1 − h)

as required.
We now show that F is an h-edge-cut of EH(s, t). Since
every vertex v in EH(s, t) − X has at most one neighbor
in X , then v has at least (s + 1 − 1 = s �)h neighbors in
EH(s, t) − X . By the arbitrariness of v ∈ EH(s, t) − X , F is
an h-edge-cut of EH(s, t), and so

λ(h)
(
EH(s, t)

)
� |F | = 2h(s + 1 − h).

The lemma follows. �
Corollary 3.2. κ(1)(EH(1, t)) = λ(1)(EH(1, t)) = 2 for t � 1.

Proof. On the one hand, κ(h)(EH(1, t)) � 2 and λ(h)(EH(1,

t)) � 2 by Lemma 3.1 when s = 1. On the other hand, by
Lemma 2.5, κ(EH(1, t)) = λ(EH(1, t)) = 2, thus κ(h)(EH(1,

t)) � κ(EH(1, t)) = 2 and λ(h)(EH(1, t)) � λ(EH(1, t)) = 2.
The results hold. �
Theorem 3.3. For 1 � s � t and any h with 0 � h � s,

κ(h)
(
EH(s, t)

) = λ(h)
(
EH(s, t)

) = 2h(s + 1 − h).

Proof. By Lemma 3.1, we only need to prove that,

κ(h)
(
EH(s, t)

) = λ(h)
(
EH(s, t)

)
� 2h(s + 1 − h).

We proceed by induction on h � 0. The theorem holds for
h = 0 by Lemma 2.5. Assume the induction hypothesis for
h − 1 with h � 1, that is,

κ(h−1)
(
EH(s, t)

) = λ(h−1)
(
EH(s, t)

)
� 2h−1(s + 2 − h).

(3.1)

Note h = 1 if s = 1. By Corollary 3.2, κ(1)(EH(1, t)) =
λ(1)(EH(1, t)) = 2 for any t � 1, the theorem is true for
s = 1. Thus, we assume s � 2 below.

Let S be a minimum h-vertex-cut (or h-edge-cut) of
EH(s, t) and X be the vertex-set of a minimum connected
component of EH(s, t) − S . Then

|S| =
{

κ(h)(EH(s, t)) if S is a vertex-cut;
λ(h)(EH(s, t)) if S is an edge-cut.

Thus, we only need to prove that

|S| � 2h(s + 1 − h). (3.2)

To the end, let Y be the set of vertices in EH(s, t) − S not
in X , and for a fixed r ∈ Is+t and each i = 0,1, let

Xi = X ∩ Hr
i ,

Yi = Y ∩ Hr
i and

Si = S ∩ Hr
i .

Let J = {i ∈ {0,1} | Xi �= ∅} and J ′ = {i ∈ J | Yi �= ∅}.
Clearly, 0 � | J ′| � | J | � 2 and | J ′| = 0 only when | J | = 1.
We choose r ∈ Is+t such that | J | is as large as possible. For
each i ∈ {0,1}, we write Hi for Hr

i for short. We first prove
the following inequality

|Si | � 2h−1(s + 1 − h)

if Xi �= ∅ and Yi �= ∅ for i ∈ {0,1}. (3.3)
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In fact, for some i ∈ {0,1}, if Xi �= ∅ and Yi �= ∅, then Si
is a vertex-cut (or an edge-cut) of Hi . Let u be any ver-
tex in Xi ∪ Yi . Since S is an h-vertex-cut (or h-edge-cut)
of EH(s, t), u has degree at least h in EH(s, t) − S . By
Lemma 2.4, u has at most one neighbor in H j , where j �= i.
Thus, u has degree at least h − 1 in Hi , which implies
that Si is an (h − 1)-vertex-cut (or edge-cut) of Hi , that is,

|Si| � κ(h−1)(Hi)
(
or |Si| � λ(h−1)(Hi)

)
. (3.4)

If r ∈ Is+t − It , then Hi ∼= EH(s − 1, t) by Lemma 2.4. By
the induction hypothesis (3.1), κ(h−1)(Hi) = λ(h−1)(Hi) �
2h−1(s + 1 − h), from which and (3.4), we have that |Si | �
2h−1(s + 1 − h).

If r ∈ It , then Hi ∼= EH(s, t − 1) by Lemma 2.4.
If t � s + 1, by the induction hypothesis (3.1),

κ(h−1)(Hi) = λ(h−1)(Hi)

� 2h−1(s + 2 − h) > 2h−1(s + 1 − h),

from which and (3.4), we have that |Si | > 2h−1(s + 1 − h).
If t = s, then EH(s, t − 1) ∼= EH(s − 1, t) by Lemma 2.3.

By the induction hypothesis (3.1),

κ(h−1)(Hi) = λ(h−1)(Hi) � 2h−1(s + 1 − h),

from which and (3.4), we have that |Si | � 2h−1(s + 1 − h).
The inequality (3.3) follows.

We now prove the inequality in (3.2).
If | J | = 1 then, by the choice of J , no matter what

r ∈ Is+t is chosen, the r-th bits of all vertices in X are the
same. In other words, the r-th bits of all vertices in X are
the same for any r ∈ Is+t , and possible different in the last
bit. Thus |X | � 2 and h � 1. By the hypothesis of h � 1, we
have h = 1 and |X | = 2. The subgraph of EH(s, t) induced
by X is an edge in E1, thus

|S| = s + t � 2s = 2h(s + 1 − h),

as required. Assume | J | = 2 below, that is, Xi �= ∅ for each
i = 0,1. In this case, | J ′| � 1.

If | J ′| = 2 then, for each i = 0,1, since Xi �= ∅ and
Yi �= ∅, we have that |Si| � 2h−1(s + 1 − h) by (3.3). Note
that |S| = |S0| + |S1| if S is an h-vertex-cut and |S| �
|S0| + |S1| if S is an h-edge-cut. It follows that

|S| � |S0| + |S1|
� 2 × 2h−1(s + 1 − h)

= 2h(s + 1 − h),

as required.
If | J ′| = 1, then one of Y0 and Y1 must be empty. With-

out loss of generality, assume Y1 = ∅ and Y0 �= ∅.
Clearly, S is not an h-edge-cut, otherwise, |Y | < |H0| <

|X |, a contradiction with the minimality of X . Thus, S is
an h-vertex-cut. By (3.3), |S0| � 2h−1(s + 1 − h). Since
Y1 = ∅, we have

|X1| = |H1| − |S1| and |Y | = |H0| − |X0| − |S0|. (3.5)

If |S1| < |S0| then, by (3.5), we obtain that |Y | < |X1| < |X |,
which contradicts to the minimality of X . Thus, |S1| � |S0|,
from which and (3.3) we have that

|S| = |S0| + |S1| � 2|S0|
� 2 × 2h−1(s + 1 − h)

= 2h(s + 1 − h),

as required. Thus, the inequality in (3.2) holds, and so the
theorem follows. �
Corollary 3.4. (See Ma and Zhu [10].) If 1 � s � t, then
κ(1)(EH(s, t)) = λ(1)(EH(s, t)) = 2s.

A dual-cube DC(n), proposed by Li and Peng [6] con-
structed from hypercubes, preserves the main desired
properties of the hypercube. Very recently, Yang and
Zhou [18] have determined that κ(h)(DC(n)) = 2n(n+1−h)

for each h = 0,1,2. Since EH(n,n) is isomorphic to DC(n),
the following result is obtained immediately.

Corollary 3.5. For dual-cube DC(n), κ(h)(DC(n)) =
λ(h)(DC(n)) = 2n(n + 1 − h) for any h with 0 � h � n.

4. Conclusions

In this paper, we consider the generalized measures of
fault tolerance for a network, called the h-connectivity κh

and the h-edge-connectivity λh . For the exchanged hyper-
cube EH(s, t), which has about half edges of the hyper-
cube Q s+t+1, we prove that κ(h) = λ(h) = 2h(s + 1 − h) for
any h with 0 � h � s and s � t . The results show that at
least 2h(s + 1 − h) vertices (resp. 2h(s + 1 − h) edges) of
EH(s, t) have to be removed to get a disconnected graph
that contains no vertices of degree less than h. Thus, when
the exchanged hypercube is used to model the topological
structure of a large-scale parallel processing system, these
results can provide more accurate measurements for fault
tolerance of the system.

Otherwise, Ma and Liu [9] investigated bipancyclicity of
EH(s, t). However, there are many interesting combinato-
rial and topological problems, e.g., wide-diameter, fault-
diameter, panconnectivity, spanning-connectivity, which
are still open for the exchanged hypercube network.
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