ON THE ROMAN BONDAGE NUMBER OF A GRAPH

A. BAHREMANDPOUR*, ${ }^{*}$, FU-TAO HU ${ }^{\dagger, \llbracket}$, S. M. SHEIKHOLESLAMI* and JUN-MING XU ${ }^{\ddagger, \|}$
*Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tabriz, I. R. Iran
${ }^{\dagger}$ School of Mathematical Sciences
Anhui University
Hefei, Anhui, 230601, P. R. China
${ }^{\ddagger}$ School of Mathematical Sciences
University of Science and Technology of China Wentsun Wu Key Laboratory of CAS
Hefei, Anhui, 230026, P. R. China
$\S_{\text {s.m.sheikholeslami@azaruniv.edu }}$
『hufu@ahu.edu.cn
| ${ }_{\text {xujm@ustc.edu.cn }}$

Received 1 July 2012
Revised 12 October 2012
Accepted 28 October 2012
Published 30 April 2013

Abstract

A Roman dominating function (RDF) on a graph $G=(V, E)$ is a function $f: V \rightarrow$ $\{0,1,2\}$ such that every vertex $v \in V$ with $f(v)=0$ has at least one neighbor $u \in V$ with $f(u)=2$. The weight of a RDF is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by $\gamma_{R}(G)$. The Roman bondage number $b_{R}(G)$ of a graph G with maximum degree at least two is the minimum cardinality of all sets $E^{\prime} \subseteq E(G)$ for which $\gamma_{R}\left(G-E^{\prime}\right)>\gamma_{R}(G)$. In this paper, we first show that the decision problem for determining $b_{R}(G)$ is NPhard even for bipartite graphs and then we establish some sharp bounds for $b_{R}(G)$ and characterizes all graphs attaining some of these bounds.

Keywords: Roman domination number; Roman bondage number; NP-hardness.
Mathematics Subject Classification: 05C69

1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to $[15,16,36]$. In this paper, G is a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order $|V|$ of G is denoted by $n=n(G)$. If $E(G)=\emptyset$, then G is said to be empty. We write C_{n} for a cycle of length n, P_{n} for a path of order n and K_{n} for a complete graph of order n through this paper. The complement \bar{G} of G is
the simple graph whose vertex set is V and whose edges are the pairs of nonadjacent vertices of G. Clearly, the complement \bar{K}_{n} is an empty graph of order n. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\operatorname{deg}(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\bigcup_{v \in S} N(v) \backslash S$, and the closed neighborhood of S is the set $N[S]=N(S) \cup S$. For two disjoint nonempty sets $S, T \subset V(G), E_{G}(S, T)=E(S, T)$ denotes the set of edges between S and T.

A subset S of vertices of G is a dominating set if $|N(v) \cap S| \geq 1$ for every $v \in V-S$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. To measure the vulnerability or the stability of the domination in an interconnection network under edge failure, Fink et al. [11] proposed the concept of the bondage number in 1990. The bondage number, denoted by $b(G)$, of G is the minimum number of edges whose removal from G results in a graph with larger domination number. An edge set B for which $\gamma(G-B)>\gamma(G)$ is called a bondage set. A $b(G)$-set is a bondage set of G of size $b(G)$. If B is a $b(G)$-set, then obviously

$$
\begin{equation*}
\gamma(G-B)=\gamma(G)+1 \tag{1.1}
\end{equation*}
$$

A Roman dominating function (RDF), on a graph G is a labeling $f: V \rightarrow$ $\{0,1,2\}$ such that every vertex with label 0 has at least one neighbor with label 2. The weight of a RDF is the value $f(V(G))=\sum_{u \in V(G)} f(u)$, denoted by $f(G)$. The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by $\gamma_{R}(G)$. A $\gamma_{R}(G)$-function is a RDF on G with weight $\gamma_{R}(G)$. A RDF $f: V \rightarrow\{0,1,2\}$ can be represented by the ordered partition $\left(V_{0}, V_{1}, V_{2}\right)$ (or $\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer to f) of V, where $V_{i}=\{v \in V \mid f(v)=i\}$. In this representation, its weight is $f(G)=\left|V_{1}\right|+2\left|V_{2}\right|$. It is clear that $V_{1}^{f} \cup V_{2}^{f}$ is a dominating set of G, called the Roman dominating set, denoted by $D_{R}^{f}=\left(V_{1}, V_{2}\right)$. Since $V_{1}^{f} \cup V_{2}^{f}$ is a dominating set when f is an RDF, and since placing weight 2 at the vertices of a dominating set yields an RDF, in [5], it was observed that

$$
\begin{equation*}
\gamma(G) \leq \gamma_{R}(G) \leq 2 \gamma(G) \tag{1.2}
\end{equation*}
$$

A graph G is called to be Roman if $\gamma_{R}(G)=2 \gamma(G)$.
The definition of the RDF was given implicitly by Stewart [31] and ReVelle and Rosing [27]. Cockayne, Dreyer Jr., Hedetniemi and Hedetniemi [5] as well as Chambers, Kinnersley, Prince and West [4] have given a lot of results on Roman domination. For more information on Roman domination we refer the reader to $[4-6,10,12,17-19,22-24,28-30,34]$.

Let G be a graph with maximum degree at least two. The Roman bondage number $b_{R}(G)$ of G is the minimum cardinality of all sets $E^{\prime} \subseteq E$ for which $\gamma_{R}(G-$ $\left.E^{\prime}\right)>\gamma_{R}(G)$. Since in the study of Roman bondage number the assumption $\Delta(G) \geq$ 2 is necessary, we always assume that when we discuss $b_{R}(G)$, all graphs involved
satisfy $\Delta(G) \geq 2$. The Roman bondage number $b_{R}(G)$ was introduced by Rad and Volkmann in [25], and has been further studied for example in [1, 2, 7-9, 20, 25, 26].

An edge set B that $\gamma_{R}(G-B)>\gamma_{R}(G)$ is called a Roman bondage set. A $b_{R}(G)$-set is a Roman bondage set of G of size $b_{R}(G)$. If B is a $b_{R}(G)$-set, then clearly

$$
\begin{equation*}
\gamma_{R}(G-B)=\gamma_{R}(G)+1 \tag{1.3}
\end{equation*}
$$

In this paper, we first show that the decision problem for determining $b_{R}(G)$ is NP-hard even for bipartite graphs and then we establish some sharp bounds for $b_{R}(G)$ and characterize all graphs attaining some of these bounds.

We make use of the following results in this paper.
Proposition 1.1 (Chambers et al. [4]). If G is a graph of order n, then $\gamma_{R}(G) \leq$ $n-\Delta(G)+1$.

Proposition 1.2 (Cockayne et al. [5]). For a grid graph $P_{2} \times P_{n}$,

$$
\gamma_{R}\left(P_{2} \times P_{n}\right)=n+1
$$

Proposition 1.3 (Cockayne et al. [5]). For any graph $G, \gamma(G) \leq \gamma_{R}(G) \leq$ $2 \gamma(G)$.

Proposition 1.4 (Cockayne et al. [5]). For any graph G of order $n, \gamma(G)=$ $\gamma_{R}(G)$ if, and only if, $G=\bar{K}_{n}$, an empty graph on n vertices.

Proposition 1.5 (Cockayne et al. [5]). If G is a connected graph of order n, then $\gamma_{R}(G)=\gamma(G)+1$ if, and only if, there is a vertex $v \in V(G)$ of degree $n-\gamma(G)$.

Proposition $1.6(\mathbf{H u}$ and $\mathbf{X u}[20])$. If $G=K_{3,3, \ldots, 3}$ is the complete t-partite graph of order $n \geq 9$, then $b_{R}(G)=n-1$.

Proposition 1.7 (Jafari Rad and Volkmann [25]). If G is a connected graph of order $n \geq 3$, then $b_{R}(G) \leq \delta(G)+2 \Delta(G)-3$.

Proposition 1.8 (Fink et al. [11], Rad and Volkmann [25]). For a cycle C_{n} of order n,

$$
\begin{aligned}
b\left(C_{n}\right) & = \begin{cases}3, & \text { if } n=1 \quad(\bmod 3) ; \\
2, & \text { otherwise } .\end{cases} \\
b_{R}\left(C_{n}\right) & = \begin{cases}3, & \text { if } n=2 \\
2, & \text { otherwise } .\end{cases}
\end{aligned}
$$

Observation 1.9. Let G be a connected graph of order $n \geq 3$. Then $\gamma_{R}(G)=2$ if, and only if, $\Delta(G)=n-1$.

Observation 1.10. Let G be a graph of order n with maximum degree at least two. Assume that H is a spanning subgraph of G with $\gamma_{R}(H)=\gamma_{R}(G)$. If $K=$ $E(G)-E(H)$, then $b_{R}(H) \leq b_{R}(G) \leq b_{R}(H)+|K|$.

Proposition 1.11. Let G be a nonempty graph of order $n \geq 3$, then $\gamma_{R}(G)=3$ if, and only if, $\Delta(G)=n-2$.

Proof. Let $\Delta(G)=n-2$. Assume that u is a vertex of degree $n-2$ and v is the unique vertex not adjacent to u in G. By Observation 1.9, $\gamma_{R}(G) \geq 3$ and clearly $f=(V(G)-\{u, v\},\{v\},\{u\})$ is a RDF of G with $f(G)=3$. Thus, $\gamma_{R}(G)=3$.

Conversely, assume $\gamma_{R}(G)=3$. Then $\Delta(G) \leq n-2$ by Proposition 1.1. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a γ_{R}-function of G. If $V_{2}=\emptyset$, then $f(v)=1$ for each vertex $v \in V(G)$, and hence $n=3$. Sine G is nonempty and $\Delta(G) \leq n-2=1$, we have $\Delta(G)=n-2=1$. Let $V_{2} \neq \emptyset$. Since $\gamma_{R}(G)=3$, we deduce that $\left|V_{1}\right|=\left|V_{2}\right|=1$. Suppose $V_{1}=\{v\}$ and $V_{2}=\{u\}$. Then other $n-2$ vertices assigned 0 must be adjacent to u. Thus, $\Delta(G) \geq d_{G}(u) \geq n-2$ and hence $\Delta(G)=n-2$.

2. Complexity of Roman Bondage Number

In this section, we will show that the Roman bondage number problem is NP-hard and the Roman domination number problem is NP-complete even for bipartite graphs. We first state the problem as the following decision problem.

Roman bondage number problem (RBN):

Instance: A nonempty bipartite graph G and a positive integer k.
Question: Is $b_{R}(G) \leq k$?

Roman domination number problem (RDN):

Instance: A nonempty bipartite graph G and a positive integer k.
Question: Is $\gamma_{R}(G) \leq k$?
Following Garey and Johnson's techniques for proving NP-completeness given in [13], we prove our results by describing a polynomial transformation from the well-known NP-complete problem: 3SAT. To state 3SAT, we recall some terms.

Let U be a set of Boolean variables. A truth assignment for U is a mapping $t: U \rightarrow\{T, F\}$. If $t(u)=T$, then u is said to be "true" under t; if $t(u)=F$, then u is said to be "false" under t. If u is a variable in U, then u and \bar{u} are literals over U. The literal u is true under t if, and only if, the variable u is true under t; the literal \bar{u} is true if, and only if, the variable u is false.

A clause over U is a set of literals over U. It represents the disjunction of these literals and is satisfied by a truth assignment if, and only if, at least one of its members is true under that assignment. A collection \mathscr{C} of clauses over U is satisfiable if, and only if, there exists some truth assignment for U that simultaneously satisfies all the clauses in \mathscr{C}. Such a truth assignment is called a satisfying truth assignment for \mathscr{C}. The 3SAT is specified as follows.

3 -satisfiability problem (3SAT):

Instance: A collection $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ of clauses over a finite set U of variables such that $\left|C_{j}\right|=3$ for $j=1,2, \ldots, m$.

Question: Is there a truth assignment for U that satisfies all the clauses in \mathscr{C} ?
Theorem 2.1 ([13, Theorem 3.1]). 3SAT is NP-complete.
Theorem 2.2. $R B N$ is NP-hard even for bipartite graphs.
Proof. The transformation is from 3SAT. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathscr{C}=$ $\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}$ be an arbitrary instance of 3SAT. We will construct a bipartite graph G and choose an integer k such that \mathscr{C} is satisfiable if and only if $b_{R}(G) \leq k$. We construct such a graph G as follows.

For each $i=1,2, \ldots, n$, corresponding to the variable $u_{i} \in U$, associate a graph H_{i} with vertex set $V\left(H_{i}\right)=\left\{u_{i}, \bar{u}_{i}, v_{i}, v_{i}^{\prime}, x_{i}, y_{i}, z_{i}, w_{i}\right\}$ and edge set $E\left(H_{i}\right)=\left\{u_{i} v_{i}, u_{i} z_{i}, \bar{u}_{i} v_{i}^{\prime}, \bar{u}_{i} z_{i}, y_{i} v_{i}, y_{i} v_{i}^{\prime}, y_{i} z_{i}, w_{i} v_{i}, w_{i} v_{i}^{\prime}, w_{i} z_{i}, x_{i} v_{i}, x_{i} v_{i}^{\prime}\right\}$. For each $j=1,2, \ldots, m$, corresponding to the clause $C_{j}=\left\{p_{j}, q_{j}, r_{j}\right\} \in \mathscr{C}$, associate a single vertex c_{j} and add the edge set $E_{j}=\left\{c_{j} p_{j}, c_{j} q_{j}, c_{j} r_{j}\right\}, 1 \leq j \leq m$. Finally, add a path $P=s_{1} s_{2} s_{3}$, join s_{1} and s_{3} to each vertex c_{j} with $1 \leq j \leq m$ and set $k=1$.

Figure 1 shows an example of the graph obtained when $U=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $\mathscr{C}=\left\{C_{1}, C_{2}, C_{3}\right\}$, where $C_{1}=\left\{u_{1}, u_{2}, \bar{u}_{3}\right\}, C_{2}=\left\{\bar{u}_{1}, u_{2}, u_{4}\right\}, C_{3}=\left\{\bar{u}_{2}, u_{3}, u_{4}\right\}$.

To prove that this is indeed a transformation, we only need to show that $b_{R}(G)=$ 1 if, and only if, there is a truth assignment for U that satisfies all clauses in \mathscr{C}. This aim can be obtained by proving the following four claims.

Claim 2.3. $\gamma_{R}(G) \geq 4 n+2$. Moreover, if $\gamma_{R}(G)=4 n+2$, then for any γ_{R}-function f on $G, f\left(H_{i}\right)=4$ and at most one of $f\left(u_{i}\right)$ and $f\left(\bar{u}_{i}\right)$ is 2 for each $i, f\left(c_{j}\right)=0$ for each j and $f\left(s_{2}\right)=2$.

Proof. Let f be a γ_{R}-function of G, and let $H_{i}^{\prime}=H_{i}-u_{i}-\bar{u}_{i}$.

Fig. 1. An instance of the Roman bondage number problem resulting from an instance of 3SAT. Here $k=1$ and $\gamma_{R}(G)=18$, where the bold vertex p means a RDF with $f(p)=2$.

If $f\left(u_{i}\right)=2$ and $f\left(\bar{u}_{i}\right)=2$, then $f\left(H_{i}\right) \geq 4$. Assume either $f\left(u_{i}\right)=2$ or $f\left(\bar{u}_{i}\right)=$ 2. If $f\left(x_{i}\right)=0$ or $f\left(y_{i}\right)=0$, then there is at least one vertex t in $\left\{v_{i}, v_{i}^{\prime}, z_{i}\right\}$ such that $f(t)=2$; otherwise $f\left(x_{i}\right)=f\left(y_{i}\right)=1$. Both two cases imply that $f\left(H_{i}^{\prime}\right) \geq 2$. Thus, $f\left(H_{i}\right) \geq 4$.

If $f\left(u_{i}\right) \neq 2$ and $f\left(\bar{u}_{i}\right) \neq 2$, let f^{\prime} be a restriction of f on H_{i}^{\prime}, then f^{\prime} is a Roman dominating function of H_{i}^{\prime}, and $f^{\prime}\left(H_{i}^{\prime}\right) \geq \gamma_{R}\left(H_{i}^{\prime}\right)$. Since the maximum degree of H_{i}^{\prime} is $V\left(H_{i}^{\prime}\right)-3$, by Proposition 1.11 and Observation 1.9, $\gamma_{R}\left(H_{i}^{\prime}\right)>3$ and hence $f^{\prime}\left(H_{i}^{\prime}\right) \geq 4$ and $f\left(H_{i}\right) \geq 4$. If $f\left(s_{1}\right)=0$ or $f\left(s_{3}\right)=0$, then there is at least one vertex t in $\left\{c_{1}, \ldots, c_{m}, s_{2}\right\}$ such that $f(t)=2$; otherwise $f\left(s_{1}\right)=f\left(s_{3}\right)=1$. Both two cases imply that $f\left(N_{G}[V(P)]\right) \geq 2$, and hence $\gamma_{R}(G) \geq 4 n+2$.

Suppose that $\gamma_{R}(G)=4 n+2$, then $f\left(H_{i}\right)=4$ and since $f\left(N_{G}\left[x_{i}\right]\right) \geq 1$, at most one of $f\left(u_{i}\right)$ and $f\left(\bar{u}_{i}\right)$ is 2 for each $i=1,2, \ldots, n$, while $f\left(N_{G}[V(P)]\right)=2$. It follows that $f\left(s_{2}\right)=2$ since $f\left(N_{G}\left[s_{2}\right]\right) \geq 1$. Consequently, $f\left(c_{j}\right)=0$ for each $j=1,2, \ldots, m$.

Claim 2.4. $\gamma_{R}(G)=4 n+2$ if, and only if, \mathscr{C} is satisfiable.

Proof. Suppose that $\gamma_{R}(G)=4 n+2$ and let f be a γ_{R}-function of G. By Claim 2.3, at most one of $f\left(u_{i}\right)$ and $f\left(\bar{u}_{i}\right)$ is 2 for each $i=1,2, \ldots, n$. Define a mapping $t: U \rightarrow\{T, F\}$ by

$$
t\left(u_{i}\right)= \begin{cases}T & \text { if } f\left(u_{i}\right)=2 \text { or } f\left(u_{i}\right) \neq 2 \quad \text { and } \quad f\left(\bar{u}_{i}\right) \neq 2, \quad i=1,2, \ldots, n \tag{2.1}\\ F & \text { if } f\left(\bar{u}_{i}\right)=2\end{cases}
$$

We now show that t is a satisfying truth assignment for \mathscr{C}. It is sufficient to show that every clause in \mathscr{C} is satisfied by t. To this end, we arbitrarily choose a clause $C_{j} \in \mathscr{C}$ with $1 \leq j \leq m$.

By Claim 2.3, $f\left(c_{j}\right)=f\left(s_{1}\right)=f\left(s_{3}\right)=0$. There exists some i with $1 \leq i \leq n$ such that $f\left(u_{i}\right)=2$ or $f\left(\bar{u}_{i}\right)=2$ where c_{j} is adjacent to u_{i} or \bar{u}_{i}. Suppose that c_{j} is adjacent to u_{i} where $f\left(u_{i}\right)=2$. Since u_{i} is adjacent to c_{j} in G, the literal u_{i} is in the clause C_{j} by the construction of G. Since $f\left(u_{i}\right)=2$, it follows that $t\left(u_{i}\right)=T$ by (2.1), which implies that the clause C_{j} is satisfied by t. Suppose that c_{j} is adjacent to \bar{u}_{i} where $f\left(\bar{u}_{i}\right)=2$. Since \bar{u}_{i} is adjacent to c_{j} in G, the literal \bar{u}_{i} is in the clause C_{j}. Since $f\left(\bar{u}_{i}\right)=2$, it follows that $t\left(u_{i}\right)=F$ by (2.1). Thus, t assigns \bar{u}_{i} the truth value T, that is, t satisfies the clause C_{j}. By the arbitrariness of j with $1 \leq j \leq m$, we show that t satisfies all the clauses in \mathscr{C}, that is, \mathscr{C} is satisfiable.
Conversely, suppose that \mathscr{C} is satisfiable, and let $t: U \rightarrow\{T, F\}$ be a satisfying truth assignment for \mathscr{C}. Create a function f on $V(G)$ as follows: if $t\left(u_{i}\right)=T$, then let $f\left(u_{i}\right)=f\left(v_{i}^{\prime}\right)=2$, and if $t\left(u_{i}\right)=F$, then let $f\left(\bar{u}_{i}\right)=f\left(v_{i}\right)=2$. Let $f\left(s_{2}\right)=2$. Clearly, $f(G)=4 n+2$. Since t is a satisfying truth assignment for \mathscr{C}, for each $j=1,2, \ldots, m$, at least one of literals in C_{j} is true under the assignment t. It follows that the corresponding vertex c_{j} in G is adjacent to at least one vertex p with $f(p)=2$ since c_{j} is adjacent to each literal in C_{j} by the construction of G. Thus
f is a RDF of G, and so $\gamma_{R}(G) \leq f(G)=4 n+2$. By Claim 2.3, $\gamma_{R}(G) \geq 4 n+2$, and so $\gamma_{R}(G)=4 n+2$.

Claim 2.5. $\gamma_{R}(G-e) \leq 4 n+3$ for any $e \in E(G)$.

Proof. For any edge $e \in E(G)$, it is sufficient to construct a RDF f on $G-e$ with weight $4 n+3$. We first assume $e \in E_{G}\left(s_{1}\right)$ or $e \in E_{G}\left(s_{3}\right)$ or $e \in E_{G}\left(c_{j}\right)$ for some $j=1,2, \ldots, m$, without loss of generality let $e \in E_{G}\left(s_{1}\right)$ or $e=c_{j} u_{i}$ or $e=c_{j} \bar{u}_{i}$. Let $f\left(s_{3}\right)=2, f\left(s_{1}\right)=1$ and $f\left(u_{i}\right)=f\left(v_{i}^{\prime}\right)=2$ for each $i=1,2, \ldots, n$. For the edge $e \notin E_{G}\left(u_{i}\right)$ and $e \notin E_{G}\left(v_{i}^{\prime}\right)$, let $f\left(s_{1}\right)=2, f\left(s_{3}\right)=1$ and $f\left(u_{i}\right)=f\left(v_{i}^{\prime}\right)=2$. For the edge $e \notin E\left(\bar{u}_{i}\right)$ and $e \notin E\left(v_{i}\right)$, let $f\left(s_{1}\right)=2, f\left(s_{3}\right)=1$ and $f\left(\bar{u}_{i}\right)=f\left(v_{i}\right)=2$. If $e=u_{i} v_{i}$ or $e=\bar{u}_{i} v_{i}^{\prime}$, let $f\left(s_{1}\right)=2, f\left(s_{3}\right)=1$ and $f\left(x_{i}\right)=f\left(z_{i}\right)=2$. Then f is a RDF of $G-e$ with $f(G-e)=4 n+3$ and hence $\gamma_{R}(G-e) \leq 4 n+3$.

Claim 2.6. $\gamma_{R}(G)=4 n+2$ if, and only if, $b_{R}(G)=1$.

Proof. Assume $\gamma_{R}(G)=4 n+2$ and consider the edge $e=s_{1} s_{2}$. Suppose $\gamma_{R}(G)=$ $\gamma_{R}(G-e)$. Let f^{\prime} be a γ_{R}-function of $G-e$. It is clear that f^{\prime} is also a γ_{R}-function on G. By Claim 2.3 we have $f^{\prime}\left(c_{j}\right)=0$ for each $j=1,2, \ldots, m$ and $f^{\prime}\left(s_{2}\right)=2$. But then $f^{\prime}\left(N_{G-e}\left[s_{1}\right]\right)=0$, a contradiction. Hence, $\gamma_{R}(G)<\gamma_{R}(G-e)$, and so $b_{R}(G)=1$.

Now, assume $b_{R}(G)=1$. By Claim 2.3, we have $\gamma_{R}(G) \geq 4 n+2$. Let e^{\prime} be an edge such that $\gamma_{R}(G)<\gamma_{R}\left(G-e^{\prime}\right)$. By Claim 2.5, we have that $\gamma_{R}\left(G-e^{\prime}\right) \leq 4 n+3$. Thus, $4 n+2 \leq \gamma_{R}(G)<\gamma_{R}\left(G-e^{\prime}\right) \leq 4 n+3$, which yields $\gamma_{R}(G)=4 n+2$.

By Claims 2.4 and 2.6, we prove that $b_{R}(G)=1$ if and only if there is a truth assignment for U that satisfies all clauses in \mathscr{C}. Since the construction of the Roman bondage number instance is straightforward from a 3 -satisfiability instance, the size of the Roman bondage number instance is bounded above by a polynomial function of the size of 3 -satisfiability instance. It follows that this is a polynomial reduction and the proof is complete.

Corollary 2.7. Roman domination number problem is NP-complete even for bipartite graphs.

Proof. It is easy to see that the Roman domination problem is in NP since a nondeterministic algorithm need only guess a vertex set pair (V_{1}, V_{2}) with $\left|V_{1}\right|+$ $2\left|V_{2}\right| \leq k$ and check in polynomial time whether for any vertex $u \in V \backslash\left(V_{1} \cup V_{2}\right)$ there is a vertex in V_{2} adjacent to u for a given nonempty graph G.

We use the same method as in Theorem 2.2 to prove this conclusion. We construct the same graph G but without the path P. We set $k=4 n$, then use the same methods as in Claims 2.3 and 2.4, we have that $\gamma_{R}(G)=4 n$ if, and only if, \mathscr{C} is satisfiable.

3. General Bounds

Lemma 3.1. Let G be a connected graph of order $n \geq 3$ such that $\gamma_{R}(G)=\gamma(G)+1$. If there is a set B of edges with $\gamma_{R}(G-B)=\gamma_{R}(G)$, then $\Delta(G)=\Delta(G-B)$.

Proof. Since G is connected and $n \geq 3, \gamma_{R}(G)=\gamma(G)+1 \leq n-1$. Since $\gamma_{R}(G-$ $B)=\gamma_{R}(G) \leq n-1, G-B$ is nonempty. It follows from Propositions 1.3 and 1.4 that $\gamma_{R}(G-B) \geq \gamma(G-B)+1$. Since

$$
\gamma_{R}(G-B)=\gamma_{R}(G)=\gamma(G)+1 \leq \gamma(G-B)+1,
$$

we have $\gamma_{R}(G-B)=\gamma(G-B)+1$, and then $\gamma(G-B)=\gamma(G)$.
If $G-B$ is connected, then by Proposition 1.5,

$$
\Delta(G-B)=n-\gamma(G-B)=n-\gamma(G)=\Delta(G)
$$

If $G-B$ is disconnected, then let G_{1} be a nonempty connected component of $G-B$. By Propositions 1.3 and 1.4, $\gamma_{R}\left(G_{1}\right) \geq \gamma\left(G_{1}\right)+1$. Then

$$
\begin{aligned}
\gamma(G)+1 & =\gamma_{R}(G-B) \\
& =\gamma_{R}\left(G_{1}\right)+\gamma_{R}\left(G-G_{1}\right) \\
& \geq \gamma\left(G_{1}\right)+1+\gamma\left(G-G_{1}\right) \\
& \geq \gamma(G)+1,
\end{aligned}
$$

and hence $\gamma_{R}\left(G_{1}\right)=\gamma\left(G_{1}\right)+1, \gamma_{R}\left(G-G_{1}\right)=\gamma\left(G-G_{1}\right)$ and $\gamma(G)=\gamma\left(G_{1}\right)+\gamma(G-$ $\left.G_{1}\right)$. By Proposition 1.4, $G-G_{1}$ is empty and hence $\gamma\left(G-G_{1}\right)=\left|V\left(G-G_{1}\right)\right|$. By Proposition 1.5,

$$
\begin{aligned}
\Delta\left(G_{1}\right) & =\left|V\left(G_{1}\right)\right|-\gamma\left(G_{1}\right) \\
& =n-\left|V\left(G-G_{1}\right)\right|-\gamma\left(G_{1}\right) \\
& =n-\gamma\left(G-G_{1}\right)-\gamma\left(G_{1}\right) \\
& =n-\gamma(G)=\Delta(G),
\end{aligned}
$$

as desirable.

Theorem 3.2. Let G be a connected graph of order $n \geq 3$ with $\gamma_{R}(G)=\gamma(G)+1$. Then

$$
b_{R}(G) \leq \min \left\{b(G), n_{\Delta}\right\},
$$

where n_{Δ} is the number of vertices with maximum degree Δ in G.
Proof. Since $n \geq 3$ and G is connected, we have $\Delta(G) \geq 2$ and hence $\gamma(G) \leq n-2$. Let B be a $b(G)$-set. By (1.1), $\gamma(G-B)=\gamma(G)+1 \leq n-1$ and so $G-B$ is nonempty. It follows from Propositions 1.3 and 1.4 that $\gamma_{R}(G-B) \geq \gamma(G-B)+1>\gamma(G)+1=$ $\gamma_{R}(G)$ and hence B is a Roman bondage set of G. Thus, $b_{R}(G) \leq b(G)$.

We now prove that $b_{R}(G) \leq n_{\Delta}$. It follows from Propositions 1.1 and 1.5 and the fact $\gamma_{R}(G)=\gamma(G)+1$ that $\Delta(G)=n-\gamma(G)$. Let $\left\{v_{1}, \ldots, v_{n_{\Delta}}\right\}$ be the set consisting of all vertices of degree Δ and let e_{i} be an edge incident with v_{i} for each $1 \leq i \leq n_{\Delta}$. Suppose $B^{\prime}=\left\{e_{1}, \ldots, e_{n_{\Delta}}\right\}$ (maybe $e_{i}=e_{j}$ for some $i \neq j$). Clearly, $\Delta\left(G-B^{\prime}\right)<\Delta(G)=n-\gamma(G)$. If $G-B^{\prime}$ is empty, then $\gamma_{R}\left(G-B^{\prime}\right)=n>n-1 \geq$ $\gamma_{R}(G)$. Now assume that $G-B^{\prime}$ is nonempty. It follows from Propositions 1.3 and 1.4 that $\gamma_{R}\left(G-B^{\prime}\right) \geq \gamma\left(G-B^{\prime}\right)+1$. We claim that $\gamma_{R}\left(G-B^{\prime}\right)>\gamma_{R}(G)$. Assume to the contrary that $\gamma_{R}\left(G-B^{\prime}\right)=\gamma_{R}(G)$. We deduce from Lemma 3.1 that $\Delta\left(G-B^{\prime}\right)=\Delta(G)=n-\gamma(G)$, a contradiction. Hence $b_{R}(G) \leq\left|B^{\prime}\right| \leq n_{\Delta}$. This completes the proof.

Theorem 3.3. For every Roman graph G,

$$
b_{R}(G) \geq b(G)
$$

The bound is sharp for cycles on n vertices where $n \equiv 0(\bmod 3)$.
Proof. Let B be a $b_{R}(G)$-set. Then by (1.2) we have

$$
2 \gamma(G-B) \geq \gamma_{R}(G-B)>\gamma_{R}(G)=2 \gamma(G)
$$

Thus $\gamma(G-B)>\gamma(G)$ and hence $b_{R}(G) \geq b(G)$.
By Proposition 1.8, we have $b_{R}\left(C_{n}\right)=b\left(C_{n}\right)=2$ when $n \equiv 0(\bmod 3)$.
The strict inequality in Theorem 3.3 can hold, for example, $b\left(C_{3 k+2}\right)=2<3=$ $b_{R}\left(C_{3 k+2}\right)$ by Proposition 1.8.

A graph G is called to be vertex domination-critical (vc-graph) if $\gamma(G-x)<\gamma(G)$ for any vertex x in G. We call a graph G to be vertex Roman domination-critical (vrc-graph) if $\gamma_{R}(G-x)<\gamma_{R}(G)$ for every vertex x in G.

The vertex covering number $\beta(G)$ of G is the minimum number of vertices that are incident with all edges in G. If G has no isolated vertices, then $\gamma_{R}(G) \leq 2 \gamma(G) \leq$ $2 \beta(G)$. If $\gamma_{R}(G)=2 \beta(G)$, then $\gamma_{R}(G)=2 \gamma(G)$ and hence G is a Roman graph. In [32], Volkmann gave a lot of graphs with $\gamma(G)=\beta(G)$.

Theorem 3.4. Let G be a graph with $\gamma_{R}(G)=2 \beta(G)$. Then
(1) $b_{R}(G) \geq \delta(G)$;
(2) $b_{R}(G) \geq \delta(G)+1$ if G is a vrc-graph.

Proof. Let G be a graph such that $\gamma_{R}(G)=2 \beta(G)$.
(1) If $\delta(G)=1$, then the result is immediate. Assume $\delta(G) \geq 2$. Let $B \subseteq E(G)$ and $|B| \leq \delta(G)-1$. Then $\delta(G-B) \geq 1$ and so $\gamma_{R}(G) \leq \gamma_{R}(G-B) \leq 2 \beta(G-B) \leq$ $2 \beta(G)=\gamma_{R}(G)$. Thus, B is not a Roman bondage set of G, and hence $b_{R}(G) \geq \delta(G)$.
(2)Let B be a Roman bondage set of G. An argument similar to that described in the proof of (1), shows that B must contain all edges incident with some vertex of G, say x. Hence, $G-B$ has an isolated vertex. On the other hand, since G is a
vrc-graph, $\gamma_{R}(G-x)<\gamma_{R}(G)$ which implies that the removal of all edges incident to x cannot increase the Roman domination number. Hence, $b_{R}(G) \geq \delta(G)+1$.

The cartesian product $G=G_{1} \times G_{2}$ of two disjoint graphs G_{1} and G_{2} has $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right)$, and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of G are adjacent if and only if either $u_{1}=v_{1}$ and $u_{2} v_{2} \in E\left(G_{2}\right)$ or $u_{2}=v_{2}$ and $u_{1} v_{1} \in E\left(G_{1}\right)$. The cartesian product of two paths $P_{r}=x_{1} x_{2} \cdots x_{r}$ and $P_{t}=y_{1} y_{2} \cdots y_{t}$ is called a grid. Let $G_{r, t}=P_{r} \times P_{t}$ is a grid, and let $V\left(G_{r, t}\right)=\left\{u_{i, j}=\left(x_{i}, y_{j}\right) \mid 1 \leq i \leq r\right.$ and $1 \leq$ $j \leq t\}$ be the vertex set of G. Next we determine Roman bondage number of some grids.

Theorem 3.5. For $n \geq 2, b_{R}\left(G_{2, n}\right)=2$.

Proof. By Proposition 1.2, we have $\gamma_{R}\left(G_{2, n}\right)=n+1$. Since

$$
\gamma_{R}\left(G_{2, n}-u_{1,1} u_{1,2}-u_{2,1} u_{2,2}\right)=2+\gamma_{R}\left(G_{2, n-1}\right)=n+2
$$

we deduce that $b_{R}\left(G_{2, n}\right) \leq 2$. Now we show that $\gamma_{R}\left(G_{2, n}-e\right)=\gamma_{R}\left(G_{2, n}\right)$ for any edge $e \in E\left(G_{2, n}\right)$. Consider two cases.

Case 1. n is odd.
For $k=1,2,3,4$, define $f_{k}: V\left(G_{2, n}\right) \rightarrow\{0,1,2\}$ as follows:

$$
\begin{aligned}
& f_{1}\left(u_{i, j}\right)=\left\{\begin{array}{lll}
2 & \text { if } i=1 \text { and } j \equiv 1(\bmod 4) & \text { or } \quad i=2 \text { and } j \equiv 3(\bmod 4) \\
0 & \text { if otherwise, }
\end{array}\right. \\
& f_{2}\left(u_{i, j}\right)= \begin{cases}2 & \text { if } i=1 \text { and } j \equiv 3(\bmod 4) \\
0 & \text { if otherwise },\end{cases}
\end{aligned}
$$

and if $n \equiv 1(\bmod 4)$, then

$$
f_{3}\left(u_{i, j}\right)= \begin{cases}2 & \text { if } i=1 \text { and } j \equiv 0(\bmod 4) \quad \text { or } \quad i=2 \text { and } j \equiv 2(\bmod 4) \\ 1 & \text { if } i=j=1 \text { or } i=2 \text { and } j=n \\ 0 & \text { if otherwise },\end{cases}
$$

and if $n \equiv 3(\bmod 4)$, then

$$
f_{4}\left(u_{i, j}\right)= \begin{cases}2 & \text { if } i=1 \text { and } j \equiv 2(\bmod 4) \quad \text { or } i=2 \text { and } j \equiv 0(\bmod 4) \\ 1 & \text { if } i=2 \text { and } j=1 \text { or } i=2 \text { and } j=n \\ 0 & \text { if otherwise. }\end{cases}
$$

Obviously, f_{k} is a $\gamma_{R}\left(G_{2, n}\right)$-function for each $k=1,2,3$ when $n \equiv 1(\bmod 4)$ and f_{k} is a $\gamma_{R}\left(G_{2, n}\right)$-function for each $k=1,2,4$ when $n \equiv 3(\bmod 4)$. Let $e \in E(G)$ be an arbitrary edge of G. Then clearly, f_{1} or f_{2} or f_{3} is a RDF of $G-e$ if $n \equiv 1(\bmod 4)$ and f_{1} or f_{2} or f_{3} is a RDF of $G-e$ if $n \equiv 3(\bmod 4)$. Hence $b_{R}\left(G_{2, n}\right) \geq 2$.

Case 2. n is even.
For $k=1,2,3,4$, define $f_{k}: V\left(G_{2, n}\right) \rightarrow\{0,1,2\}$ as follows:

$$
\begin{aligned}
& f_{1}\left(u_{i, j}\right)=\left\{\begin{array}{lll}
2 & \text { if } i=1 \text { and } j \equiv 0(\bmod 4) \quad \text { or } \quad i=2 \text { and } j \equiv 2(\bmod 4) \\
1 & \text { if } i=j=1 \\
0 & \text { if otherwise },
\end{array}\right. \\
& f_{2}\left(u_{i, j}\right)= \begin{cases}2 & \text { if } i=1 \text { and } j \equiv 2(\bmod 4) \quad \text { or } \quad i=2 \text { and } j \equiv 0(\bmod 4) \\
1 & \text { if } i=2 \text { and } j=1 \\
0 & \text { if otherwise },\end{cases}
\end{aligned}
$$

and if $n \equiv 0(\bmod 4)$, then

$$
f_{3}\left(u_{i, j}\right)= \begin{cases}2 & \text { if } i=1 \text { and } j \equiv 1(\bmod 4) \quad \text { or } \quad i=2 \text { and } j \equiv 3(\bmod 4) \\ 1 & \text { if } i=1 \text { and } j=n \\ 0 & \text { if otherwise, }\end{cases}
$$

and if $n \equiv 2(\bmod 4)$, then

$$
f_{4}\left(u_{i, j}\right)= \begin{cases}2 & \text { if } i=1 \text { and } j \equiv 1(\bmod 4) \quad \text { or } \quad i=2 \text { and } j \equiv 3(\bmod 4) \\ 1 & \text { if } i=2 \text { and } j=n \\ 0 & \text { if otherwise. }\end{cases}
$$

Obviously, f_{k} is a $\gamma_{R}\left(G_{2, n}\right)$-function for each $k=1,2,3$ when $n \equiv 0(\bmod 4)$ and f_{k} is a $\gamma_{R}\left(G_{2, n}\right)$-function for each $k=1,2,4$ when $n \equiv 2(\bmod 4)$. Let $e \in E(G)$ be an arbitrary edge of G. Then clearly, f_{1} or f_{2} or f_{3} is a RDF of $G-e$ if $n \equiv 0(\bmod 4)$ and f_{1} or f_{2} or f_{4} is a RDF of $G-e$ if $n \equiv 2(\bmod 4)$. Hence $b_{R}\left(G_{2, n}\right) \geq 2$. This completes the proof.

4. Roman Bondage Number of Graphs with Small Roman Domination Number

Dehgardi et al. [8] posed the following problem: If G is a connected graph of order $n \geq 4$ with Roman domination number $\gamma_{R}(G) \geq 3$, then

$$
\begin{equation*}
b_{R}(G) \leq\left(\gamma_{R}(G)-2\right) \Delta(G) \tag{4.1}
\end{equation*}
$$

Proposition 1.7 shows that the inequality (4.1) holds if $\gamma_{R}(G) \geq 5$. Thus the bound in (4.1) is of interest only when $\gamma_{R}(G)$ is 3 or 4 . In this section, we prove (4.1) for all graphs G of order $n \geq 4$ with $\gamma_{R}(G)=3,4$, improving Proposition 1.7.

Theorem 4.1. If G is a connected graph of order $n \geq 4$ with $\gamma_{R}(G)=3$, then

$$
b_{R}(G) \leq \Delta(G)=n-2
$$

with equality if, and only if, $G \simeq C_{4}$.
Proof. Let G be a connected graph of order $n \geq 4$ with $\gamma_{R}(G)=3$. Then $\Delta(G)=n-2$ by Proposition 1.11. Let M be a maximum matching of G. Since G
is connected and $\gamma_{R}(G)=3$, we deduce that $|M| \geq 2$. We prove that

$$
b_{R}(G) \leq \begin{cases}\Delta(G) & \text { if } M \text { is a perfect matching; } \tag{4.2}\\ \Delta(G)-1 & \text { if } M \text { is not a perfect matching. }\end{cases}
$$

We first assume that M is not a perfect matching. Let U be the set of M unsaturated vertices in G. Clearly U is an independent set. Since G is connected and M is maximum, there exist a set J of $|U|$ edges such that each vertex of U is incident with exactly one edge of J. Then $|J|=|U|=n-2|M|$. Obviously, $G-J \cup M$ has no vertex of degree $n-2$, and it follows from Observation 1.9 and Proposition 1.11 that $\gamma_{R}(G-J \cup M) \geq 4>3=\gamma_{R}(G)$. This implies that

$$
\begin{equation*}
b_{R}(G) \leq|J \cup M|=|M|+|U|=n-|M| \leq n-2=\Delta(G) \tag{4.3}
\end{equation*}
$$

We now prove $b_{R}(G) \leq \Delta(G)-1$. Assume to the contrary that $b_{R}(G)=\Delta(G)$. Then $|M|=2$ by (4.3). We will deduce contradictions by considering two cases, respectively.

Case 1. $|U|=1$.
In this case, $n=5$ by (4.3). Let $V(G)=\left\{v_{1}, \ldots, v_{5}\right\}$. Since $\gamma_{R}(G)=3, \Delta(G)=3$ by Proposition 1.11. Since n is odd, G has a vertex of degree 2. Let $\operatorname{deg}\left(v_{1}\right)=2$ and let $v_{1} v_{2}, v_{1} v_{3} \in E(G)$. Since $b_{R}(G)=3>\operatorname{deg}\left(v_{1}\right)$, we have $\gamma_{R}\left(G-v_{1}\right)=$ $\gamma_{R}(G)-1=2$. By Observation 1.9, $\Delta\left(G-v_{1}\right)=3$. Since $\gamma_{R}(G)=3$, we may assume without loss of generality that $\operatorname{deg}\left(v_{4}\right)=3$ and $\left\{v_{4} v_{2}, v_{4} v_{3}, v_{4} v_{5}\right\} \subseteq E(G)$. Let $F=\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$. Since $b_{R}(G)=3>|F|$, we have $\gamma_{R}(G-F)=3$. It follows from Proposition 1.11 and the fact $\gamma_{R}(G-F)=3$ that $\operatorname{deg}_{G-F}\left(v_{5}\right)=3$. This implies that $\left\{v_{5} v_{2}, v_{5} v_{3}, v_{5} v_{4}\right\} \subseteq E(G)$. Thus $E(G)=\left\{v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{4}, v_{2} v_{5}, v_{3} v_{4}, v_{3} v_{5}, v_{4} v_{5}\right\}$. Now we have $G-\left\{v_{2} v_{4}, v_{3} v_{5}\right\} \simeq C_{5}$ and hence $\gamma_{R}\left(G-\left\{v_{2} v_{4}, v_{3} v_{5}\right\}\right)=4$. This implies that $b_{R}(G) \leq 2$ a contradiction.

Case 2. $|U| \geq 2$.
In this case, $n \geq 6$ by (4.3). Let $M=\left\{u_{1} v_{1}, u_{2} v_{2}\right\}$. Fort two distinct vertices y and z of U, if $y u_{i} \in E(G)$, then $z v_{i} \notin E(G)$ since the matching M is maximum. Therefore, we may assume without loss of generality that $N_{G}(U) \subseteq\left\{u_{1}, u_{2}\right\}$. So $\operatorname{deg}(y)+\operatorname{deg}(z) \leq 4$ for every pair of distinct vertices y and z in U. Let $y, z \in U$ and F be the set of edges incident with y or z. Then y, z are isolated vertices in $G-F$ and hence $\gamma_{R}(G-F) \geq 4$. If $|F| \leq 3$, then $n-2=b_{R}(G) \leq 3$ which implies $n \leq 5$, a contradiction. Therefore, $|F|=4$. It follows that $n-2=b_{R}(G) \leq 4$ and hence $n=6$. Let $V(G)=\left\{u_{1}, u_{2}, v_{1}, v_{2}, y, z\right\}$. Then $\operatorname{deg}(y)=\operatorname{deg}(z)=2$ and $\operatorname{deg}\left(u_{1}\right), \operatorname{deg}\left(u_{2}\right) \geq 3$. If $v_{1} v_{2} \in E(G)$, then $\left\{y u_{1}, z u_{2}, v_{1} v_{2}\right\}$ is a matching of G, a contradiction. Thus $\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right) \leq 2$. Since $\gamma_{R}(G)=3, \Delta(G)=n-2=4$ by Proposition 1.11. We distinguish two subcases.

Subcase 2.1. $\delta(G)=1$.

Assume without loss of generality that $\operatorname{deg}\left(v_{1}\right)=1$. Let F be the set of edges incident with y or v_{1}. Then $|F|=3$ and y, v_{1} are isolated vertices in $G-F$ and hence $\gamma_{R}(G-F) \geq 4$. Thus $n-2=b_{R}(G) \leq 3$, a contradiction.

Subcase 2.2. $\delta(G)=2$.
We must have $\operatorname{deg}\left(v_{1}\right)=\operatorname{deg}\left(v_{2}\right)=2$ and $v_{1} u_{2}, v_{2} u_{1} \in E(G)$. Let $F=$ $\left\{y u_{1}, z u_{2}\right\}$. Clearly $\Delta(G-F)=3=n-3$ and it follows from Proposition 1.11 that $\gamma_{R}(G-F) \geq 4$. Hence $b_{R}(G) \leq 2$, which is a contradiction.

Summing-up the two discussions, we have $b_{R}(G) \leq \Delta(G)-1$ if M is not a perfect matching.

We now assume that M is a perfect matching. Then $G-M$ has no vertex of degree $n-2$ and it follows from Observation 1.9 and Proposition 1.11 that $\gamma_{R}(G-M) \geq 4>3=\gamma_{R}(G)$, which implies that

$$
\begin{equation*}
b_{R}(G) \leq|M|=\frac{n}{2} \leq n-2=\Delta(G) \tag{4.4}
\end{equation*}
$$

Summing-up the two cases, we complete the proof of the conclusion in (4.2). We now prove that $b_{R}(G)=n-2$ if, and only if, $G \simeq C_{4}$.

If $G \simeq C_{4}$, then $\gamma_{R}(G)=3$ by Proposition 1.2 and $b_{R}(G)=2=n-2$ by Proposition 1.8, and so the sufficiency holds.

The necessity holds clearly too. In fact, from the conclusion in (4.2), $b_{R}(G)$ reaches its upper bound $n-2$ only if M is a perfect matching. In this case, by (4.4), $n=4$ and $b_{R}(G)=|M|=2=n-2$. Since $b_{R}\left(P_{4}\right)=1$, we have $G \simeq C_{4}$ as desired.

The proof of Theorem is complete.
Theorem 4.2. If G is a connected graph of order $n \geq 4$ with $\gamma_{R}(G)=4$, then

$$
b_{R}(G) \leq \Delta(G)+\delta(G)-1
$$

Proof. Obviously $\Delta(G) \geq 2$. Let u be a vertex of minimum degree $\delta(G)$. If $b_{R}(G) \leq$ $\operatorname{deg}(u)$, then we are done. Suppose $b_{R}(G)>\operatorname{deg}(u)$. Then $\gamma_{R}(G-u)=\gamma_{R}(G)-$ $1=3$. By Theorem 4.1, $b_{R}(G-u) \leq \Delta(G-u)$. If $b_{R}(G-u)=\Delta(G-u)$, then $G-u=C_{4}$ by Theorem 4.1 and since G is connected, we deduce that $\gamma_{R}(G)=3$, a contradiction. Thus $b_{R}(G-u) \leq \Delta(G-u)-1$. It follows from Observation 1.10 that

$$
\begin{equation*}
b_{R}(G) \leq b_{R}(G-u)+\operatorname{deg}(u) \leq \Delta(G-u)-1+\operatorname{deg}(u) \leq \Delta(G)+\delta(G)-1 \tag{4.5}
\end{equation*}
$$

as desired. This completes the proof.
Dehgardi et al. [8] proved that for any connected graph G of order $n \geq 3$, $b_{R}(G) \leq n-1$ and posed the following problems.

Problem 4.3. Prove or disprove: For any connected graph G of order $n \geq 3$, $b_{R}(G)=n-1$ if and only if $G \cong K_{3}$.

Problem 4.4. Prove or disprove: If G is a connected graph of order $n \geq 3$, then

$$
b_{R}(G) \leq n-\gamma_{R}(G)+1
$$

Since $\gamma_{R}\left(K_{3,3, \ldots, 3}\right)=4$, Proposition 1.6 shows that Problems 4.3 and 4.4 are false. Recently Akbari and Qajar [2] proved that the following.

Proposition 4.5. If G is a connected graph of order $n \geq 3$, then

$$
b_{R}(G) \leq n-\gamma_{R}(G)+5 .
$$

We conclude this paper with the following revised problems.
Problem 4.6. Characterize all connected graphs G of order $n \geq 3$ for which $b_{R}(G)=n-1$.

Problem 4.7. Prove or disprove: If G is a connected graph of order $n \geq 3$, then

$$
b_{R}(G) \leq n-\gamma_{R}(G)+3
$$

Acknowledgment

This work was supported by the doctoral scientific research startup fund of Anhui university and NNSF of China (No. 11071233).

References

[1] S. Akbari, M. Khatirinejad and S. Qajar, A note on the Roman bondage number of planar graphs, Graphs Combin., DOI 10.1007/s00373-011-1129-8.
[2] S. Akbari and S. Qajar, A note on Roman bondage number of graphs, to appear in Ars Combin.
[3] R. C. Brigham, P. Z. Chinn and R. D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179.
[4] E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575-1586.
[5] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278(1-3) (2004) 11-22.
[6] E. J. Cockayne, O. Favaron and C. M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003) 87-100.
[7] N. Dehgardi, O. Favaron, B. Kheirfam and S. M. Sheikholeslami, Roman fractional bondage number of a graph, to appear in J. Combin. Math. Combin. Comput.
[8] N. Dehgardi, S. M. Sheikholeslami and L. Volkman, On the Roman k-bondage number of a graph, AKCE Int. J. Graphs Comb. 8 (2011) 169-180.
[9] K. Ebadi and L. PushpaLatha, Roman bondage and Roman reinforcement numbers of a graph, Int. J. Contemp. Math. Sci. 5 (2010) 1487-1497.
[10] O. Favaron, H. Karami and S. M. Sheikholeslami, On the Roman domination number in graphs, Discrete Math. 309 (2009) 3447-3451.
[11] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57.
[12] X. L. Fu, Y. S. Yang and B. Q. Jiang, Roman domination in regular graphs, Discrete Math. 309 (2009) 1528-1537.
[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[14] J. H. Hattingh and A. R. Plummer, Restrained bondage in graphs, Discrete Math. 308 (2008) 5446-5453.
[15] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[16] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[17] M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 225-234.
[18] M. A. Henning, Defending the Roman empire from multiple attacks, Discrete Math. 271 (2003) 101-115.
[19] M. A. Henning and S. T. Hedetniemi, Defending the Roman empire-A new strategy, Discrete Math. 266 (2003) 239-51.
[20] F.-T. Hu and J.-M. Xu, Roman bondage numbers of some graphs, arXiv: 1109.3933 (2011).
[21] F.-T. Hu and J.-M. Xu, On the complexity of the bondage and reinforcement problems, J. Complexity 28(2) (2012) 192-201.
[22] M. Liedloff, T. Kloks, J. P. Liu and S. L. Peng, Roman domination over some graph classes, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Vol. 3787 (Springer, 2005), pp. 103-114.
[23] M. Liedloff, T. Kloks, J. P. Liu and S. L. Peng, Efficient algorithms for Roman domination on some classes of graphs, Discrete Appl. Math. 156 (2008) 3400-3415.
[24] A. Pagourtzis, P. Penna, K. Schlude, K. Steinhofel, D. Taylor and P. Widmayer, Server placements, Roman domination and other dominating set variants, in Proc. 2nd. Int. Conf. Theoritical Computer Science (IFIP-TCS) (Kluwar Academic Press, 2002), pp. 280-291.
[25] N. J. Rad and L. Volkmann, Roman bondage in graphs, Discuss. Math. Graph Theory 31 (2011) 763-773.
[26] N. J. Rad and L. Volkmann, On the Roman bondage number of planar graphs, Graphs Comb. 27 (2011) 531-538.
[27] C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585-594.
[28] R. R. Rubalcaba and P. J. Slater, Roman dominating influence parameters, Discrete Math. 307 (2007) 3194-3200.
[29] W. P. Shang and X. D. Hu, The roman domination problem in unit disk graphs, Lect. Notes Comput. Sci. 4489 (2007) 305-312.
[30] W. P. Shang and X. D. Hu, Roman domination and its variants in unit disk graphs, Discrete Math. Algorithms Appl. 2 (2010) 99-105.
[31] I. Stewart, Defend the Roman empire, Sci. Amer. 281 (1999) 136-39.
[32] L. Volkmann, On graphs with equal domination and covering numbers, Discrete Appl. Math. 51 (1994) 211-217.
[33] D. B. West, Introduction to Graph Theory (Prentice-Hall, 2000).
[34] H. M. Xing, X. Chen and X. G. Chen, A note on Roman domination in graphs, Discrete Math. 306 (2006) 3338-3340.
[35] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks (Kluwer Academic Publishers, Dordrecht, Boston, London, 2001).
[36] J.-M. Xu, Theory and Application of Graphs (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003).

