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Abstract

In this paper, we prove that the connectivity and the edge connec-
tivity of the lexicographic product of two graphs G and G are equal
to kive and min{)\w%, 82 + 6102}, respectively, where &;, 5i, A: and v
denote the minimum degree, the connectivity, the edge-connectivity
and the number of vertices of Gy, respectively. We also obtain
that the edge-connectivity of the direct product of K, and a graph
I is equal to min{Z)\.Bd.minf:\{j + 23;}}. where 3 is the mini-
Lum size of a subset F C E(H) such that H — F is bipartite and
8; = min{8(C)}, where C takes over all components of H— B for
all edge-cuts B of size j 2 A = A(H).
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1 Introduction

Throughout this paper, a graph G = (V.E) always means a finite undi-
rected graph without self-loops or multiple edges. where V' = V(G) is the
vertex-set and E = E(G) is the edge-set. The symbol K, denotes a com-
plete graph with n vertices. For two disjoint subsets X and Y in E(G). the
symbol E¢(X,Y) (sometimes [X.Y] for short) denotes the set of edges in
¢ with one end-vertex in X and the other in Y. For the graph theoretical
terminology and notation not defined here, we refer the reader to 15].
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It is well-known that when the underlying topology of an interconnec-
tion network is modelled by a connccted graph G = (V, E), where 17 is
the set of processors and E is the set of communication links in the net-
work, the connectivity ~(G) and the edge-connectivity A(G) of G are two
important measurements for fault-tolerance of the network. In general. the
larger x(G) or A(G) is, the more reliable the network is. It is well-known
that #(G) < MG) < 8(G), where 6(G) is the minimum degree of G. A con-
nected graph G is called to be w-marimal and A-mazimal if £(G) = 5(G}
and MG) = §(G), respectively.

Product graphs have always been a good method to coustruct large
graphs from small ones, thus it also has many applications in the design
of interconnection networks (see [14]). There are many ways to define
products of two graphs, the most widely used one may be the Cartesian
product, first introduced by Sabidussi [9]. In the same paper, Sabidussi
also proposed another kind of product, the strong product. It has been
known for a long time that the connectivity and the edge-counectivity of
the Cartesian product of two graphs are at least the sum of the connectivify
and the edge-connectivity of the two factor graphs, respectively (see 1. 10.
13]). Recently. the authors [16, 17] have determined the connectivity and
edge-connectivity of the Cartesian product of two graphs in terms of the
minimum degree, connectivity, edge-connectivity and vertex number of the
factor graphs. The connectivity of the strong product of graphs has been
studied by Sun and Xu in {11},

In this paper, we study the connectivity of another two kinds of prod-
uct graphs, the lexicographic product and the direct product. Let Gy =-
(Vi Ep) and Go = (Va. Fa) be two graphs. The lexicographic produet
(G4 0 G has Vi x V3 as its vertex-set, and two vertices zyzp and yy; are
adjacent if and only if either zyy1 € E1,or xy = y1 and 2oy € Ea. Accord-
ing to [6], the lexicographic product is first defined by Hausdorff [4]. Many
graph theoretical invariants of lexicographic product of graphs have heen
ctudied in the literature, see {7, 8] for example. The direct product G1 x Gy
also has the vertex-set V; x Vo, Two vertices 1112 and yiyz are adjacent
if and only it ryy € Fy and way2 € Es. The direct product sometimes
appears in the literature with other names, such as the cross product [2. 3!,
the categorical product [12}. the cardinal product 15] and so on.

Note that in the sense of isomorphism the direct product satisfles the
commutative law, while the lexicographic product does not. The lexico-
graphic product and the direct product, together with the Cartesian prod-
uct (0]) and the strong product (&), are the main four standard produets
of graphs that is being treated in the monograph [6). The monograph de-
votes to all aspects related to these products. The graphs shown in Figure
1 illustrate the differences of these four kinds of products.

Tu Section 2. we determine the connectivity and the edge-connectivity
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Figure 1: Four kinds of products of Ky and P,

of the lexicographic product Gy o G2 of two graphs Gy and Ga, that is.
1(GoGy) == K1 and M(G10G2) = min{vs, s +51v2}. And in Section 3,
we study the edge-connectivity of the direct product of K5 and an arbitrary
connected graph H and obtain that ME2 x H) = min{2A,253, min‘j:,\{J RS
2531} All throughout this paper, &, Ki, As and v; will denote the minimum
degree, the connectivity, the edge-connectivity and the number of vertices
of the graph G;(t = 1,2), respectively; while the parameters 3 and 3, will
be defined in Section 3.

2 Lexicographic product

Lemma 1 Let Gy and Ga be two graphs, then §(G1 = Ga)

\
il

(5'3 + (511,‘3,

By simple observation, Gy o G is connected if and only if Gy Is con-
nected.

Theorem 1 Let Gy and G be two graphs. If Gy is non-trivial. non-
complete and connected, then

k{G10Ga) = Kive.

Proof. By the hypothesis that G4 is a non-complete graph. there are
separating sets in G1 and G0 G,. Let Sy be a minimum separating set of
Gy. Then, by the definition, Sy x V3 is a separating set of G @ G and s0
K(G10Gy) €151 % Va| = Kive.

Now, let S be any separating set of G; o G,. We need to show that
IS| = myva. It is easy to see that there exist two vertices riy; and Iayz
in G, Gy — S such that they are in distinet components of Gy 2 G2 - S
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and r; % 19, Then r; and 75 are not adjacent in G, otherwise &y

Iy ¢
and r,yz are adjacent in G o G2, which means that S can not separates
riy; and xays in Gp o Gy, a contradiction. So there are &y internal-disjoint

(Az-;,,rz)-paths Py Py, .. Py in Gy

Let P, = (71, t1,t2, ..., te o). If for each 5 = 1,2, ...k there exists a
5, € Vo such that t,z; ¢ S, then the {1y, zoya)-path (w1y1 t12, . tizp
Iays) avoids S in Gy o Ga. which contradicts to cur hypothesis that S
separates 711 and Xuys in Gy 0 G, Thus, for each i = 1,2, .. ., Ky, there
is at least one Internal vertex t' in P; such that {t'} x V, < 5. It follows
that )
1
2 Xy < V) = w
i=1
The proof is complete. o

By similar argument, it is easy to see that K(KpoGy) = (n— Ljin + a0,
where G; = K,,. So, G 0 G5 is k-maximal if and only if Gy is a complete
graph and G3 is k-maximal.

Theorem 2 Let &1 and Gy be two non-trivial graphs, and G is connected.

then
MG 0 Ga) = min{Av3, & + 815}

Proof. We only need to prove that A(¢;0Gy) > min{)\, v2, 824+ 0102} since
the reversed inequality is obvious hy finding two edge-cuts of size A;¢3 5 and
02 + &yva. respectively. Let G = G} o Gy, For 2 € Vi, let G% denote the
subgraph of G induced hy {2} x V4. It is clear rhaf 3 is isemorphic to
Gy. Let B be a minimum edge-cut in &. Then G — B has exactly two
components (see, for example, the exercise 4.3.2 in [15]). denoted by
and Cy.

Let X = {z € V(Gy) 1 2y € V(C)) for somey € V (Ga)
{z € V(G1): vy € V(Cy) for some y € V(G3)}. Then X ;‘
clearly.

It XY =0, then {X.Y} is a partition of V(G;}. Thus

2)} and YV =
$ and v

‘Bl » Yo EG(V(GHVIGH = Ea [ XV 102 2 A0,
ryS Eg, (X.Y)

We assume X MY £ @ below and let 2p € X NnY. Note that for each
neighbor z of zy, the uraph that consists of the vertex-set V(G3°) UV (G3)
and the edge-set Ec:(V{(G3), V(G#)) is isomorphic to a complete bipartite
K., ., denoted by C[” I], heus edge-connectivity v,. Let B, , = B
Eq(V(G3), VI(GH). Then |Br,2! 2 vo for each neighbor x of 0. otherwise
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— B is conuected through G3, a contradiction. Next we claim that

‘B-’HJI‘ + !an‘ 2 by + va, il

where B, = BN E(G3") and z is a neighbor of rg. Let D = V(G
V(C), F o= V(G3") N VI(Cy), and assume that |D) < |Fi. If |D]
then (1) holds since |B,,| = d2. If | D] =2 2, we will find |D}va edge-disjoint
(D, F)-paths in ng..r]_ Let D = {uy,uz, ..., ueh and {wy,wa. ... we} T F.
Then for each (1 < t < t), there are vy edge-disjoint (u,, w;)-paths in
Gigr‘)’rl: {ug, zz.wy) with 2 € V(G2). So all together, we find [Divy edge-
disjoint (D, F)-paths. In order to disconnect D from F. we must have
By 2] 2 |Diva 2 209 > d2 + vy and (1) also holds. Let wq.aa,. .. .. ri, be
&1 neighbors of 29 in &7y, then

LB‘ ;’ ([B-I'ﬂv-l‘xi+‘B~r{w‘)+Z!B»F(r-I“
Ay + vy + (07 — )
= 62 +§1‘U2.

This completes the proof. R

3 Direct product
Lemma 2 Let Gy and Go be two graphs, then §(Gy x Ga) = §15a.

Lemma 3 Let G| and Gy be two non-trivial connected graphs, then G| »
Gy is connected if and only if at least one of Gy and G2 is non-bipartite.

Proof. First assume both G and G5 are bipartite graphs with partite sets
V(Gy) = (4. B) and V(Gy) = (C. D). Then there are no edges between
the sets of vertices (A x CYU (B x D) and (Bx C) (A x D)yin Gy x G».
hence Gy x (g is disconnected.

Conversely, we suppose, without loss of generality, that (5 is non-
bipartite. Then G2 contains odd cycles certainly. To show that G; x G»
is connected, it is sufficient to prove A x Gz is connected since Gy is con-
nected. Let V(K;) = {a,b}. Let u and w be two vertices of Ky x G5, then
we have to show there is a (u, w)-path in Ky x Gy. There are four cases: (i}
u =ar and w = ay; (ii) u = br and w = by: (ili) v = ax and w = by and
(iv) u = br and w = ay, where x and y are two arbitrary vertices in G». The
first two cases are syminetric, and the last two cases are also symmetric.
In case (iii) u has a neighbor w4’ = bz’ in K> x G». where 2’ € Ng, (). thus
case (iii} can be reduced to case (ii). So we only need to show that there is




an {ax. ay)-path in Ky x Ga, namely case (i). Since Gy is connected. there
is an (r,y)-path in Go. If there is an (z,y)-path (z.z1. 22, .., 2261 ¥
of even length in Gg. then (ax,bzy,aza, ... Jbzop_1.ay) is an (az. ay)-path
in Ky x Gg, and so the lemma follows. Suppose helow that there is no
(z, y)-path of even length in G».

Suppose that at least one of r and y, say r, lies in an odd cvele Oy =
shortest

(rwy.we,. .., wer, ) in Go and let Q = (y,21,52,-...%x) be a
path from y to Cp in G2. Then V(Q) nV(Ch) = =z, If = & 1. then
Q can be extend to an (z,y)-path Gz along Cp to = such that it is of
even length since Cp is an odd cycle, which contradicts to our hypothesis.
Thus, zx = = and @ is of odd length. Let k = 2m + L. then @ can
he extended to an (r,y)-trail Q% = (&, war, ..., W2, W1 LuZ2m, - - i
in Ga. Therefore, (ax,bway,...,buwy, awy, br.azom. ... 2z, bz ay) is an
(ax, ay)-path in Ky x Ga.

Suppose now that neither x nor y lies in any odd cycle in Gy Let
() be an arbitrary odd cycle in Ga. Choose a shortest path P, from
to C} and a shortest path P, from y to Ch in Gz such that they have
as many common vertices as possible. If Py and P, have no vertices in
common, then they can be joint through Cp to form an even (z,y)-path in
G, which contradicts to our hypothesis. Thus, P, aud Py have vertices in
common. We assume that z; is the first common vertex of P, and P,. Let
(x,21,...,%p, 71) be the section of P, from r to 2 and {(y,y1.-- .. Yer71)
be the section of P, from y to z;. By our hypothesis, r + s is odd cer-
tainly. By the choice of P, and P,, we can suppose that a commnon sec-

tion of P, and P, from z; to z is (z1,22,.... 2%). So, without loss of
generality. assume r = 2m, s = 2h + 1 and & = 2n (the case that Lois
odd is similar). Let C = (wy,wa, ... wagry,w1) where wy = z. Ther
(ar.bry,. .. ,azem,bz1, .. azon, bws, . Gz bzomy .o, azy, bysny. oo

byr, ay) is an (az, ay)-path in Ky x G2. The proof of the lemma is complete.
|

Lemma 4 Let G be a connected graph, and H be a spanning bipartite
subgraph of G with mazimum number of edges, then H 1s connected.

Proof. Let {X.Y} be a bipartition of H. Suppose to the contrary that 1
is not connected. Then H can be view as the union of two disjoint bipartite
graphs H; and Hy with partitions {X,.Y)} and { ¥, }. respectively, such
that X = X; U X, and Y = ¥, UYs. Then there is neither (X;, Ya)-edges
nor (X, Y] )-edges in G since H has maximum number of edges. But G is
connected, so there is at least one edge e in G but not in H. linking H,
and Ho. So e must be an (X, Xo)-edge or a (Y1, Ya)-edge. Let H' be the
spanning bipartite graph of G induced by the bipartition {XuYs, Xoudh )
Note that all edges of H still lie in H', and H' has at least one more edge

-

€. a contradiction. =




Lemma 5 Let H be a connected bipartite graph and 5 be wcomplete graph
with verter-set {a.b}. then Ky x H has eractly two components. koreover.
for each x € V(H), az and b are in distinct components of Ko < H.

Proof. Let {X.Y} be a bipartition of H. By Lemma 3. Ky x H is not
connected. The subgraph induced by {{a} x X)u ({b} x Y} is isomorphic
to H, hence is connected and is one component of K3 x H. The other
component is the subgraph induced ({b} x X) U ({a} x Y). Thus the
lemma follows. 5

Note that especially, Lemma 5 is true for H = K, which is a degen-
erated bipartite. Let 3(G) be the minimum number of edges in a subset
F ¢ E(G) such that G — F is bipartite (including the degenerated bipartite
K1). Tt follows immediately from the definition that #(G) = 0 if and only if
¢ is bipartite. For each j 2 A, let (G) = min{3(C): Cis a component
of G— B for an edge-cut B consisting of J edges in G}, where the minimum
is taken over all components of G — B for any edge-cut B consisting of J
edges in G. We omit the graph G in the parenthesis of 3 and 3; when the
underlying graph &' is clear by context. Obviously, for a given graph G.
Fie1 € max{3; — 1,0}, 3; < Bforall j 2 A and 35 =0 (we view K as a
degenerated bipartite, so (K1) = 0).

Theorem 3 Let H be o non-trivial connected graph of edge-connectivity
A, mindmum degree §, 3 = B(H) and 8; = 3;(H). Then

no

5
MR, x H) = nlin{iZ/\,‘Z/ix})‘h\){J 4231} (2)

Proof. If H is bipartite, then the lemma holds by Lemma 3 and the fact
that 3 = 0. So in the rest of the proof, we assuine H is non-bipartite, We

first prove

)
MKy x Hy < min{ZA"Zﬁ,mix\l{j + 231} (3)
7=

To do this. let By be a minimum edge-cut of H. Then B = {{ax,by).
(bz.ay): 7y € By} is an edge-cut of Ko x Hand |Bl = 2By’ = 2\, which
implics MK x H) € 2A.

Let F be a set of edges consisting of 3 edges in H such that H — F is
bipartite, Then B = {{ax,by), (bx,ay) : xy € F} is an edge-cut of Ky« H
and |B} = 2|F| = 23 since Ky X H - B = K, x (H — F) is the direct
product of two bipartite graphs. This fact shows MEKo = H) <23,

Now, for each A < j € 6, let B; be an edge-cut consisting of j edges of
H.and C, a component of H — B, with 3(C;) = 3;. Hence there is a set
of edges Fy of C; such that [Fyj = &, and ) — F, is bipartite. Let

3

B’ = {(az,by), (ba.ay) : Ty € F}}.



Then (K2 x C;) =B’ = Ky x ((; — Fy) is the direct product of two bipartite
graphs and, hence. disconnected. By Lemma 4. Cj — F) is a connected
bipartite graph and. hence, by Lemma 5, K2 x (C; — F}) has exactly two
components and ax and br are in distinet components for each r < V("))
Let C be a component of (K x C';}— B’ Define a injection mapping » from
Bj to E(K3 x H) as follows: for each edge e = 2y € B; with x € V().
ple) = (ax, by) if axr € V(C); and () = (bx,ay) if ax € V(Ci(which
implies br € V(). Let
B" = (Bj).

Then B’ U B” is an edge-cut of Ry x H since C' is a component of (A’ x
H) - (B"UB”). And |B"UB"| = |B'| +|B"| = 2|F;| 4 |B;i = j + 2.3,
which implies that MK, x H) < min‘;:/\ {7 +23;}, and so the nequality
(3) follows.

Next, we will show
s
AME; x H) = min{L\,‘Zﬁ,miy{j +23;1}) 4]
=

Let B = [S.5] be a minimum edge-cut of Ky x H. Partition the vertex-
set V(H) into four parts:

P={zeV(H):arecSbzxel}, Q={rcV(H): are
R={zeV(H):are S,bx eS8}, T={reV(H) arc

And let Z = RUT. We prove the inequality (4} bv considering rhe following
four cases. respectively.
Case 1: Z =@, then P s 0 and Q # 0. Hence

|B| = 2[P.Q)l 2 22,

Case 2: Z #0, P+ 0and Q5 0. Without loss of generality, we mayv
assume |Eg(P.Z)| < [Ex(Q.Z),. Note that [P,Q U Z} is an edge-cut of
H.so|[P,QUZ]| 2 A. For each edge zy € [P. Q], we can see that both the
edges (ar.by) and (ay,bx) are in B. For each xy € [P Z]) or ay € Q. 7).
exactly one of (az,by) and (ay,bz) is in B. Thus,

B = 2[P.Q+IP.Z)+Q.2)
> 2/(P.QI| +2{P.Z]]
= 2PQUZ
= 2\

Case 8: Z #0. P=Q = 0. Then for each edge ry £ E(GIR]) or
ry € E(GIT)), both the edges (az,by) and (ay.br) are in 5. Note that



H — (E(G[R)) U E(GIT])) is bipartite, hence
|B! = 2(|E(GIR))| + |E(G[T])) = 28.

Case {: Z # ¥, and exactly one of P and @ is empty. By the svmmetry.
we may assume that P # § and @ = 0. Let C be a maximally connected
subgraph of H such that V{C) € Z, and let R = RNV(C) and T' =
TN V(C). Finally let X = Ny (C), then X C P by the maximality of .

Then
|B| 2 [IX, V(C)]| + 20 E(GLS])| + BT, i5)

Let k = 11X, V(C)]|. If k> 6, then by (5),
s
Bl >8=05+28 2 mixg{j + 235}
=
If k < 8, by (5) we have

|B| 2 k423 2 1‘110'11;{]' + 23}
i=

Thus, the proof of the theorem is complete. =

We conclude by mention that each item of the right side of equation (2}
cannot be omitted, since it is possible to find a graph with one item. say
273, strictly less than other items. Such examples are easy to construct so
we do not give them here.
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