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The growing size of the multiprocessor system increases its vulnerability to component
failures. It is crucial to locate and to replace the faulty processors to maintain a system’s
high reliability. The fault diagnosis is the process of identifying faulty processors in a sys-
tem through testing. In this paper, we show that the largest connected component of the
survival graph contains almost all of the remaining vertices in the (n,k)-arrangement graph
An,k when the number of moved faulty vertices is up to twice or three times the traditional
connectivity. Using this fault resiliency, we establish the conditional diagnosability of An,k

under the comparison model, and prove that the conditional diagnosability of An,k is
(3k � 2)(n � k) � 3 for k P 4, n P k + 2; and the conditional diagnosability of An,n�1 is
3n � 7 for n P 5.

� 2013 Published by Elsevier Inc.
1. Introduction

Distributed processor architectures offer the potential advantage of high speed, provided that they are highly fault-toler-
ant and reliable, and have good communication between remote processors. An important component of such a distributed
system is its network topology, which defines the inter-processor communication architecture. Fault-tolerance is especially
important for interconnection networks, since computers may fail, creating faults in the network. To be reliable, the rest of
the network should stay connected. Obviously, this can only be guaranteed if the number of faults is smaller than the min-
imum degree in the network. When the number of faults is larger than the minimum degree, some extensions of connectivity
are necessary, since the graph may become disconnected. Some generalizations of connectivity were introduced and exam-
ined for various classes of graphs in [6], including super connectedness and tightly super connectedness, where only one sin-
gleton can appear in the remaining network, and restricted connectivity and super connectivity, where a remaining
component must have a certain minimum size. As the faults increase in the graph, it is desirable that the largest component
of the surviving network stays connected, with a few processors separated from the rest, since then the network will con-
tinue to be able to function. Many interconnection networks have been examined in this aspect, when the number of faults is
roughly twice the minimum degree, see [8,22]. One can even go further and ask what happens when more vertices are de-
leted. This has been examined for the hypercube in [33–35] and for certain Cayley graphs generated by transpositions in [9],
and it has been shown that the surviving network has a large component containing almost all vertices.

The process of identifying faulty processors in a system by analyzing the outcomes of available inter-processor tests is
called system-level diagnosis. In 1967, Preparata et al. [28] established a foundation of system diagnosis and an original
diagnostic model, called the PMC model. Its target is to identify the exact set of all faulty vertices before their repair or
+86 591
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replacement. All tests are performed between two adjacent processors, and it was assumed that a test result is reliable
(respectively, unreliable) if the processor that initiates the test is fault-free (respectively, faulty). Recently, Fan et al. [18]
have derived the diagnosability of DCC linear congruential graphs under the precise and pessimistic strategies based on
the PMC diagnostic model. Zhu et al. [39] determined the conditional diagnosability of folded hypercubes under the PMC
model. The comparison-based diagnosis models, first proposed by Malek [27] and Chwa and Hakimi [13], have been consid-
ered to be a practical approach for fault diagnosis in the multiprocessor systems. In these models, the same job is assigned to
a pair of processors in the system and their outputs are compared by a central observer. This central observer performs diag-
nosis using the outcomes of these comparisons. Maeng and Malek [26] extended Malek’s comparison approach to allow the
comparisons carried out by the processors themselves. Sengupta and Dahbura[29] developed this comparison approach such
that the comparisons have no central unit involved.

Lin et al. [24] introduced the conditional diagnosis under the comparison model. By evaluating the size of connected com-
ponents, they obtained that the conditional diagnosability of the star graph Sn under the comparison model is 3n � 7, which
is about three times larger than that the classical diagnosability of star graphs. In the same method, Hsu et al. [20] have re-
cently proved that the conditional diagnosability of the hypercube Qn is 3n � 5. This idea was attributed to Lai et al. [23] who
are the first to use a conditional diagnosis strategy. They obtained that the conditional diagnosability of the hypercube Qn is
4n � 7 under the PMC model. Furthermore, Hsu et al. [20] exposed the difference between these two conditional diagnosis
models.

The arrangement graph, proposed as a generalization of the star graph in an attempt to solve the scalability problem of
the star graph topology, while preserving its attractive features, has been extensively studied [2,4,5,12,14–16,19,21,25,30].
Based on the fault tolerance of the arrangement graph, in this paper, we establish its conditional diagnosability under the
comparison diagnosis model. The rest of this paper is organized as follows. Section 2 introduces some definitions, notations
and the structure of the arrangement graph. Section 3 is devoted to the fault resiliency of An,k, and Section 4 concentrates on
the conditional diagnosability of the arrangement graph. Section 5 concludes the paper.

2. Arrangement graphs

For notation and terminology not defined here we follow [31]. Specifically, we use a graph G = G(V,E) to represent an
interconnection network, where a vertex u 2 V represents a processor and an edge (u,v) 2 E represents a link between ver-
tices u and v. If at least one end of an edge is faulty, the edge is said to be faulty; otherwise, the edge is said to be fault-free.
Let S be a subset of V(G). The subgraph of G induced by S, denoted by G[S], is the graph with the vertex-set S and the edge-set
{(u,v) j (u,v) 2 E(G), u, v 2 S}. For a vertex u in G, N(u) denotes the set of all neighbors of u, i.e., N(u) = {v j (u,v) 2 E}. Let S be a
subgraph of G or a subset of V(G), and let N(S) = [u2S N(u)nS. We use Kn to denote the complete graph of order n, and d(u,v) to
denote the distance between u and v, the length of a shortest path between u and v in G. The diameter of G is defined as the
maximum distance between any two vertices in G.

For any subset F � V, the notation G � F denotes a graph obtained by removing all vertices in F from G and deleting those
edges with at least one end-vertex in F, simultaneously. If G � F is disconnected, F is called a separating set. A separating set F
is called a k-separating set if jFj = k. The maximal connected subgraphs of G � F are called components. The connectivity j(G) of
G is defined as the minimum k for which G has a k-separating set; otherwise j (G) is defined as n � 1 if G = Kn. A graph G is
called to be k-connected if j(G) P k. A k-separating set is called to be minimum if k = j(G).

The interconnection network has been an important research area for parallel and distributed computer systems. Net-
work reliability is one of the major factors in designing the topology of an interconnection network. The well-known hyper-
cube is the first major class of interconnection networks.

As another topology of an interconnection network, Akers and Krishnamurthy [1] proposed the star graph Sn, which has
smaller degree, diameter, and average distance than the comparable hypercube, while reserving symmetry properties and
desirable fault-tolerant characteristics. As a result, the star graph has been recognized as an alternative to the hypercube.
However, the star graph is less flexible in adjusting its sizes. With the restriction on the number of vertices, there is a large
gap between n! and (n + 1)! for expanding an Sn to Sn+1. To relax the restriction of the numbers of vertices n! in Sn, The
arrangement graph was proposed by Day and Tripathi [15] as a generalization of the star graph Sn. It is more flexible in
its size than Sn.

Definition 2.1. Given two positive integers n and k with n > k, let hni denote the set {1, 2, . . . , n}, and let Pn,k be a set of
arrangements of k elements in hni. The (n,k)-arrangement graph, denoted by An,k, has vertex-set V(An,k) = Pn,k and edge-set
E(An,k) = {(p,q) j p and q differ in exactly one position}.

The graph shown in Fig. 1 is a (4,2)-arrangement graph A4,2.
Clearly, An,k is a k(n � k)-regular graph with n!

ðn�kÞ! vertices. It was showed by Day and Tripathi [15] that An,k is vertex-sym-
metric and edge-symmetric and has the diameter of 3k

2

� �
. Day and Tripathi [14] showed the connectivity j(An,k) = k(n � k).

Moreover, An,1 is isomorphic to the complete graph Kn, and An,n�1 is isomorphic to the n-dimensional star graph Sn. Chiang
and Chen [12] showed that An,n�2 is isomorphic to the n-alternating group graph AGn.

For two distinct i and j in hni, let Vj:i
n;k be the set of all vertices in An,k with the jth position being i, that is,



Fig. 1. The structure of A4,2.
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Vj:i
n;k ¼ fpj p ¼ p1 � � � pj � � �pk 2 Pn;k and pj ¼ ig:
For a fixed position j 2 hni, Vj:i
n;kj 1 6 i 6 n

n o
forms a partition of V(An,k). Let Aj:i

n;k denote the subgraph of An,k induced by Vj:i
n;k.

Then for each j 2 hni, Aj:i
n;k is isomorphic to An�1,k�1. For example, a partition of A4,2 is shown in Fig. 1, where red triangles are

A2:i
4;2’s with i 2 h4i, isomorphic to A3,1 = K3.

Thus, An,k can be recursively constructed from n copies of An�1,k�1. It is easy to check that each Aj:i
n;k is a subgraph of An,k,

and we say that An,k is decomposed into n subgraphs Aj:i
n;k’s according to the jth position. For simplicity, by the symmetry of

An,k we shall take j as the last position k, and use Ai
n;k to denote Ak:i

n;k.
Let E(i, j) be the set of edges between Ai

n;k and Aj
n;k, that is,
Eði; jÞ ¼ ðp; qÞ 2 EðAn;kÞ p 2 V Ai
n;k

� �
and q 2 V Aj

n;k

� ���� on
:

Clearly, E(i, j) is a perfect matching (a set of edges in which any two edges have no common end-vertex) between Ai
n;k and Aj

n;k,
and
jEði; jÞj ¼ ðn� 2Þ!
ðn� k� 1Þ! : ð2:1Þ
Let I be a subset of hni, and let H be a subset of V AI
n;k

� �
or a subgraph of AI

n;k, where AI
n;k ¼ Ai

n;k : i 2 I
n o

. Use NI(H) to denote

the set of neighbors of H in AI
n;k. Particularly, use NIðHÞ and NI(H) as an abbreviation of NhninI(H) and NI(H), respectively, and

call vertices in NIðHÞ and NI(H) the outer neighbors and inner neighbors of H, respectively. Obviously, every vertex u of Ai
n;k has

n � k outer neighbors, and two arbitrary outer neighbors of u are distributed in distinct subgraphs. We write u for {u}. It fol-
lows from the definitions that, for every i 2 hni,
jNiðuÞj ¼ ðk� 1Þðn� kÞ and jN�iðuÞj ¼ n� k;

N
�iðuÞ \ N

�iðvÞ ¼ ; if u; v 2 Ai
n;k and u – v;

ð2:2Þ
and for any two distinct vertices x 2 Ai
n;k and y 2 Aj

n;k with i – j, and I = {i,j},
jNIðxÞ \ NIðyÞj ¼ 0 if x and y are not adjacent: ð2:3Þ
We say that one vertex u is adjacent to some subgraph Aj
n;k if u has an outer neighbor in Aj

n;k. Let
Vi ¼ fu1u2 � � �ui�1xuiþ1 � � �ukj x 2 hni n fu1;u2; � � � ;ui�1;uiþ1; � � � ;ukgg
Then, when n P k + 2, the graph induced by Vi is a complete graph of order n � k + 1 and a subgraph of Auk
n;k, which implies that

any two adjacent vertices have exactly (n � k � 1) common neighbors. Thus, by the edge-transitivity of An,k, for any edge e,
jNðeÞj ¼ 2kðn� kÞ � ðn� k� 1Þ � 2 ¼ ð2k� 1Þðn� kÞ � 1: ð2:4Þ
In addition, the following property of An,k is useful, which can be checked by the definition of An,k. For any two distinct
vertices u and v in An,k,
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jNðuÞ \ NðvÞj ¼

0; if dðu;vÞP 3;

2; if dðu;vÞ ¼ 2 and n P kþ 2;

1; if dðu;vÞ ¼ 2 and n ¼ kþ 1;

n� k� 1; if dðu;vÞ ¼ 1:

8>>><
>>>:

ð2:5Þ
Other properties of the arrangement graph has received considerable attention in the literature. First, Day and Tripathi
[16] showed the existence of pancyclicity, that is An,k contains cycles of all lengths. Hsieh et al. [19] investigated the existence
of hamiltonian cycle in An,k with faulty vertices, Lo and Chen [25] studied hamiltonian connectedness of An,k with faulty
edges. Hsu et al. [21] further obtained an optimal result that the graph An,k (n P k + 2) is (k(n � k) � 2)-hamiltonian and
(k(n � k) � 3)-hamiltonian connected in G � F for any F � V(G) [ E(G) with jFj 6 f. Teng et al. [30] have recently shown that
An,k is panpositionable hamiltonian and panconnected if k > 1 and n P k + 2. In addition, Bai et al. [2] proposed a distributed
algorithm with optimal time complexity and without message redundancy for one-to-all broadcasting in one-port commu-
nication model on the fault-free arrangement graphs, and also developed a fault tolerant broadcasting algorithm with less
than k(n � k) faulty edges. Chen et al. [4,5] presented efficient one/all-to-all broadcasting algorithms on the arrangement
graphs by constructing n � k spanning trees, where the height of each tree is 2n � 1.

3. Fault tolerance of the arrangement graph

The connectivity j(G) of a graph G is an important parameter to measure the fault tolerance of the network, while it has
an obvious deficiency in that it tacitly assume that all elements in any subset of G can potentially fail at the same time. To
compensate for this shortcoming, it would seem natural to generalize the classical connectivity by introducing some condi-
tions or restrictions on the separating set S and/or the components of G � S.

The connectivity j(G) of G is the minimum number of vertices whose removal results in a disconnected or a trivial (one
vertex) graph. A k-regular k-connected graph is super k-connected if any one of its minimum separating sets is a set of the
neighbors of some vertex. If, in addition, the deletion of a minimum separating set results in a graph with two components
(one of which has only one vertex), then the graph is tightly super k-connected. For example, the complete bipartite graph Kn,n

is n-super connected but not tightly n-super connected. The notions of super connectedness and tightly super connectedness
were first introduced in [3,6], respectively.

Esfahanian [17] first introduced the concepts of the restricted separating set and the restricted connectivity of a graph G.
A set S of vertices is a restricted separating set if G � S is disconnected and N(x) is not completely contained in S for any vertex
x in G. The restricted connectivity of G, denoted by jr(G), is the minimum cardinality of a restricted vertex-cut.

Considering it is not easy to examine whether a separating set is restricted, Xu et al. [32] formally proposed the super
connectivity, a weaker concept than the restricted connectivity. A separating set S of G is super if G � S contains no isolated
vertices. The super connectivity of G, denoted by js(G), is the minimum cardinality of a super separating set. Clearly,
j(G) 6 js(G) 6 jr(G) if jr(G) exists.

It follows from definitions that the restricted connectivity or super connectivity can provide a more accurate measure-
ment than the connectivity for fault tolerance of a large-scale interconnection network.

Usually, if the surviving graph G � S contains a large connected component C when G � S is not connected, the component
C may be used as the functional subsystem, without incurring severe performance degradation. Thus, in evaluating a distrib-
uted system, it is indispensable to estimate the size of the maximal connected components of the underlying graph when the
structure begins to lose processors.

Yang et al. [33–35] proved that the hypercube Qn with f faulty processors has a component of size 2n � f � 1 if f 6 2n � 3,
and size 2n � f � 2 if f 6 3n � 6. Yang et al. [36,37] also obtained that a similar result for the star graph Sn. Cheng et al. [7,10]
gave a more detail result for Sn. The removal of any separating set of at most 2n � 4 vertices from Sn results in exact two
components, one of them is a single vertex or edge. Cheng and Lipták [9] generalized this result for Sn with linearly many
faults. Cheng et al. [11] presented a similar result for the 2-tree-generated networks with linearly many faults. In this section,
we detail on the fault resilience of the arrangement graph An,k.

Throughout this paper, the notation F denotes a set of vertices in An,k. If F is regarded as a set of faulty vertices, then a
subgraph H of An,k is called fault-free if V(H) \ F = ;. Let
Fi ¼ Ai
n;k \ F and f i ¼ jFij for 1 6 i 6 n: ð3:1Þ
We first discuss the tightly super connectedness. Since An,1 is isomorphic to a complete graph Kn, it is super connected but
not tightly super connected. When n = 4, it is easy to check that A4,2 is not tightly super connected since it has a separating set
F with jFj = 4 such that two components of A4,2 � F are both 4-cycles (see Fig. 1). Thus, in the following discussion, we assume
k P 3.

Theorem 3.1. For k P 3, An,k is tightly super k(n � k)-connected.
Proof. Let F be a minimum separating set in An,k. Then, using the notations defined in (3.1), we have that



S. Zhou, J.-M. Xu / Information Sciences 246 (2013) 177–190 181
jFj ¼
Xn

i¼1

fi ¼ jðAn;kÞ ¼ kðn� kÞ:
By the definition of tightly super connectivity, we need to show that An,k � F has exactly two components, one of them is a
single vertex. We gain our ends by proving the following claims. h
Claim 3.1.1. fi P (k � 1)(n � k) for some i 2 hni.
Proof. Suppose to the contrary that fi < (k � 1)(n � k) for any i 2 h ni. Then Ai
n;k � Fi is connected since Ai

n;k is (k � 1)(n � k)-
connected. We will deduce a contradiction by showing that An,k � F is connected. To this end, we only need to show that Ai

n;k

and Aj
n;k can be connected in An,k � F for any two distinct i,j 2 hni.

In fact, by (2.1), when either k P 4 or k = 3 and n P 6, we have
jEði; jÞj ¼ ðn� 2Þ!
ðn� k� 1Þ! > kðn� kÞ ¼ jFj;
which implies that there exists a fault-free edge e 2 E(i,j). It follows that Ai
n;k and Aj

n;k can be connected in An,k � F by the fault-
free edge e.

When k = 3 and n 2 {4,5}, we have
jEði; jÞj ¼ ðn� 2Þ!
ðn� k� 1Þ! ¼

2 < 3 ¼ jFj if n ¼ 4;

6 ¼ jFj if n ¼ 5:

�
ð3:2Þ
Without loss of generality, assume that there are no fault-free edges in E(i,j) (otherwise Ai
n;3 and Aj

n;3 can be connected in An,3 -
� F by some fault-free edge in E(i, j)). By (3.2), there exist a fault-free edge e1 in E(i,x) and a fault-free edge e2 in E(x, j) for any
x R {i,j}. Thus, Ai

n;3 and Aj
n;3 can be connected in An,3 � F by Ax

n;3 and the fault-free edges e1 and e2. h

Claim 3.1.2. If there is some i 2 hni such that jF � Fij < (k � 1)(n � k), then An;k � V Ai
n;k

� �
[ F � Fið Þ

� �
is connected.

Proof. By the hypothesis, for any j 2 hniwith j – i, we have fj < (k � 1)(n � k), which implies that Aj
n;k is connected since Aj

n;k is
(k � 1)(n � k)-connected. Since for any two distinct j,t 2 hnin{i},
jEðj; tÞj ¼ ðn� 2Þ!
ðn� k� 1Þ! > ðk� 1Þðn� kÞ > jF � Fij;
there exists a fault-free edge e in E(j, t). Thus Aj
n;k and At

n;k can be connected in An,k � F by the fault-free edge e. By the arbi-
trariness of j and t, An;k � V Ai

n;k

� �
[ ðF � FiÞ

� �
is connected. h

Claim 3.1.3. fi 6 (k � 1)(n � k) for any i 2 h ni.
Proof. If there is some i 2 hni such that fi > (k � 1)(n � k), then
jF � Fij < kðn� kÞ � ðk� 1Þðn� kÞ ¼ n� k < ðk� 1Þðn� kÞ:
By Claim 3.1.2, An;k � V Ai
n;k

� �
[ ðF � FiÞ

� �
is connected. Since every vertex in Ai

n;k � Fi has exactly n � k outer neighbors in
An;k � Ai

n;k and jF � Fij < n � k, and at least one of the n � k outer neighbors is fault-free, An,k � F is still connected, a contra-
diction. h

We now show our theorem. By Claims 3.1.1 and 3.1.3, there exists some i 2 hni such that fi = (k � 1)(n � k). Thus, for k P 3,
jF � Fij ¼ kðn� kÞ � ðk� 1Þðn� kÞ ¼ n� k < ðk� 1Þðn� kÞ:
By Claim 3.1.2, An;k � Ai
n;k [ ðF � FiÞ

� �
is connected, which implies An;k � Ai

n;k is (n � k + 1)-connected.

Suppose that Ai
n;k � Fi is connected. Since k P 3, Ai

n;k is not a complete graph, and so Ai
n;k � Fi has at least two vertices. Since

every vertex in Ai
n;k � Fi has exactly n � k outer neighbors in An;k � Ai

n;k and jF � Fij = n � k < 2(n � k), at least one of these out-

er neighbors is fault-free, and so An,k � F is still connected, a contradiction. Therefore, Ai
n;k � Fi is disconnected.

Let Hi be a minimum component of Ai
n;k � Fi. Since F is a minimum separating set in An,k and Fi � F, Hi must be contained in

some component H in An,k � F. Note that every vertex in Hi has exactly n � k outer neighbors in An;k � Ai
n;k, each of them is in

different Aj
n;k with j – i, and An;k � Ai

n;k is (n � k + 1)-connected. To separate H from An,k � F by using n � k vertices in F � Fi, H
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must be a single vertex, say x, and F � Fi must be the (n � k) outer neighbors of x in An;k � Ai
n;k. Thus, H = Hi = {x} and F = N(x).

Since An;k � Ai
n;k [ ðF � FiÞ

� �
is connected and every vertex in Ai

n;k � ðFi [ fxgÞ has n � k fault-free outer neighbors in An;k � Ai
n;k,

An,k � (F [ {x}) is connected.
Thus, when n P 4 and k P 3, An,k is tightly super k(n � k)-connected. The theorem follows.
Since An,n�1 is isomorphic to the star graph Sn and An,n�2 is isomorphic to the alternating group graph AGn, by Theorem 3.1,

we have the following corollaries immediately.

Corollary 3.2 (Cheng and Lipman [7]). The star graph Sn is tightly super (n � 1)-connected for n P 4.
Corollary 3.3. The alternating group network AGn is tightly super (2n � 4)-connected for n P 5.
In the rest of this section, we will investigate the fault tolerance of An,k when we remove a set F of vertices, where jFj is

roughly twice or three times of the traditional connectivity.
Let
I ¼ fi 2 hni j f i P ðk� 1Þðn� kÞg;
AI

n;k ¼
[
i2I

Ai
n;k; FI ¼

[
i2I

Fi;
and let
J ¼ hni n I; AJ
n;k ¼

[
j2J

Aj
n;k; FJ ¼

[
j2J

Fj:
Lemma 3.4. Let F be a set of faulty vertices in An,k with jFj 6 (3k � 2)(n � k) � 3 and k P 3. Then AJ
n;k � FJ is connected.
Proof. If jJj = 0 then there is nothing to do, and so assume jJjP 1. By the hypothesis, for any j 2 J, fj 6 (k � 1)(n � k) � 1, that
is, Aj

n;k � Fj is connected since Aj
n;k is (k � 1)(n � k)-connected. Thus, if jJj = 1 then the lemma holds. Assume jJjP 2 below. To

prove the lemma, we only need to show that Ai
n;k and Aj

n;k are connected in AJ
n;k � FJ for any two distinct i,j 2 J. By (2.1), we

have that
jEði; jÞj ¼ ðn� 2Þðn� 3Þ � � � ðn� kÞ
> 2ððk� 1Þðn� kÞ � 1Þ if k P 4 or k ¼ 3 and n P 6;

¼ 2ð2n� 7Þ if k ¼ 3 and n 2 f4;5g:

� ð3:3Þ
Thus, if there is a fault-free edge e in E(i, j), then Ai
n;k � Fi and Aj

n;k � Fj can be connected by the fault-free edge e in E(i, j). If
there are no fault-free edges in E(i, j) then, by (3.3), k = 3, n 2 {4,5} and fi = fj = 2n � 7. In this case, jFj = 7n � 24, jJjP 3 and, for
any three distinct i, j, x 2 J,
jFj � ðfi þ fjÞ 6 ð7n� 24Þ � 2ð2n� 7Þ
¼ 3n� 10

¼
5 < jEði; xÞj ¼ jEðx; jÞj if n ¼ 5;

2 ¼ jEði; xÞj ¼ jEðx; jÞj if n ¼ 4:

� ð3:4Þ
If n = 5 then, by (3.4), there are a fault-free edge e1 in E(i,x) and a fault-free edge e2 in E(x,j). Then Ai
5;3 and Aj

5;3 can be con-
nected in A5,3 � F by Ax

5;3 and the fault-free edges e1 and e2.
If n = 4, then fi = fj = 1, and every vertex in Ax

4;3 has only one outer neighbor for each x 2 {1,2,3,4}. Thus, by (3.4), there are a
fault-free edge e1 in E(i,x) and a fault-free edge e2 in E(x, j). Then Ai

4;3 and Aj
4;3 can be connected in A4,3 � F by Ax

4;3 and the
fault-free edges e1 and e2.

The lemma follows. h
Corollary 3.5. Let F be a separating set of An,k and k P 3. Then
1 6 jIj 6
2 if jFj 6 ð2k� 1Þðn� kÞ � 1;

3 if jFj 6 ð3k� 2Þðn� kÞ � 3:

�
ð3:5Þ
Corollary 3.6. Let F be a separating set of An,k with jFj 6 (3k � 2)(n � k) � 3 and k P 3. If H is a union of components of An,k � F
that contain no vertices in AJ

n;k � F, then
NIðHÞ# FI and NIðHÞ# F n FI: ð3:6Þ
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Lemma 3.7. Let F be a separating set of An,k with jFj 6 (3k � 2)(n � k) � 3 and k P 3. If there is some i 2 h ni such that jFj � fi -
6 2(n � k) � 1, then An,k � F has exactly two components, one of which is a single vertex.
Proof. By the hypothesis, for any j 2 hnin{i},
fj 6 jFj � fi 6 2ðn� kÞ � 1:
Since jIjP 1 by Corol1ary 3.5, we have I = {i}. Since An,k � F is disconnected, and An;k � Ai
n;k [ F

� �
is connected by Lemma 3.4,

there is a component of An,k � F that contains no vertices in AJ
n;k � FJ . Let H be a union of such components of An,k � F. By Cor-

ollary 3.6, N
�iðHÞ# F n Fi. By (2.2) we have that
jVðHÞjðn� kÞ 6 jFj � fi 6 2ðn� kÞ � 1;
which yields jV(H)j 6 1, that is, H is a single vertex, say u. By the choice of H, other components of An,k � F must contain ver-
tices in AJ

n;k � FJ . Since AJ
n;k � FJ is connected, An,k � (F [ {u}) is connected. It follows that An,k � F has exactly two components,

one of which is a single vertex.
The lemma follows. h
Lemma 3.8. Let F be a separating set of An,k with jFj 6 (3k � 2)(n � k) � 3 and k P 3, and let H be a subgraph of Ai
n;k � Fi for some

i 2 hni. If NAi
n;k
ðHÞ# Fi, then jV(H)j 6 2.

Proof. Let h = jV(H)j. We want to prove h 6 2. Suppose to the contrary that h P 3. Take a subset T # V(H) with jTj = 3. Let
T0 = V(H � T). By the hypothesis, NAi

n;k
ðTÞ n T 0 # Fi. Note that Ai

n;k is (k � 1)(n � k)-regular.
When n = k + 1, by (2.5), any two vertices of T have at most one common neighbor in An,k. It follows that
jNAi
n;k
ðTÞjP 3ðk� 1Þðn� kÞ � 4:
When n P k + 2, we denote T = {x,y,z}, and discuss as follows.
If H[T] has no edges, then every pair of vertices in T has at most two common neighbors by (2.5), and so
jNAi
n;k
ðTÞjP 3ðk� 1Þðn� kÞ � 6:
If H[T] has only one edge, say e = (x,y), then x and y have n � k � 1 common neighbors, z and x (resp. y) have at most two
common neighbors by (2.5). It follows that
jNAi
n;k
ðTÞjP 3ðk� 1Þðn� kÞ � ðn� k� 1Þ � 6:
Similarly, by (2.5), we can obtain that if H[T] has two edges then
jNAi
n;k
ðTÞjP 3ðk� 1Þðn� kÞ � 2ðn� k� 2Þ � 5;
if H[T] has three edges,
jNAi
n;k
ðTÞjP 3ðk� 1Þðn� kÞ � 2ðn� k� 2Þ � 6:
Summing all cases, we have that
fi P jNAi
n;k
ðTÞ n T 0j

P jNAi
n;k
ðTÞj � ðh� 3Þ

P 3ðk� 1Þðn� kÞ � 6� 2ðn� k� 2Þ � ðh� 3Þ
¼ ð3k� 5Þðn� kÞ � hþ 1;
that is,
fi P ð3k� 5Þðn� kÞ � hþ 1: ð3:7Þ
Since N
�iðHÞ# F � Fi by Corollary 3.6, jFj � fi P h(n � k), from which we have that
fi 6 jFj � hðn� kÞ
6 ð3k� 2Þðn� kÞ � 3� hðn� kÞ
¼ ð3k� 2� hÞðn� kÞ � 3;
that is,
fi 6 ð3k� 2� hÞðn� kÞ � 3: ð3:8Þ
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Combining (3.7) with (3.8), we can deduce that (h � 3)(n � k) 6 h � 4, a contradiction. Thus, we have h 6 2. The lemma
follows. h
Theorem 3.9. Let F be a set of faulty vertices in An,k with jFj 6 (2k � 1)(n � k) � 1 and k P 3. If An,k � F is disconnected, then it
has exactly two components, one of which is a single vertex or a single edge.
Proof. Since An,k � F is disconnected, F is a separating set of An,k.
Suppose that there exists some i 2 hni such that fi P (2k � 3)(n � k). Since jFj 6 (2k � 1)(n � k) � 1 6 (3k � 2)(n � k) � 3

and
jFj � fi 6 ðð2k� 1Þðn� kÞ � 1Þ � ð2k� 3Þðn� kÞ ¼ 2ðn� kÞ � 1;
An,k � F has exactly two components, one of which is a single vertex by Lemma 3.7.
We now assume that fi 6 (2k � 3)(n � k) � 1 for any i 2 hni. Then
jVðAi
n;k � FiÞj ¼ ðn� 1Þðn� 2Þ � � � ðn� kÞ � fi

P ðn� 1Þðn� 2Þ � � � ðn� kÞ � ðð2k� 3Þðn� kÞ � 1Þ
P 2:
Since
jFj 6 ð2k� 1Þðn� kÞ � 1 6 ð3k� 2Þðn� kÞ � 3;
by Lemma 3.4 AJ
n;k � FJ is connected. Let H be a union of components of An,k � F that contain no vertices in AJ

n;k � FJ . Thus, H is
in AI

n;k. By the choice of H, other components of An,k � F must contain vertices in AJ
n;k � FJ . Since AJ

n;k � FJ is connected, An,k �
(F [ V(H)) is connected. Thus, to complete the proof of the theorem, we only need to show that H is either a single vertex or a
single edge. Consider two cases according to jIj = 1 or jIj = 2 by Corollary 3.5.

Case 1. jIj = 1, and let I = {i}.

Let h = jV(H)j. Then h 6 2 by Lemma 3.8. If h = 1, then H is a single vertex.

If h = 2, we want to prove that H is a single edge. Suppose to the contrary that H consists of two isolated vertices, say u and
v. Then u and v are not adjacent, N(u) [ N(v) # F. By (2.5), we deduce a contradiction as follows.
jFjP jNðuÞ [ NðvÞj ¼ jNðuÞj þ jNðvÞj � jNðuÞ \ NðvÞj
¼ 2kðn� kÞ � jNðuÞ \ NðvÞj
> ð2k� 1Þðn� kÞ � 1 P jFj:
Thus, H is a single edge.
Case 2. jIj = 2, and let I = {i,j}.

Under our hypothesis, by (2.2) and (3.6), we have that
n� k� 1 6 jNIðHÞj 6 jF n ðFi [ FjÞj
6 ð2k� 1Þðn� kÞ � 1� 2ððk� 1Þðn� kÞÞ
¼ n� k� 1:
Thus, jNIðHÞj ¼ n� k� 1.
Thus, by (2.2) and (2.2), there is exactly one vertex in Ai

n;k � Fi

� �
\ VðHÞ such that exact one of its outer neighbors is in Aj

n;k

and others are in Fn(Fi [ Fj). Similarly, there is exactly one vertex in ðAj
n;k � FjÞ \ VðHÞ such that exact one of its outer

neighbors is in Ai
n;k and others are in Fn(Fi [ Fj). Thus, H is a single edge.

The proof of the theorem is complete. h

Since An,n�1 is isomorphic to the star graph Sn and An,n�2 is isomorphic to the alternating group graph AGn, by Theorem 3.9,
we have the following corollaries immediately.

Corollary 3.10 (Cheng and Lipman [7]). Let F be a set of faulty vertices in the star graph Sn with jFj 6 2n � 4 and n P 4. If Sn � F is
disconnected, then it has exactly two components, one of which is either a single vertex, or a single edge.
Corollary 3.11. Let F be a set of faulty vertices in the alternating group graph AGn with jFj 6 4n � 11 and n P 5. If AGn � F is dis-
connected, then it has exactly two components, one of which is either a single vertex, or a single edge.

We now discuss the fault tolerance of An,k with more faulty vertices up to (3k � 2)(n � k) � 4 when n P k + 2 and
(3k � 2)(n � k) � 3 when n = k + 1, where the latter we write 3n � 8 for (3k � 2)(n � k) � 3.
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Theorem 3.12. Let F be a set of faulty vertices in An,k (k P 4) with jFj 6 (3k � 2)(n � k) � 4 when n P k + 2 and jFj 6 3n � 8
when n = k + 1. If An,k � F is disconnected, then it either has two components, one of which is an isolated vertex or an isolated edge,
or has three components, two of which are isolated vertices.
Proof. Since An,k � F is disconnected, F is a separating set of An,k.
If there exists some i 2 hni such that
jFj � fi 6 2ðn� kÞ � 1;
by Lemma 3.7, An,k � F has exactly two components, one of which is a single vertex, and so the theorem holds. We now as-
sume that, for any i 2 hni
fi 6
ð3k� 4Þðn� kÞ � 4 for n P kþ 2;

ð3k� 4Þðn� kÞ � 3 for n ¼ kþ 1:

�

Then jVðAi
n;k � FiÞjP 2.

Let H be a union of components of An,k � F that contain no vertices in AJ
n;k � FJ , and let h = jV(H)j. By Lemma 3.4, AJ

n;k � FJ is

connected. Thus, H is in AI
n;k. By the choice of H, other components of An,k � F must contain vertices in AJ

n;k � FJ . Since AJ
n;k � FJ

is connected, An,k � (F [ V(H)) is connected. Thus, to complete the proof of the theorem, we only need to show that h 6 2.
By Corollary 3.5, 1 6 jIj 6 3. If jIj = 3, under our hypothesis, we have that
jF n FIj 6 ð3k� 2Þðn� kÞ � 4� 3ððk� 1Þðn� kÞÞ ¼ n� k� 4: ð3:9Þ
Thus, by 2.2, 3.3 and 3.9, we can deduce a contradiction as follows.
n� k� 2 6 jF n FIj 6 n� k� 4:
Thus, 1 6 jIj 6 2. If jIj = 1, then h 6 2 by Lemma 3.8. We only need to consider the case of jIj = 2. Let I = {i, j}, and let hi and hj be
the numbers of vertices of H that lie in Ai

n;k and Aj
n;k, respectively. Then hi 6 2 and hj 6 2 by Lemma 3.8. Without loss of gen-

erality, assume fi P fj.
Note that Ai

n;k is isomorphic to An�1,k�1. If fi 6 (2k � 3)(n � k) � 2 then, applying Theorem 3.9 to Ai
n;k, we have hi 6 1 since Fi

cannot isolate an edge from Ai
n;k. Thus, h = hi + hj 6 2. So, in the following discussion, we assume that
fi P ð2k� 3Þðn� kÞ � 1: ð3:10Þ
If fj P k(n � k), when jFj 6 (3k � 2)(n � k) � 3, we have that
jF n FIj 6 ð3k� 2Þðn� kÞ � 3� kðn� kÞ � ð2k� 3Þðn� kÞ þ 1
¼ n� k� 2:
Note that, for every vertex of VðHÞ \ VðAi
n;kÞ, it has at most one outer neighbor in Aj

n;k and others in FnFI. By (2.2) and (3.3), we
have that
hiðn� k� 1Þ 6 jF n FIj 6 n� k� 2;
which implies hi = 0, and so h = hi + hj 6 2.
Thus, under the condition (3.10), the remainder of the proof is to consider the case that
ðk� 1Þðn� kÞ 6 fj 6 kðn� kÞ � 1: ð3:11Þ
We first note that, when fj 6 k(n � k) � 1,
fj 6 kðn� kÞ � 1 6 ð2k� 3Þðn� kÞ � 2:
Thus, Fj isolates at most one vertex in Aj
n;k by Theorem 3.9, that is, hj 6 1. If hj = 0, then h 6 2, and so the theorem holds. As-

sume hj = 1 below.
By the condition (3.10) and the condition (3.11), we have that
fi þ fj P ð2k� 3Þðn� kÞ � 1þ ðk� 1Þðn� kÞ
¼ ð3k� 4Þðn� kÞ � 1:

ð3:12Þ
Thus, by (3.12), when jFj 6 (3k � 2)(n � k) � 4 and n P k + 2,
jF n FIj ¼ jFj � fi � fj 6 2ðn� kÞ � 3; ð3:13Þ
and when jFj 6 3n � 8 and n = k + 1,
jF n FIj ¼ jFj � fi � fj ¼ 0: ð3:14Þ
Suppose to the contrary that hi = 2. Let
VðHÞ \ VðAi
n;kÞ ¼ fx; yg and VðHÞ \ VðAj

n;kÞ ¼ fzg:
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Then at least one of x and y is not adjacent to z by (2.2). Without loss of generality, let x be not adjacent to z. Then, by (2.3),
jNIðxÞ \ NIðzÞj ¼ 0: ð3:15Þ
By (2.2), we have
jNIðxÞ \ NIðyÞj ¼ 0; ð3:16Þ
and
jNIðxÞ \ NIðyÞ \ NIðzÞj ¼ 0; ð3:17Þ
When n P k + 2, considering outer neighbors of y and z, by (2.3) and (2.5), we have that
jNIðyÞ \ NIðzÞj ¼
0 if ðy; zÞ R EðAn;kÞ;
n� k� 1 if ðy; zÞ 2 EðAn;kÞ:

�
ð3:18Þ
By 3.6, (3.15)–(3.18), we have that
F n FIj j P NIðHÞ
��� ���

¼
X

u2fx;y;zg
jNIðuÞj �

X
u–v2fx;y;zg

jNIðuÞ \ NIðvÞj

þjNIðxÞ \ NIðyÞ \ NIðzÞj

P
2ðn� k� 1Þ if ðy; zÞ 2 EðAn;kÞ;
3ðn� k� 1Þ if ðy; zÞ – EðAn;kÞ;

�

which contradicts (3.13). Thus, hi 6 1 and so h = hi + hj 6 2.
When n = k + 1, (3.14) implies that jFj = 3n � 8, fj = n � 2 and fi = 2n � 6. In other words, Fj ¼ NAj

n;k
ðzÞ and Fi ¼ NAi

n;k
ðx; yÞ, the

latter implies that x and y are adjacent. Since n = k + 1, the only outer neighbor of x, say u, and the only outer neighbor of y,
say v, must be in Fj [ {z}. Similarly, the only outer neighbor of z, say w, must be in Fi [ {x,y}. Since x is not adjacent to z, u 2 Fj.
If v = z then jN(x) \ N(z)j = 2, which contradicts (2.5). Assume v 2 Fj below. If w 2 N(x), then jN(x) \ N(z)j = 2; if w 2 N(y), then
jN(y) \ N(z)j = 2. No matter which case, it contradicts (2.5).

The proof of the theorem is complete. h

The Theorem 3.12 is optimal in the following sense. When n P k + 2 and k P 4, we select such three vertices x; y 2 VðAi
n;kÞ

and z 2 VðAj
n;kÞ that (y,z) 2 E(i,j) and ðx; yÞ 2 E Ai

n;k

� �
, see Fig. 2. Set F = N(x,y,z). By (2.5), we have that
jNðxÞ \ NðyÞj ¼ jNðyÞ \ NðzÞj ¼ n� k� 1; jNðxÞ \ NðzÞj ¼ 2:
Fig. 2. The distribution of fault set F in An,k with k P 4 and n P k + 2.
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Then
jFj ¼ 3kðn� kÞ � 2ðn� k� 1Þ � 5 ¼ ð3k� 2Þðn� kÞ � 3:
An,k � F is connected and contains a path of length three.
Since An,n�1 is isomorphic to the star graph Sn and An,n�2 is isomorphic to the alternating group graph AGn, by Theo-

rem 3.12, we have the following corollaries immediately.

Corollary 3.13 (Cheng and Lipták [10]). Let F be a set of faulty vertices in the star graph Sn with jFj 6 3n � 8 and n P 5. If Sn � F is
disconnected, then it either has two components, one of which is an isolated vertex or an edge, or has three components, two of
which are isolated vertices.
Corollary 3.14. Let F be a set of faulty vertices in the alternating group network AGn with jFj 6 6n � 20 and n P 6. If AGn � F is
disconnected, then it either has two components, one of which is an isolated vertex or an edge, or has three components, two of
which are isolated vertices.
4. Diagnosability of arrangement graph

The comparison diagnosis strategy of a graph G = (V,E) can be modeled as a multi-graph M = (V,C), where C is a set of la-
beled edges. If the processors u and v can be compared by the processor w, there exists a labeled edge (u,v) in C, denoted by
(u,v)w. We call w the comparator of u and v. Since different comparators can compare the same pair of processors, M is a
multi-graph. Denote the comparison result as r((u,v)w) such that r((u,v)w) = 0 if the outputs of u and v agree, and
r((u,v)w) = 1 if the outputs disagree. If the comparator w is fault-free and r((u,v)w) = 0, the processors u and v are fault-free;
while r((u,v)w) = 1, at least one of the three processors u, v and w is faulty. The collection of the comparison results defined as
a function r: C ? {0,1}, is called the syndrome of the diagnosis. If the comparator w is faulty, the comparison result is unre-
liable. A faulty comparator can lead to unreliable results, so a set of faulty vertices may produce different syndromes. A sub-
set F ( V is said to be compatible with a syndrome r if r can arise from the circumstance that all vertices in F are faulty and all
vertices in V � F are fault-free. A system G is said to be diagnosable if, for every syndrome r, there is a unique F � V that is
compatible with r. A system is said to be t-diagnosable if the system is diagnosable as long as the number of faulty vertices
does not exceed t. The maximum number of faulty vertices that the system G can guarantee to identify is called the diagnos-
ability of G, write as t(G). Let rF = {rjr is compatible with F}. Two distinct subsets F1 and F2 of V(G) are said to be indistinguish-
able if and only if rF1 \ rF1 – /, and distinguishable otherwise [20,24,29]. There are several different ways to verify whether
a system is t-diagnosable under the comparison approach. The following lemma obtained by Sengupta and Dahbura [29]
gives necessary and sufficient conditions to ensure distinguishability.

Lemma 4.1 (Sengupta and Dahbura [29]). Let G be a graph, F1 and F2 be two distinct subsets of vertices in G. The pair (F1,F2) is
distinguishable if and only if at least one of the following conditions is satisfied.

(1) There are two distinct vertices u and w 2 V(G � F1 [ F2) and a vertex v 2 F1DF2 such that (u,v)w 2 C, where
F14 F2 = (F1nF2) [ (F2nF1).

(2) There are two distinct vertices u and v 2 F1nF2 (or F2nF1) and a vertex w 2 V(G � F1 [ F2) such that (u,v)w 2 C.

Lin et al. [24] introduced the so-called conditional diagnosability of a system under the situation that no set of faulty ver-
tices can contain all neighbors of any vertex in the system. A fault-set F � V(G) is called a conditional fault-set if G � F has no
isolated vertex. A system G(V,E) is said to be conditionally t-diagnosable if F1 and F2 are distinguishable for each pair (F1,F2)
of distinct conditional fault-sets in G with jF1j 6 t and jF2j 6 t. The conditional diagnosability of G, denoted by tc(G), is defined
as the maximum value of t for which G is conditionally t-diagnosable. Clearly, tc(G) P t(G). Zhou and Xiao [38] obtained the
conditional diagnosability of the alternating group networks based on the fault tolerance of this network structure. This sec-
tion will focus on the conditional diagnosability of arrangement graphs.

Theorem 4.2. tc(An,k) 6 (3k � 2)(n � k) � 3 for k P 4, n P k + 2; tc(An,k) 6 3n � 7 for k P 4, n = k + 1.
Proof. When n P k + 2, we select four vertices x, y, z, u 2 V(An,k), such that (x,u), (y,z) 2 E(i, j), and ðx; yÞ 2 EðAi
n;kÞ, then

ðu; zÞ 2 EðAj
n;kÞ. Set A = N[x,y,z], F1 = A � {y,z}, and F2 = A � {x,y}. We get
jF1j ¼ jF2j ¼ ð3k� 2Þðn� kÞ � 2; and jF1 � F2j ¼ jF2 � F1j ¼ 1:
It is easy to check that F1 and F2 are two conditional faulty sets, and F1 and F2 are indistinguishable. Thus, we have
tcðAn;kÞ 6 ð3k� 2Þðn� kÞ � 3:
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When n = k + 1, we select three vertices x, y, z 2 V(An,k), such that (x,y), (y,z) 2 E(An,k). By (2.5), any two of x, y, z have no
common neighbor. Set
A ¼ N½x; y; z�; F1 ¼ A� fy; zg; and F2 ¼ A� fy; zg:
We get jF1j = jF2j = 3n � 6, and jF1 � F2j = jF2 � F1j = 1. It is easy to check that F1 and F2 are two conditional faulty sets, and F1

and F2 are indistinguishable. Thus, we have tc(An,k) 6 3n � 7. h
Lemma 4.3. Let F1 and F2 be any two distinct conditional fault-sets of An,k with jF1j 6 (3k � 2)(n � k) � 3, jF2-

j 6 (3k � 2)(n � k) � 3 for k P 4, n P k + 2; or jF1j 6 3n � 7, jF2j 6 3n � 7 for k P 4, n = k + 1. Denote by H the maximum compo-
nent of An,k � F1 \ F2. Then, for every vertex u 2 F1DF2, u 2 H.
Proof. Without loss of generality, we assume that u 2 F1 � F2. Since F2 is a conditional fault-set, there is a vertex v 2 (An,k -
� F2) � {u} such that (u,v) 2 E(An,k). Suppose that u is not a vertex of H. Then v is not in H, so u and v are in one small com-
ponent of An,k � F1 \ F2. Since F1 and F2 are distinct, we have
jF1 \ F2j 6 ð3k� 2Þðn� kÞ � 4 for n P kþ 2;
or
jF1 \ F2j 6 3n� 8 for n ¼ kþ 1:
Hence {u,v} forms a component K2 in An,k � F1 \ F2 by Theorem 3.12, i.e., the vertex u is the unique neighbor of v in An,k � F1 -
\ F2. This is a contradiction since F1 is a conditional fault-set, but all the neighbors of v are faulty in An,k � F1. h
Lemma 4.4 (Lin [24]). Let G be a graph with d(G) P 2, and let F1 and F2 be any two distinct conditional fault-sets of G with
F1 � F2. Then (F1,F2) is a distinguishable conditional pair under the comparison diagnosis model.
Lemma 4.5. Let F1 and F2 be any two distinct conditional fault-sets of An,k. If jF1j = (3k � 2)(n � k) � 3 and jF2-

j = (3k � 2)(n � k) � 3 k P 4, n P k + 2; or jF1j 6 3n � 7, jF2j 6 3n � 7 for k P 4, n = k + 1. Then (F1,F2) is a distinguishable condi-
tional pair under the comparison diagnosis model.
Proof. By Lemma 4.4 (F1,F2) is a distinguishable conditional pair if F1 � F2 or F2 � F1. Now, we assume that jF1 � F2jP 1, and
jF2 � F1jP 1. Let S = F1 \ F2. Then we have jSj 6 (3k � 2)(n � k) � 4 for k P 4, n P k + 2; or jSj 6 3n � 8 for k P 4, n = k + 1. Let
H be the largest connected component of An,k � F1 [ F2. By Lemma 4.3, every vertex in F1DF2 is in H. We claim that H has a
vertex u outside F1 [ F2 that has no neighbor in H. Since every vertex has degree k(n � k), the vertices in S can have at most
k(n � k)jSj neighbors in H. There are at most jF1j + jF2j � jSj vertices in F1 [ F2 and at most two vertices of An,k � S may not
belong to H by Theorem 3.12. Thus, we have:
n!
ðn�kÞ! �kðn� kÞjSj � ðjF1j þ jF2j � jSjÞ � 2

P n!
ðn�kÞ!� ðkðn� kÞ þ 1Þ � ðð3k� 2Þðn� kÞ � 4Þ � 4

P 4 for k P 4; n P kþ 2;
and
n!
ðn�kÞ!� kðn� kÞjSj � ðjF1j þ jF2j � jSjÞ � 2

P n!� n� ð3n� 8Þ � 2
P n!� 3n2 þ 8n� 2
P 4 for k P 4; n ¼ kþ 1:
Thus, there must be some vertex of H outside F1 [ F2, which has no neighbors in S. Let u be such a vertex.
If u has no neighbor in F1 [ F2, then we can find a path of length at least two within H to a vertex v in F1 [ F2. We may

assume that v is the first vertex of F1DF2 on this path, and let q and w be the two vertices on this path immediately before v
(we may have u = q), so q and w are not in F1 [ F2. The existence of the edges (q,w) and (w,v) ensures that (F1,F2) is a
distinguishable conditional pair of An,k by Lemma 4.1. Now we assume that u has a neighbor in F1DF2. Since the degree of u is
at least 3, and u has no neighbor in S, there are three possibilities:
(1) u has two neighbors in F1nF2; or
(2) u has two neighbors in F2nF1; or
(3) u has at least one neighbor outside F2 [ F1. In each sub-case above, Lemma 4.1 implies that (F1,F2) is a distinguishable

conditional pair of An,k under the comparison diagnosis model, and so the proof is complete. h
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Theorem 4.2 tells us that tc(An,k) 6 (3k � 2)(n � k) � 3 for k P 4, n P k + 2; tc(An,k) 6 3n � 7 for k P 4, n = k + 1. Lemma 4.5
shows that tc(An,k) P (3k � 2)(n � k) � 3 for k P 4, n P k + 2; tc(An,k) P 3n � 7 for k P 4, n = k + 1. Thus, we have the follow-
ing results.

Theorem 4.6. tc(An,k) = (3k � 2)(n � k) � 3 for k P 4, n P k + 2; tc(An,k) = 3n � 7 for k P 4, n = k + 1.

Since An,n�1 is isomorphic to the star graph Sn and An,n�2 is isomorphic to the alternating group graph AGn, by Theo-
rem 3.12, we have the following corollaries immediately.

Corollary 4.7 (Lin et al. [24]). The conditional diagnosability of the star graph Sn under the comparison model is tc(Sn) = 3n � 7 for
n P 5.
Corollary 4.8. The conditional diagnosability of the alternating group graph AGn under the comparison model is tc(AGn) = 6n � 19
for n P 6.
5. Conclusion

The issue of identifying faulty processors is important for the design of multiprocessor interconnected systems, which are
implementable with VLSI. The process of identifying all the faulty processors is the system-level diagnosis. Based on the fault
resiliency of arrangement graphs, the paper establishes the fault diagnosabilities of the arrangement graphs under the com-
parison model. The diagnosability of An,k under the comparison model is only k(n � k), while the conditional diagnosability of
An,k is (3k � 2)(n � 2) � 3, which is about three times the traditional diagnosability under the comparison model. The distri-
bution of fault-set F in An,k with k P 4 and n P k + 2 showed in Fig. 2 implies that the result is optimal. The fault resiliency of
the arrangement graphs may also reveal its super connectivity and conditional connectivity of high order. This method can
be also applied to other complex network structure, such as (n,k)-star graphs.
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