Discrete Mathematics, Algorithms and Applications Vol. 5, No. 1 (2013) 1350001 (15 pages) © World Scientific Publishing Company DOI: 10.1142/S1793830913500018

ON THE ROMAN BONDAGE NUMBER OF A GRAPH

A. BAHREMANDPOUR*,[§], FU-TAO HU^{†,¶}, S. M. SHEIKHOLESLAMI* and JUN-MING XU^{‡,∥}

> *Department of Mathematics Azarbaijan University of Tarbiat Moallem Tabriz, I. R. Iran

†School of Mathematical Sciences Anhui University Hefei, Anhui, 230601, P. R. China

[‡]School of Mathematical Sciences
University of Science and Technology of China
Wentsun Wu Key Laboratory of CAS
Hefei, Anhui, 230026, P. R. China
§s.m.sheikholeslami@azaruniv.edu
¶hufu@ahu.edu.cn
||xujm@ustc.edu.cn

Received 1 July 2012 Revised 12 October 2012 Accepted 28 October 2012 Published 30 April 2013

A Roman dominating function (RDF) on a graph G = (V, E) is a function $f: V \to \{0, 1, 2\}$ such that every vertex $v \in V$ with f(v) = 0 has at least one neighbor $u \in V$ with f(u) = 2. The weight of a RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by $\gamma_R(G)$. The Roman bondage number $b_R(G)$ of a graph G with maximum degree at least two is the minimum cardinality of all sets $E' \subseteq E(G)$ for which $\gamma_R(G - E') > \gamma_R(G)$. In this paper, we first show that the decision problem for determining $b_R(G)$ is NP-hard even for bipartite graphs and then we establish some sharp bounds for $b_R(G)$ and characterizes all graphs attaining some of these bounds.

Keywords: Roman domination number; Roman bondage number; NP-hardness.

Mathematics Subject Classification: 05C69

1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [15, 16, 36]. In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V| of G is denoted by n = n(G). If $E(G) = \emptyset$, then G is said to be *empty*. We write C_n for a *cycle* of length n, P_n for a *path* of order n and K_n for a *complete graph* of order n through this paper. The *complement* \overline{G} of G is

the simple graph whose vertex set is V and whose edges are the pairs of nonadjacent vertices of G. Clearly, the complement \overline{K}_n is an empty graph of order n. For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in V \mid uv \in E\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_G(v) = \deg(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v) \setminus S$, and the closed neighborhood of S is the set $N[S] = N(S) \cup S$. For two disjoint nonempty sets $S, T \subset V(G)$, $E_G(S, T) = E(S, T)$ denotes the set of edges between S and T.

A subset S of vertices of G is a dominating set if $|N(v) \cap S| \geq 1$ for every $v \in V-S$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. To measure the vulnerability or the stability of the domination in an interconnection network under edge failure, Fink et al. [11] proposed the concept of the bondage number in 1990. The bondage number, denoted by b(G), of G is the minimum number of edges whose removal from G results in a graph with larger domination number. An edge set G for which G is a bondage set. A G is a bondage set of G of size G is a bondage set, then obviously

$$\gamma(G - B) = \gamma(G) + 1. \tag{1.1}$$

A Roman dominating function (RDF), on a graph G is a labeling $f: V \to \{0,1,2\}$ such that every vertex with label 0 has at least one neighbor with label 2. The weight of a RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$, denoted by f(G). The minimum weight of a RDF on a graph G is called the Roman domination number, denoted by $\gamma_R(G)$. A $\gamma_R(G)$ -function is a RDF on G with weight $\gamma_R(G)$. A RDF $f: V \to \{0,1,2\}$ can be represented by the ordered partition (V_0, V_1, V_2) (or (V_0^f, V_1^f, V_2^f) to refer to f) of V, where $V_i = \{v \in V \mid f(v) = i\}$. In this representation, its weight is $f(G) = |V_1| + 2|V_2|$. It is clear that $V_1^f \cup V_2^f$ is a dominating set of G, called the Roman dominating set, denoted by $D_R^f = (V_1, V_2)$. Since $V_1^f \cup V_2^f$ is a dominating set when f is an RDF, and since placing weight 2 at the vertices of a dominating set yields an RDF, in [5], it was observed that

$$\gamma(G) \le \gamma_R(G) \le 2\gamma(G).$$
(1.2)

A graph G is called to be Roman if $\gamma_R(G) = 2\gamma(G)$.

The definition of the RDF was given implicitly by Stewart [31] and ReVelle and Rosing [27]. Cockayne, Dreyer Jr., Hedetniemi and Hedetniemi [5] as well as Chambers, Kinnersley, Prince and West [4] have given a lot of results on Roman domination. For more information on Roman domination we refer the reader to [4–6, 10, 12, 17–19, 22–24, 28–30, 34].

Let G be a graph with maximum degree at least two. The Roman bondage number $b_R(G)$ of G is the minimum cardinality of all sets $E' \subseteq E$ for which $\gamma_R(G - E') > \gamma_R(G)$. Since in the study of Roman bondage number the assumption $\Delta(G) \ge 2$ is necessary, we always assume that when we discuss $b_R(G)$, all graphs involved

satisfy $\Delta(G) \geq 2$. The Roman bondage number $b_R(G)$ was introduced by Rad and Volkmann in [25], and has been further studied for example in [1, 2, 7–9, 20, 25, 26].

An edge set B that $\gamma_R(G - B) > \gamma_R(G)$ is called a Roman bondage set. A $b_R(G)$ -set is a Roman bondage set of G of size $b_R(G)$. If B is a $b_R(G)$ -set, then clearly

$$\gamma_R(G-B) = \gamma_R(G) + 1. \tag{1.3}$$

In this paper, we first show that the decision problem for determining $b_R(G)$ is NP-hard even for bipartite graphs and then we establish some sharp bounds for $b_R(G)$ and characterize all graphs attaining some of these bounds.

We make use of the following results in this paper.

Proposition 1.1 (Chambers et al. [4]). If G is a graph of order n, then $\gamma_R(G) \leq n - \Delta(G) + 1$.

Proposition 1.2 (Cockayne et al. [5]). For a grid graph $P_2 \times P_n$,

$$\gamma_R(P_2 \times P_n) = n + 1.$$

Proposition 1.3 (Cockayne et al. [5]). For any graph G, $\gamma(G) \leq \gamma_R(G) \leq 2\gamma(G)$.

Proposition 1.4 (Cockayne et al. [5]). For any graph G of order n, $\gamma(G) = \gamma_R(G)$ if, and only if, $G = \overline{K}_n$, an empty graph on n vertices.

Proposition 1.5 (Cockayne et al. [5]). If G is a connected graph of order n, then $\gamma_R(G) = \gamma(G) + 1$ if, and only if, there is a vertex $v \in V(G)$ of degree $n - \gamma(G)$.

Proposition 1.6 (Hu and Xu [20]). If $G = K_{3,3,...,3}$ is the complete t-partite graph of order $n \geq 9$, then $b_R(G) = n - 1$.

Proposition 1.7 (Jafari Rad and Volkmann [25]). *If* G *is a connected graph of order* $n \geq 3$, then $b_R(G) \leq \delta(G) + 2\Delta(G) - 3$.

Proposition 1.8 (Fink et al. [11], Rad and Volkmann [25]). For a cycle C_n of order n,

$$b(C_n) = \begin{cases} 3, & \text{if } n = 1 \pmod{3}; \\ 2, & \text{otherwise.} \end{cases}$$

$$b_R(C_n) = \begin{cases} 3, & \text{if } n = 2 \pmod{3}; \\ 2, & \text{otherwise.} \end{cases}$$

Observation 1.9. Let G be a connected graph of order $n \geq 3$. Then $\gamma_R(G) = 2$ if, and only if, $\Delta(G) = n - 1$.

Observation 1.10. Let G be a graph of order n with maximum degree at least two. Assume that H is a spanning subgraph of G with $\gamma_R(H) = \gamma_R(G)$. If K = E(G) - E(H), then $b_R(H) \leq b_R(G) \leq b_R(H) + |K|$.

Proposition 1.11. Let G be a nonempty graph of order $n \geq 3$, then $\gamma_R(G) = 3$ if, and only if, $\Delta(G) = n - 2$.

Proof. Let $\Delta(G) = n - 2$. Assume that u is a vertex of degree n - 2 and v is the unique vertex not adjacent to u in G. By Observation 1.9, $\gamma_R(G) \geq 3$ and clearly $f = (V(G) - \{u, v\}, \{v\}, \{u\})$ is a RDF of G with f(G) = 3. Thus, $\gamma_R(G) = 3$.

Conversely, assume $\gamma_R(G)=3$. Then $\Delta(G)\leq n-2$ by Proposition 1.1. Let $f=(V_0,V_1,V_2)$ be a γ_R -function of G. If $V_2=\emptyset$, then f(v)=1 for each vertex $v\in V(G)$, and hence n=3. Sine G is nonempty and $\Delta(G)\leq n-2=1$, we have $\Delta(G)=n-2=1$. Let $V_2\neq\emptyset$. Since $\gamma_R(G)=3$, we deduce that $|V_1|=|V_2|=1$. Suppose $V_1=\{v\}$ and $V_2=\{u\}$. Then other n-2 vertices assigned 0 must be adjacent to u. Thus, $\Delta(G)\geq d_G(u)\geq n-2$ and hence $\Delta(G)=n-2$.

2. Complexity of Roman Bondage Number

In this section, we will show that the Roman bondage number problem is NP-hard and the Roman domination number problem is NP-complete even for bipartite graphs. We first state the problem as the following decision problem.

Roman bondage number problem (RBN):

Instance: A nonempty bipartite graph G and a positive integer k.

Question: Is $b_R(G) \leq k$?

Roman domination number problem (RDN):

Instance: A nonempty bipartite graph G and a positive integer k.

Question: Is $\gamma_R(G) \leq k$?

Following Garey and Johnson's techniques for proving NP-completeness given in [13], we prove our results by describing a polynomial transformation from the well-known NP-complete problem: 3SAT. To state 3SAT, we recall some terms.

Let U be a set of Boolean variables. A truth assignment for U is a mapping $t: U \to \{T, F\}$. If t(u) = T, then u is said to be "true" under t; if t(u) = F, then u is said to be "false" under t. If u is a variable in U, then u and \bar{u} are literals over U. The literal u is true under t if, and only if, the variable u is true under t; the literal \bar{u} is true if, and only if, the variable u is false.

A clause over U is a set of literals over U. It represents the disjunction of these literals and is satisfied by a truth assignment if, and only if, at least one of its members is true under that assignment. A collection $\mathscr C$ of clauses over U is satisfiable if, and only if, there exists some truth assignment for U that simultaneously satisfies all the clauses in $\mathscr C$. Such a truth assignment is called a satisfying truth assignment for $\mathscr C$. The 3SAT is specified as follows.

3-satisfiability problem (3SAT):

Instance: A collection $\mathscr{C} = \{C_1, C_2, \dots, C_m\}$ of clauses over a finite set U of variables such that $|C_j| = 3$ for $j = 1, 2, \dots, m$.

Question: Is there a truth assignment for U that satisfies all the clauses in \mathscr{C} ?

Theorem 2.1 ([13, Theorem 3.1]). 3SAT is NP-complete.

Theorem 2.2. RBN is NP-hard even for bipartite graphs.

Proof. The transformation is from 3SAT. Let $U = \{u_1, u_2, \ldots, u_n\}$ and $\mathscr{C} = \{C_1, C_2, \ldots, C_m\}$ be an arbitrary instance of 3SAT. We will construct a bipartite graph G and choose an integer k such that \mathscr{C} is satisfiable if and only if $b_R(G) \leq k$. We construct such a graph G as follows.

For each $i=1,2,\ldots,n$, corresponding to the variable $u_i\in U$, associate a graph H_i with vertex set $V(H_i)=\{u_i,\bar{u}_i,v_i,v_i',x_i,y_i,z_i,w_i\}$ and edge set $E(H_i)=\{u_iv_i,u_iz_i,\bar{u}_iv_i',\bar{u}_iz_i,y_iv_i,y_iv_i',y_iz_i,w_iv_i,w_iv_i',w_iz_i,x_iv_i,x_iv_i'\}$. For each $j=1,2,\ldots,m$, corresponding to the clause $C_j=\{p_j,q_j,r_j\}\in\mathscr{C}$, associate a single vertex c_j and add the edge set $E_j=\{c_jp_j,c_jq_j,c_jr_j\}, 1\leq j\leq m$. Finally, add a path $P=s_1s_2s_3$, join s_1 and s_3 to each vertex c_j with $1\leq j\leq m$ and set k=1.

Figure 1 shows an example of the graph obtained when $U = \{u_1, u_2, u_3, u_4\}$ and $\mathscr{C} = \{C_1, C_2, C_3\}$, where $C_1 = \{u_1, u_2, \bar{u}_3\}, C_2 = \{\bar{u}_1, u_2, u_4\}, C_3 = \{\bar{u}_2, u_3, u_4\}.$

To prove that this is indeed a transformation, we only need to show that $b_R(G) = 1$ if, and only if, there is a truth assignment for U that satisfies all clauses in \mathscr{C} . This aim can be obtained by proving the following four claims.

Claim 2.3. $\gamma_R(G) \ge 4n+2$. Moreover, if $\gamma_R(G) = 4n+2$, then for any γ_R -function f on G, $f(H_i) = 4$ and at most one of $f(u_i)$ and $f(\bar{u}_i)$ is 2 for each i, $f(c_j) = 0$ for each j and $f(s_2) = 2$.

Proof. Let f be a γ_R -function of G, and let $H'_i = H_i - u_i - \bar{u}_i$.

Fig. 1. An instance of the Roman bondage number problem resulting from an instance of 3SAT. Here k = 1 and $\gamma_R(G) = 18$, where the bold vertex p means a RDF with f(p) = 2.

If $f(u_i) = 2$ and $f(\bar{u}_i) = 2$, then $f(H_i) \ge 4$. Assume either $f(u_i) = 2$ or $f(\bar{u}_i) = 2$. If $f(x_i) = 0$ or $f(y_i) = 0$, then there is at least one vertex t in $\{v_i, v_i', z_i\}$ such that f(t) = 2; otherwise $f(x_i) = f(y_i) = 1$. Both two cases imply that $f(H_i') \ge 2$. Thus, $f(H_i) \ge 4$.

If $f(u_i) \neq 2$ and $f(\bar{u}_i) \neq 2$, let f' be a restriction of f on H'_i , then f' is a Roman dominating function of H'_i , and $f'(H'_i) \geq \gamma_R(H'_i)$. Since the maximum degree of H'_i is $V(H'_i) - 3$, by Proposition 1.11 and Observation 1.9, $\gamma_R(H'_i) > 3$ and hence $f'(H'_i) \geq 4$ and $f(H_i) \geq 4$. If $f(s_1) = 0$ or $f(s_3) = 0$, then there is at least one vertex t in $\{c_1, \ldots, c_m, s_2\}$ such that f(t) = 2; otherwise $f(s_1) = f(s_3) = 1$. Both two cases imply that $f(N_G[V(P)]) \geq 2$, and hence $\gamma_R(G) \geq 4n + 2$.

Suppose that $\gamma_R(G) = 4n + 2$, then $f(H_i) = 4$ and since $f(N_G[x_i]) \ge 1$, at most one of $f(u_i)$ and $f(\bar{u}_i)$ is 2 for each i = 1, 2, ..., n, while $f(N_G[V(P)]) = 2$. It follows that $f(s_2) = 2$ since $f(N_G[s_2]) \ge 1$. Consequently, $f(c_j) = 0$ for each j = 1, 2, ..., m.

Claim 2.4. $\gamma_R(G) = 4n + 2$ if, and only if, \mathscr{C} is satisfiable.

Proof. Suppose that $\gamma_R(G) = 4n + 2$ and let f be a γ_R -function of G. By Claim 2.3, at most one of $f(u_i)$ and $f(\bar{u}_i)$ is 2 for each i = 1, 2, ..., n. Define a mapping $t: U \to \{T, F\}$ by

$$t(u_i) = \begin{cases} T & \text{if } f(u_i) = 2 \text{ or } f(u_i) \neq 2 \text{ and } f(\bar{u}_i) \neq 2, \\ F & \text{if } f(\bar{u}_i) = 2. \end{cases}$$
 and $f(\bar{u}_i) \neq 2, \quad i = 1, 2, \dots, n.$ (2.1)

We now show that t is a satisfying truth assignment for \mathscr{C} . It is sufficient to show that every clause in \mathscr{C} is satisfied by t. To this end, we arbitrarily choose a clause $C_j \in \mathscr{C}$ with $1 \leq j \leq m$.

By Claim 2.3, $f(c_j) = f(s_1) = f(s_3) = 0$. There exists some i with $1 \le i \le n$ such that $f(u_i) = 2$ or $f(\bar{u}_i) = 2$ where c_j is adjacent to u_i or \bar{u}_i . Suppose that c_j is adjacent to u_i where $f(u_i) = 2$. Since u_i is adjacent to c_j in G, the literal u_i is in the clause C_j by the construction of G. Since $f(u_i) = 2$, it follows that $t(u_i) = T$ by (2.1), which implies that the clause C_j is satisfied by t. Suppose that c_j is adjacent to \bar{u}_i where $f(\bar{u}_i) = 2$. Since \bar{u}_i is adjacent to c_j in G, the literal \bar{u}_i is in the clause C_j . Since $f(\bar{u}_i) = 2$, it follows that $f(u_i) = 1$ by (2.1). Thus, $f(u_i) = 1$ that is, $f(u_i) = 1$ satisfies the clause $f(u_i) = 1$ that is, $f(u_i) = 1$ satisfies all the clauses in $f(u_i) = 1$, that is, $f(u_i) = 1$ satisfies all the clauses in $f(u_i) = 1$, that is, $f(u_i) = 1$ is satisfiable.

Conversely, suppose that \mathscr{C} is satisfiable, and let $t: U \to \{T, F\}$ be a satisfying truth assignment for \mathscr{C} . Create a function f on V(G) as follows: if $t(u_i) = T$, then let $f(u_i) = f(v_i') = 2$, and if $t(u_i) = F$, then let $f(\bar{u}_i) = f(v_i) = 2$. Let $f(s_2) = 2$. Clearly, f(G) = 4n + 2. Since t is a satisfying truth assignment for \mathscr{C} , for each $j = 1, 2, \ldots, m$, at least one of literals in C_j is true under the assignment t. It follows that the corresponding vertex c_j in G is adjacent to at least one vertex p with f(p) = 2 since c_j is adjacent to each literal in C_j by the construction of G. Thus

f is a RDF of G, and so $\gamma_R(G) \leq f(G) = 4n + 2$. By Claim 2.3, $\gamma_R(G) \geq 4n + 2$, and so $\gamma_R(G) = 4n + 2$.

Claim 2.5. $\gamma_R(G-e) \leq 4n+3$ for any $e \in E(G)$.

Proof. For any edge $e \in E(G)$, it is sufficient to construct a RDF f on G - e with weight 4n + 3. We first assume $e \in E_G(s_1)$ or $e \in E_G(s_3)$ or $e \in E_G(c_j)$ for some $j = 1, 2, \ldots, m$, without loss of generality let $e \in E_G(s_1)$ or $e = c_j u_i$ or $e = c_j \bar{u}_i$. Let $f(s_3) = 2, f(s_1) = 1$ and $f(u_i) = f(v_i') = 2$ for each $i = 1, 2, \ldots, n$. For the edge $e \notin E_G(u_i)$ and $e \notin E_G(v_i')$, let $f(s_1) = 2, f(s_3) = 1$ and $f(u_i) = f(v_i') = 2$. For the edge $e \notin E(\bar{u}_i)$ and $e \notin E(v_i)$, let $f(s_1) = 2, f(s_3) = 1$ and $f(\bar{u}_i) = f(v_i) = 2$. If $e = u_i v_i$ or $e = \bar{u}_i v_i'$, let $f(s_1) = 2, f(s_3) = 1$ and $f(x_i) = f(x_i) = 2$. Then f is a RDF of G - e with f(G - e) = 4n + 3 and hence $\gamma_R(G - e) \le 4n + 3$.

Claim 2.6. $\gamma_R(G) = 4n + 2$ if, and only if, $b_R(G) = 1$.

Proof. Assume $\gamma_R(G) = 4n + 2$ and consider the edge $e = s_1 s_2$. Suppose $\gamma_R(G) = \gamma_R(G - e)$. Let f' be a γ_R -function of G - e. It is clear that f' is also a γ_R -function on G. By Claim 2.3 we have $f'(c_j) = 0$ for each $j = 1, 2, \ldots, m$ and $f'(s_2) = 2$. But then $f'(N_{G-e}[s_1]) = 0$, a contradiction. Hence, $\gamma_R(G) < \gamma_R(G - e)$, and so $b_R(G) = 1$.

Now, assume $b_R(G) = 1$. By Claim 2.3, we have $\gamma_R(G) \ge 4n + 2$. Let e' be an edge such that $\gamma_R(G) < \gamma_R(G - e')$. By Claim 2.5, we have that $\gamma_R(G - e') \le 4n + 3$. Thus, $4n + 2 \le \gamma_R(G) < \gamma_R(G - e') \le 4n + 3$, which yields $\gamma_R(G) = 4n + 2$.

By Claims 2.4 and 2.6, we prove that $b_R(G) = 1$ if and only if there is a truth assignment for U that satisfies all clauses in \mathscr{C} . Since the construction of the Roman bondage number instance is straightforward from a 3-satisfiability instance, the size of the Roman bondage number instance is bounded above by a polynomial function of the size of 3-satisfiability instance. It follows that this is a polynomial reduction and the proof is complete.

Corollary 2.7. Roman domination number problem is NP-complete even for bipartite graphs.

Proof. It is easy to see that the Roman domination problem is in NP since a nondeterministic algorithm need only guess a vertex set pair (V_1, V_2) with $|V_1| + 2|V_2| \le k$ and check in polynomial time whether for any vertex $u \in V \setminus (V_1 \cup V_2)$ there is a vertex in V_2 adjacent to u for a given nonempty graph G.

We use the same method as in Theorem 2.2 to prove this conclusion. We construct the same graph G but without the path P. We set k=4n, then use the same methods as in Claims 2.3 and 2.4, we have that $\gamma_R(G)=4n$ if, and only if, $\mathscr E$ is satisfiable.

3. General Bounds

Lemma 3.1. Let G be a connected graph of order $n \geq 3$ such that $\gamma_R(G) = \gamma(G) + 1$. If there is a set B of edges with $\gamma_R(G - B) = \gamma_R(G)$, then $\Delta(G) = \Delta(G - B)$.

Proof. Since G is connected and $n \geq 3$, $\gamma_R(G) = \gamma(G) + 1 \leq n - 1$. Since $\gamma_R(G - B) = \gamma_R(G) \leq n - 1$, G - B is nonempty. It follows from Propositions 1.3 and 1.4 that $\gamma_R(G - B) \geq \gamma(G - B) + 1$. Since

$$\gamma_R(G-B) = \gamma_R(G) = \gamma(G) + 1 \le \gamma(G-B) + 1,$$

we have $\gamma_R(G-B) = \gamma(G-B) + 1$, and then $\gamma(G-B) = \gamma(G)$. If G-B is connected, then by Proposition 1.5,

$$\Delta(G - B) = n - \gamma(G - B) = n - \gamma(G) = \Delta(G).$$

If G-B is disconnected, then let G_1 be a nonempty connected component of G-B. By Propositions 1.3 and 1.4, $\gamma_R(G_1) \geq \gamma(G_1) + 1$. Then

$$\gamma(G) + 1 = \gamma_R(G - B)$$

$$= \gamma_R(G_1) + \gamma_R(G - G_1)$$

$$\geq \gamma(G_1) + 1 + \gamma(G - G_1)$$

$$\geq \gamma(G) + 1,$$

and hence $\gamma_R(G_1) = \gamma(G_1) + 1$, $\gamma_R(G - G_1) = \gamma(G - G_1)$ and $\gamma(G) = \gamma(G_1) + \gamma(G - G_1)$. By Proposition 1.4, $G - G_1$ is empty and hence $\gamma(G - G_1) = |V(G - G_1)|$. By Proposition 1.5,

$$\Delta(G_1) = |V(G_1)| - \gamma(G_1)$$

$$= n - |V(G - G_1)| - \gamma(G_1)$$

$$= n - \gamma(G - G_1) - \gamma(G_1)$$

$$= n - \gamma(G) = \Delta(G),$$

as desirable.

Theorem 3.2. Let G be a connected graph of order $n \geq 3$ with $\gamma_R(G) = \gamma(G) + 1$. Then

$$b_R(G) \le \min\{b(G), n_\Delta\},\$$

where n_{Δ} is the number of vertices with maximum degree Δ in G.

Proof. Since $n \geq 3$ and G is connected, we have $\Delta(G) \geq 2$ and hence $\gamma(G) \leq n-2$. Let B be a b(G)-set. By (1.1), $\gamma(G-B) = \gamma(G)+1 \leq n-1$ and so G-B is nonempty. It follows from Propositions 1.3 and 1.4 that $\gamma_R(G-B) \geq \gamma(G-B)+1 > \gamma(G)+1 = \gamma_R(G)$ and hence B is a Roman bondage set of G. Thus, $b_R(G) \leq b(G)$.

We now prove that $b_R(G) \leq n_\Delta$. It follows from Propositions 1.1 and 1.5 and the fact $\gamma_R(G) = \gamma(G) + 1$ that $\Delta(G) = n - \gamma(G)$. Let $\{v_1, \ldots, v_{n_\Delta}\}$ be the set consisting of all vertices of degree Δ and let e_i be an edge incident with v_i for each $1 \leq i \leq n_\Delta$. Suppose $B' = \{e_1, \ldots, e_{n_\Delta}\}$ (maybe $e_i = e_j$ for some $i \neq j$). Clearly, $\Delta(G - B') < \Delta(G) = n - \gamma(G)$. If G - B' is empty, then $\gamma_R(G - B') = n > n - 1 \geq \gamma_R(G)$. Now assume that G - B' is nonempty. It follows from Propositions 1.3 and 1.4 that $\gamma_R(G - B') \geq \gamma(G - B') + 1$. We claim that $\gamma_R(G - B') > \gamma_R(G)$. Assume to the contrary that $\gamma_R(G - B') = \gamma_R(G)$. We deduce from Lemma 3.1 that $\Delta(G - B') = \Delta(G) = n - \gamma(G)$, a contradiction. Hence $b_R(G) \leq |B'| \leq n_\Delta$. This completes the proof.

Theorem 3.3. For every Roman graph G,

$$b_R(G) \ge b(G)$$
.

The bound is sharp for cycles on n vertices where $n \equiv 0 \pmod{3}$.

Proof. Let B be a $b_R(G)$ -set. Then by (1.2) we have

$$2\gamma(G-B) \ge \gamma_R(G-B) > \gamma_R(G) = 2\gamma(G).$$

Thus $\gamma(G-B) > \gamma(G)$ and hence $b_R(G) \geq b(G)$.

By Proposition 1.8, we have
$$b_R(C_n) = b(C_n) = 2$$
 when $n \equiv 0 \pmod{3}$.

The strict inequality in Theorem 3.3 can hold, for example, $b(C_{3k+2}) = 2 < 3 = b_R(C_{3k+2})$ by Proposition 1.8.

A graph G is called to be vertex domination-critical (vc-graph) if $\gamma(G-x) < \gamma(G)$ for any vertex x in G. We call a graph G to be vertex Roman domination-critical (vrc-graph) if $\gamma_R(G-x) < \gamma_R(G)$ for every vertex x in G.

The vertex covering number $\beta(G)$ of G is the minimum number of vertices that are incident with all edges in G. If G has no isolated vertices, then $\gamma_R(G) \leq 2\gamma(G) \leq 2\beta(G)$. If $\gamma_R(G) = 2\beta(G)$, then $\gamma_R(G) = 2\gamma(G)$ and hence G is a Roman graph. In [32], Volkmann gave a lot of graphs with $\gamma(G) = \beta(G)$.

Theorem 3.4. Let G be a graph with $\gamma_R(G) = 2\beta(G)$. Then

- (1) $b_R(G) \ge \delta(G)$;
- (2) $b_R(G) \ge \delta(G) + 1$ if G is a vrc-graph.

Proof. Let G be a graph such that $\gamma_R(G) = 2\beta(G)$.

- (1) If $\delta(G) = 1$, then the result is immediate. Assume $\delta(G) \geq 2$. Let $B \subseteq E(G)$ and $|B| \leq \delta(G) 1$. Then $\delta(G B) \geq 1$ and so $\gamma_R(G) \leq \gamma_R(G B) \leq 2\beta(G B) \leq 2\beta(G) = \gamma_R(G)$. Thus, B is not a Roman bondage set of G, and hence $b_R(G) \geq \delta(G)$.
- (2)Let B be a Roman bondage set of G. An argument similar to that described in the proof of (1), shows that B must contain all edges incident with some vertex of G, say x. Hence, G B has an isolated vertex. On the other hand, since G is a

vrc-graph, $\gamma_R(G-x) < \gamma_R(G)$ which implies that the removal of all edges incident to x cannot increase the Roman domination number. Hence, $b_R(G) \ge \delta(G) + 1$.

The cartesian product $G = G_1 \times G_2$ of two disjoint graphs G_1 and G_2 has $V(G) = V(G_1) \times V(G_2)$, and two vertices (u_1, u_2) and (v_1, v_2) of G are adjacent if and only if either $u_1 = v_1$ and $u_2v_2 \in E(G_2)$ or $u_2 = v_2$ and $u_1v_1 \in E(G_1)$. The cartesian product of two paths $P_r = x_1 x_2 \cdots x_r$ and $P_t = y_1 y_2 \cdots y_t$ is called a grid. Let $G_{r,t} = P_r \times P_t$ is a grid, and let $V(G_{r,t}) = \{u_{i,j} = (x_i, y_j) | 1 \le i \le r \text{ and } 1 \le r \}$ $j \leq t$ be the vertex set of G. Next we determine Roman bondage number of some grids.

Theorem 3.5. For $n \geq 2$, $b_R(G_{2,n}) = 2$.

Proof. By Proposition 1.2, we have $\gamma_R(G_{2,n}) = n+1$. Since

$$\gamma_R(G_{2,n} - u_{1,1}u_{1,2} - u_{2,1}u_{2,2}) = 2 + \gamma_R(G_{2,n-1}) = n+2,$$

we deduce that $b_R(G_{2,n}) \leq 2$. Now we show that $\gamma_R(G_{2,n} - e) = \gamma_R(G_{2,n})$ for any edge $e \in E(G_{2,n})$. Consider two cases.

Case 1. n is odd.

For k = 1, 2, 3, 4, define $f_k : V(G_{2,n}) \to \{0, 1, 2\}$ as follows:

$$k = 1, 2, 3, 4, \text{ define } f_k : V(G_{2,n}) \to \{0, 1, 2\} \text{ as follows:}$$

$$f_1(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 1 \pmod{4} & \text{or} \quad i = 2 \text{ and } j \equiv 3 \pmod{4} \\ 0 & \text{if otherwise,} \end{cases}$$

$$f_2(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 3 \pmod{4} & \text{or} \quad i = 2 \text{ and } j \equiv 1 \pmod{4} \\ 0 & \text{if otherwise,} \end{cases}$$

$$f_2(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 3 \pmod{4} & \text{or} \quad i = 2 \text{ and } j \equiv 1 \pmod{4} \\ 0 & \text{if otherwise,} \end{cases}$$

and if $n \equiv 1 \pmod{4}$, then

$$f_3(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 0 \pmod{4} & \text{or } i = 2 \text{ and } j \equiv 2 \pmod{4} \\ 1 & \text{if } i = j = 1 \text{ or } i = 2 \text{ and } j = n \\ 0 & \text{if otherwise,} \end{cases}$$

and if $n \equiv 3 \pmod{4}$, then

$$f_4(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 2 \pmod{4} & \text{or } i = 2 \text{ and } j \equiv 0 \pmod{4} \\ 1 & \text{if } i = 2 \text{ and } j = 1 \text{ or } i = 2 \text{ and } j = n \\ 0 & \text{if otherwise.} \end{cases}$$

Obviously, f_k is a $\gamma_R(G_{2,n})$ -function for each k=1,2,3 when $n \equiv 1 \pmod{4}$ and f_k is a $\gamma_R(G_{2,n})$ -function for each k=1,2,4 when $n\equiv 3\pmod 4$. Let $e\in E(G)$ be an arbitrary edge of G. Then clearly, f_1 or f_2 or f_3 is a RDF of G-e if $n \equiv 1 \pmod{4}$ and f_1 or f_2 or f_3 is a RDF of G - e if $n \equiv 3 \pmod{4}$. Hence $b_R(G_{2,n}) \ge 2$.

Case 2. n is even.

For k = 1, 2, 3, 4, define $f_k : V(G_{2,n}) \to \{0, 1, 2\}$ as follows:

$$f_1(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 0 \pmod{4} & \text{or} \quad i = 2 \text{ and } j \equiv 2 \pmod{4} \\ 1 & \text{if } i = j = 1 \\ 0 & \text{if otherwise,} \end{cases}$$

$$\begin{cases}
0 & \text{if otherwise,} \\
f_2(u_{i,j}) = \begin{cases}
2 & \text{if } i = 1 \text{ and } j \equiv 2 \pmod{4} \text{ or } i = 2 \text{ and } j \equiv 0 \pmod{4} \\
1 & \text{if } i = 2 \text{ and } j = 1 \\
0 & \text{if otherwise,}
\end{cases}$$

and if $n \equiv 0 \pmod{4}$, then

$$f_3(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 1 \pmod{4} & \text{or} \quad i = 2 \text{ and } j \equiv 3 \pmod{4} \\ 1 & \text{if } i = 1 \text{ and } j = n \\ 0 & \text{if otherwise,} \end{cases}$$

and if $n \equiv 2 \pmod{4}$, then

$$f_4(u_{i,j}) = \begin{cases} 2 & \text{if } i = 1 \text{ and } j \equiv 1 \pmod{4} & \text{or} \quad i = 2 \text{ and } j \equiv 3 \pmod{4} \\ 1 & \text{if } i = 2 \text{ and } j = n \\ 0 & \text{if otherwise.} \end{cases}$$

Obviously, f_k is a $\gamma_R(G_{2,n})$ -function for each k=1,2,3 when $n \equiv 0 \pmod 4$ and f_k is a $\gamma_R(G_{2,n})$ -function for each k=1,2,4 when $n \equiv 2 \pmod 4$. Let $e \in E(G)$ be an arbitrary edge of G. Then clearly, f_1 or f_2 or f_3 is a RDF of G-e if $n \equiv 0 \pmod 4$ and f_1 or f_2 or f_4 is a RDF of G-e if $n \equiv 2 \pmod 4$. Hence $b_R(G_{2,n}) \ge 2$. This completes the proof.

4. Roman Bondage Number of Graphs with Small Roman Domination Number

Dehgardi et al. [8] posed the following problem: If G is a connected graph of order $n \geq 4$ with Roman domination number $\gamma_R(G) \geq 3$, then

$$b_R(G) \le (\gamma_R(G) - 2)\Delta(G). \tag{4.1}$$

Proposition 1.7 shows that the inequality (4.1) holds if $\gamma_R(G) \geq 5$. Thus the bound in (4.1) is of interest only when $\gamma_R(G)$ is 3 or 4. In this section, we prove (4.1) for all graphs G of order $n \geq 4$ with $\gamma_R(G) = 3, 4$, improving Proposition 1.7.

Theorem 4.1. If G is a connected graph of order $n \geq 4$ with $\gamma_R(G) = 3$, then

$$b_R(G) \le \Delta(G) = n - 2$$

with equality if, and only if, $G \simeq C_4$.

Proof. Let G be a connected graph of order $n \geq 4$ with $\gamma_R(G) = 3$. Then $\Delta(G) = n - 2$ by Proposition 1.11. Let M be a maximum matching of G. Since G

is connected and $\gamma_R(G) = 3$, we deduce that $|M| \geq 2$. We prove that

$$b_R(G) \le \begin{cases} \Delta(G) & \text{if } M \text{ is a perfect matching;} \\ \Delta(G) - 1 & \text{if } M \text{ is not a perfect matching.} \end{cases}$$
 (4.2)

We first assume that M is not a perfect matching. Let U be the set of M-unsaturated vertices in G. Clearly U is an independent set. Since G is connected and M is maximum, there exist a set J of |U| edges such that each vertex of U is incident with exactly one edge of J. Then |J| = |U| = n - 2|M|. Obviously, $G - J \cup M$ has no vertex of degree n - 2, and it follows from Observation 1.9 and Proposition 1.11 that $\gamma_R(G - J \cup M) \ge 4 > 3 = \gamma_R(G)$. This implies that

$$b_R(G) \le |J \cup M| = |M| + |U| = n - |M| \le n - 2 = \Delta(G). \tag{4.3}$$

We now prove $b_R(G) \leq \Delta(G) - 1$. Assume to the contrary that $b_R(G) = \Delta(G)$. Then |M| = 2 by (4.3). We will deduce contradictions by considering two cases, respectively.

Case 1. |U| = 1.

In this case, n=5 by (4.3). Let $V(G)=\{v_1,\ldots,v_5\}$. Since $\gamma_R(G)=3$, $\Delta(G)=3$ by Proposition 1.11. Since n is odd, G has a vertex of degree 2. Let $\deg(v_1)=2$ and let $v_1v_2,v_1v_3\in E(G)$. Since $b_R(G)=3>\deg(v_1)$, we have $\gamma_R(G-v_1)=\gamma_R(G)-1=2$. By Observation 1.9, $\Delta(G-v_1)=3$. Since $\gamma_R(G)=3$, we may assume without loss of generality that $\deg(v_4)=3$ and $\{v_4v_2,v_4v_3,v_4v_5\}\subseteq E(G)$. Let $F=\{v_1v_2,v_3v_4\}$. Since $b_R(G)=3>|F|$, we have $\gamma_R(G-F)=3$. It follows from Proposition 1.11 and the fact $\gamma_R(G-F)=3$ that $\deg_{G-F}(v_5)=3$. This implies that $\{v_5v_2,v_5v_3,v_5v_4\}\subseteq E(G)$. Thus $E(G)=\{v_1v_2,v_1v_3,v_2v_4,v_2v_5,v_3v_4,v_3v_5,v_4v_5\}$. Now we have $G-\{v_2v_4,v_3v_5\}\simeq C_5$ and hence $\gamma_R(G-\{v_2v_4,v_3v_5\})=4$. This implies that $b_R(G)\leq 2$ a contradiction.

Case 2. |U| > 2.

In this case, $n \geq 6$ by (4.3). Let $M = \{u_1v_1, u_2v_2\}$. Fort two distinct vertices y and z of U, if $yu_i \in E(G)$, then $zv_i \notin E(G)$ since the matching M is maximum. Therefore, we may assume without loss of generality that $N_G(U) \subseteq \{u_1, u_2\}$. So $\deg(y) + \deg(z) \leq 4$ for every pair of distinct vertices y and z in U. Let $y, z \in U$ and F be the set of edges incident with y or z. Then y, z are isolated vertices in G - F and hence $\gamma_R(G - F) \geq 4$. If $|F| \leq 3$, then $n - 2 = b_R(G) \leq 3$ which implies $n \leq 5$, a contradiction. Therefore, |F| = 4. It follows that $n - 2 = b_R(G) \leq 4$ and hence n = 6. Let $V(G) = \{u_1, u_2, v_1, v_2, y, z\}$. Then $\deg(y) = \deg(z) = 2$ and $\deg(u_1), \deg(u_2) \geq 3$. If $v_1v_2 \in E(G)$, then $\{yu_1, zu_2, v_1v_2\}$ is a matching of G, a contradiction. Thus $\deg(v_1), \deg(v_2) \leq 2$. Since $\gamma_R(G) = 3$, $\Delta(G) = n - 2 = 4$ by Proposition 1.11. We distinguish two subcases.

Subcase 2.1. $\delta(G) = 1$.

Assume without loss of generality that $\deg(v_1) = 1$. Let F be the set of edges incident with y or v_1 . Then |F| = 3 and y, v_1 are isolated vertices in G - F and hence $\gamma_R(G - F) \ge 4$. Thus $n - 2 = b_R(G) \le 3$, a contradiction.

Subcase 2.2. $\delta(G) = 2$.

We must have $\deg(v_1) = \deg(v_2) = 2$ and $v_1u_2, v_2u_1 \in E(G)$. Let $F = \{yu_1, zu_2\}$. Clearly $\Delta(G - F) = 3 = n - 3$ and it follows from Proposition 1.11 that $\gamma_R(G - F) \geq 4$. Hence $b_R(G) \leq 2$, which is a contradiction.

Summing-up the two discussions, we have $b_R(G) \leq \Delta(G) - 1$ if M is not a perfect matching.

We now assume that M is a perfect matching. Then G-M has no vertex of degree n-2 and it follows from Observation 1.9 and Proposition 1.11 that $\gamma_R(G-M) \geq 4 > 3 = \gamma_R(G)$, which implies that

$$b_R(G) \le |M| = \frac{n}{2} \le n - 2 = \Delta(G).$$
 (4.4)

Summing-up the two cases, we complete the proof of the conclusion in (4.2). We now prove that $b_R(G) = n - 2$ if, and only if, $G \simeq C_4$.

If $G \simeq C_4$, then $\gamma_R(G) = 3$ by Proposition 1.2 and $b_R(G) = 2 = n - 2$ by Proposition 1.8, and so the sufficiency holds.

The necessity holds clearly too. In fact, from the conclusion in (4.2), $b_R(G)$ reaches its upper bound n-2 only if M is a perfect matching. In this case, by (4.4), n=4 and $b_R(G)=|M|=2=n-2$. Since $b_R(P_4)=1$, we have $G\simeq C_4$ as desired. The proof of Theorem is complete.

Theorem 4.2. If G is a connected graph of order $n \geq 4$ with $\gamma_R(G) = 4$, then

$$b_R(G) \le \Delta(G) + \delta(G) - 1.$$

Proof. Obviously $\Delta(G) \geq 2$. Let u be a vertex of minimum degree $\delta(G)$. If $b_R(G) \leq \deg(u)$, then we are done. Suppose $b_R(G) > \deg(u)$. Then $\gamma_R(G-u) = \gamma_R(G) - 1 = 3$. By Theorem 4.1, $b_R(G-u) \leq \Delta(G-u)$. If $b_R(G-u) = \Delta(G-u)$, then $G-u=C_4$ by Theorem 4.1 and since G is connected, we deduce that $\gamma_R(G)=3$, a contradiction. Thus $b_R(G-u) \leq \Delta(G-u) - 1$. It follows from Observation 1.10 that

$$b_R(G) \le b_R(G-u) + \deg(u) \le \Delta(G-u) - 1 + \deg(u) \le \Delta(G) + \delta(G) - 1,$$
 (4.5) as desired. This completes the proof.

Dehgardi et al. [8] proved that for any connected graph G of order $n \geq 3$, $b_R(G) \leq n-1$ and posed the following problems.

Problem 4.3. Prove or disprove: For any connected graph G of order $n \geq 3$, $b_R(G) = n - 1$ if and only if $G \cong K_3$.

Problem 4.4. Prove or disprove: If G is a connected graph of order $n \geq 3$, then

$$b_R(G) \le n - \gamma_R(G) + 1.$$

Since $\gamma_R(K_{3,3,...,3}) = 4$, Proposition 1.6 shows that Problems 4.3 and 4.4 are false. Recently Akbari and Qajar [2] proved that the following.

Proposition 4.5. If G is a connected graph of order $n \geq 3$, then

$$b_R(G) \le n - \gamma_R(G) + 5.$$

We conclude this paper with the following revised problems.

Problem 4.6. Characterize all connected graphs G of order $n \geq 3$ for which $b_R(G) = n - 1$.

Problem 4.7. Prove or disprove: If G is a connected graph of order $n \geq 3$, then

$$b_R(G) \le n - \gamma_R(G) + 3.$$

Acknowledgment

This work was supported by the doctoral scientific research startup fund of Anhui university and NNSF of China (No. 11071233).

References

- [1] S. Akbari, M. Khatirinejad and S. Qajar, A note on the Roman bondage number of planar graphs, *Graphs Combin.*, DOI 10.1007/s00373-011-1129-8.
- [2] S. Akbari and S. Qajar, A note on Roman bondage number of graphs, to appear in *Ars Combin*.
- [3] R. C. Brigham, P. Z. Chinn and R. D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179.
- [4] E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575–1586.
- [5] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs, *Discrete Math.* 278(1–3) (2004) 11–22.
- [6] E. J. Cockayne, O. Favaron and C. M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, *Bull. Inst. Combin. Appl.* **39** (2003) 87–100.
- [7] N. Dehgardi, O. Favaron, B. Kheirfam and S. M. Sheikholeslami, Roman fractional bondage number of a graph, to appear in *J. Combin. Math. Combin. Comput.*
- [8] N. Dehgardi, S. M. Sheikholeslami and L. Volkman, On the Roman k-bondage number of a graph, AKCE Int. J. Graphs Comb. 8 (2011) 169–180.
- [9] K. Ebadi and L. PushpaLatha, Roman bondage and Roman reinforcement numbers of a graph, Int. J. Contemp. Math. Sci. 5 (2010) 1487–1497.
- [10] O. Favaron, H. Karami and S. M. Sheikholeslami, On the Roman domination number in graphs, *Discrete Math.* 309 (2009) 3447–3451.
- [11] J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, *Discrete Math.* 86 (1990) 47–57.
- [12] X. L. Fu, Y. S. Yang and B. Q. Jiang, Roman domination in regular graphs, Discrete Math. 309 (2009) 1528–1537.
- [13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
- [14] J. H. Hattingh and A. R. Plummer, Restrained bondage in graphs, Discrete Math. 308 (2008) 5446–5453.
- [15] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

- [16] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
- [17] M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 225–234.
- [18] M. A. Henning, Defending the Roman empire from multiple attacks, Discrete Math. 271 (2003) 101–115.
- [19] M. A. Henning and S. T. Hedetniemi, Defending the Roman empire-A new strategy, Discrete Math. 266 (2003) 239–51.
- [20] F.-T. Hu and J.-M. Xu, Roman bondage numbers of some graphs, arXiv: 1109.3933 (2011).
- [21] F.-T. Hu and J.-M. Xu, On the complexity of the bondage and reinforcement problems, J. Complexity 28(2) (2012) 192–201.
- [22] M. Liedloff, T. Kloks, J. P. Liu and S. L. Peng, Roman domination over some graph classes, in *Graph-Theoretic Concepts in Computer Science*, Lecture Notes in Computer Science, Vol. 3787 (Springer, 2005), pp. 103–114.
- [23] M. Liedloff, T. Kloks, J. P. Liu and S. L. Peng, Efficient algorithms for Roman domination on some classes of graphs, *Discrete Appl. Math.* 156 (2008) 3400–3415.
- [24] A. Pagourtzis, P. Penna, K. Schlude, K. Steinhofel, D. Taylor and P. Widmayer, Server placements, Roman domination and other dominating set variants, in *Proc.* 2nd. Int. Conf. Theoritical Computer Science (IFIP-TCS) (Kluwar Academic Press, 2002), pp. 280–291.
- [25] N. J. Rad and L. Volkmann, Roman bondage in graphs, Discuss. Math. Graph Theory 31 (2011) 763–773.
- [26] N. J. Rad and L. Volkmann, On the Roman bondage number of planar graphs, Graphs Comb. 27 (2011) 531–538.
- [27] C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594.
- [28] R. R. Rubalcaba and P. J. Slater, Roman dominating influence parameters, Discrete Math. 307 (2007) 3194–3200.
- [29] W. P. Shang and X. D. Hu, The roman domination problem in unit disk graphs, Lect. Notes Comput. Sci. 4489 (2007) 305–312.
- [30] W. P. Shang and X. D. Hu, Roman domination and its variants in unit disk graphs, Discrete Math. Algorithms Appl. 2 (2010) 99–105.
- [31] I. Stewart, Defend the Roman empire, Sci. Amer. 281 (1999) 136–39.
- [32] L. Volkmann, On graphs with equal domination and covering numbers, Discrete Appl. Math. 51 (1994) 211–217.
- [33] D. B. West, Introduction to Graph Theory (Prentice-Hall, 2000).
- [34] H. M. Xing, X. Chen and X. G. Chen, A note on Roman domination in graphs, Discrete Math. 306 (2006) 3338–3340.
- [35] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks (Kluwer Academic Publishers, Dordrecht, Boston, London, 2001).
- [36] J.-M. Xu, Theory and Application of Graphs (Kluwer Academic Publishers, Dordrecht, Boston, London, 2003).