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Abstract Let G be a graph without isolated vertices. The total domination number
of G is the minimum number of vertices that can dominate all vertices in G, and the
paired domination number of G is the minimum number of vertices in a dominating
set whose induced subgraph contains a perfect matching. This paper determines the
total domination number and the paired domination number of the toroidal meshes,
i.e., the Cartesian product of two cycles Cn and Cm for any n ≥ 3 and m ∈ {3,4}, and
gives some upper bounds for n,m ≥ 5.

Keywords Total domination number · Paired domination number · Toroidal
meshes · Cartesian product

1 Introduction

For notation and graph-theoretical terminology not defined here we follow Xu (2003).
Specifically, let G = (V ,E) be an undirected graph without loops, multi-edges and
isolated vertices, where V = V (G) is the vertex-set and E = E(G) is the edge-set,
which is a subset of {xy|xy is an unordered pair of V }. A graph G is nonempty if
E(G) �= ∅. Two vertices x and y are adjacent if xy ∈ E(G). For a vertex x, denote
N(x) = {y : xy ∈ E(G)} be the neighborhood of x. For a subset D ⊆ V (G), we use
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G[D] to denote the subgraph of G induced by D. We use Cn and Pn to denote a cycle
and a path of order n, respectively, throughout this paper.

A subset D ⊆ V (G) is called a dominating set if N(x) ∩ D �= ∅ for each vertex
x ∈ V (G) \ D. The domination number γ (G) is the minimum cardinality of a domi-
nating set. A thorough study of domination appears in Haynes et al. (1998a, 1998b).
A subset D ⊆ V (G) of G is called a total dominating set, introduced by Cockayne
et al. (1980), if N(x) ∩ D �= ∅ for each vertex x ∈ V (G) and the total domination
number of G, denoted by γt (G), is the minimum cardinality of a total dominating set
of G. The total domination in graphs has been extensively studied in the literature.
A survey of selected recent results on this topic is given by Henning (2009).

A dominating set D of G is called to be paired, introduced by Haynes and Slater
(1995, 1998), if the induced subgraph G[D] contains a perfect matching. The paired
domination number of G, denoted by γp(G), is the minimum cardinality of a paired
dominating set of G. Clearly, γ (G) ≤ γt (G) ≤ γp(G) since a paired dominating set
is also a total dominating set of G, and γp(G) is even. Pfaff et al. (1983) and Haynes
and Slater (1998) showed that the problems determining the total-domination and
the paired-domination for general graphs are NP-complete. Some exact values of
total-domination numbers (for example El-Zahar et al. 2008; Rall 2005) and paired-
domination numbers (for example Brešar et al. 2005, 2007) for some special classes
of graphs have been determined by several authors. In particularly, γt (Pn × Pm) and
γp(Pn × Pm) for 2 ≤ m ≤ 4 are determined by Gravier (2002), and Proffitt et al.
(2001), respectively.

Use Gn,m to denote the toroidal meshes, i.e., the Cartesian product Cn × Cm of
two cycles Cn and Cm. Klavžar and Seifter (1995) determined γ (Gn,m) for any n ≥ 3
and m ∈ {3,4,5}. In this paper, we obtain the following results.

γt (Gn,3) =
⌈

4n

5

⌉
;

γp(Gn,3) =
{

	 4n
5 
 if n ≡ 0,2,4 (mod 5),

	 4n
5 
 + 1 if n ≡ 1,3 (mod 5);

γt (Gn,4) = γp(Gn,4) =
⎧⎨
⎩

n if n ≡ 0 (mod 4),

n + 1 if n ≡ 1,3 (mod 4),

n + 2 if n ≡ 2 (mod 4).

2 Preliminary results

In this section, we recall some definitions, notations and results used in the proofs of
our main results. Throughout this paper, we assume that a cycle Cn has the vertex-set
V (Cn) = {1, . . . , n}.

Use Gn,m to denote the toroidal meshes, i.e., the Cartesian product Cn × Cm,
which is a graph with vertex-set V (Gn,m) = {xij | 1 ≤ i ≤ n,1 ≤ j ≤ m} and two
vertices xij and xi′j ′ being linked by an edge if and only if either i = i′ ∈ V (Cn) and
jj ′ ∈ E(Cm), or j = j ′ ∈ V (Cm) and ii′ ∈ E(Cn).

Let Yi = {xij | 1 ≤ j ≤ m} for 1 ≤ i ≤ n, called a set of vertical vertices in Gn,m.
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Fig. 1 The minimum total
(paired) dominating set (bold
vertices) of G8,4

In Gavlas and Schultz (2002), defined an efficient total dominating set, which is
such a total dominating set D of G that |N(v) ∩ D| = 1 for every v ∈ V (G). The
related research results can be found in Dejter and Serra (2003), Gavlas and Schultz
(2002), Huang and Xu (2008).

Lemma 2.1 (Gavlas and Schultz 2002) If a graph G has an efficient total dominating
set D, then the edge-set of the subgraph G[D] forms a perfect matching, and so the
cardinality of D is even, and {N(v) : v ∈ D} partitions V (G).

Lemma 2.2 Let G be a k-regular graph of order n. Then γt (G) ≥ n
k

, with equality if
and only if G has an efficient total dominating set.

Proof Since G is k-regular, each v ∈ V (G) can dominate at most k vertices. Thus
γt (G) ≥ n

k
. It is easy to observe that the equality holds if and only if there exists a

total dominating set D such that {N(v) : v ∈ D} partitions V (G), equivalently, D is
an efficient total dominating set. �

Lemma 2.3 γt (Gn,m) = γp(Gn,m) = nm
4 for n,m ≡ 0 (mod 4).

Proof Let D = {xij , xi(j+1), x(i+2)(j+2), x(i+2)(j+3) : i, j ≡ 1 (mod 4)}, where 1 ≤
i ≤ n and 1 ≤ j ≤ m. Figure 1 is such a set D in G8,4. It is easy to see that D is a
paired dominating set of Gn,m with cardinality nm

4 . Thus, γp(Gn,m) ≤ nm
4 .

By Lemma 2.2, γt (Gn,m) ≥ nm
4 . Since γt (Gn,m) ≤ γp(Gn,m), γt (Gn,m) =

γp(Gn,m) = nm
4 . �

3 Total and paired domination number of Gn,3

In this section, we determine the exact values of the total and the paired domination
numbers of Gn,3, as stated the following theorem.

Theorem 3.1 For any n ≥ 3,

γt (Gn,3) =
⌈

4n

5

⌉
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and

γp(Gn,3) =
{

	 4n
5 
, if n ≡ 0,2,4 (mod 5);

	 4n
5 
 + 1, if n ≡ 1,3 (mod 5).

Proof Let D be a minimum total dominating set of Gn,3. First, we may assume that
|Yi ∩ D| ≤ 2 for any 1 ≤ i ≤ n. Since the symmetry of Gn,3, we only consider the
case i /∈ {1, n}. Indeed, if |Yi ∩ D| = 3 for some i /∈ {1, n}, then x(i−1)1 and x(i−1)3
can not belong to D at the same time since otherwise (D \ Yi) ∪ {x(i+1)1, x(i+1)2} is
also a total dominating set of Gn,3 but with cardinality less than D, also x(i+1)1 and
x(i+1)3 can not belong to D at the same time. Therefore the set D′ = (D \{xi1, xi3})∪
{x(i−1)2, x(i+1)2} is also a total dominating set of Gn,3 with |D′| = |D|, and hence we
can assume that |Yi ∩ D| ≤ 2.

Let αk be the number of i’s for which |Yi ∩ D| = k for 1 ≤ i ≤ n and 0 ≤ k ≤ 2.
Then we have

α0 + α1 + α2 = n. (3.1)

Assume |Yi ∩ D| = 0 for some i /∈ {1, n} (we only consider the case i /∈ {1, n}
since the symmetry of Gn,3). At least one of |Yi−1 ∩ D| and |Yi+1 ∩ D| is 2 since the
three vertices in Yi should be dominated by D, which means that

2α2 − α0 ≥ 0. (3.2)

If |Yi ∩ D| = 2 for some i with 1 ≤ i ≤ n, then the two vertices in Yi ∩ D can
dominate at most 7 vertices. Since any vertex x ∈ D can dominate at most 4 vertices,
we have

4α1 + 7α2 ≥ 3n. (3.3)

The sum of (3.1), (3.2) and (3.3) implies

5α1 + 10α2 ≥ 4n,

and, hence,

γt (Gn,3) = |D| = α1 + 2α2 ≥
⌈

4n

5

⌉
. (3.4)

To obtain the upper bounds of γt (Gn,3) and γp(Gn,3), we set

D = {
xi2 : i ≡ 1,2 (mod 5)

} ∪ {
xj1, xj3 : j ≡ 4 (mod 5)

}
,

where 1 ≤ i ≤ n. See Fig. 2, where D consists of bold vertices.
If n �≡ 3 (mod 5), then D is a total dominating set and γt (Gn,3) ≤ |D| = 	 4n

5 
.
If n ≡ 3 (mod 5), then D∪{xn2} is a total dominating set and γt (Gn,3) ≤ |D|+1 =

	 4n
5 
.
Combining these facts with (3.4), we have that γt (Gn,3) = 	 4n

5 
.
If n ≡ 0,2,4 (mod 5), then D is a paired dominating set and γp(Gn,3) ≤ |D| =

	 4n
5 
.
If n ≡ 1 (mod 5), then D ∪ {xn1} is a paired dominating set and γp(Gn,3) ≤

|D| + 1 = 	 4n
5 
 + 1.
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Fig. 2 The minimum paired dominating set (bold vertices) of G10,3

If n ≡ 3 (mod 5), then D ∪ {xn1, xn2} is a paired dominating set and γp(Gn,3) ≤
|D| + 2 = 	 4n

5 
 + 1.
Since γp(Gn,3) ≥ γt (Gn,3) and γp(Gn,3) is even, γp(Gn,3) = 	 4n

5 
 if n ≡
0,2,4 (mod 5), and γp(Gn,3) = 	 4n

5 
 + 1 if n ≡ 1,3 (mod 5).
The theorem follows. �

4 Total and paired domination number of Gn,4

In this section, we determine the exact values of γt (Gn,4) and γp(Gn,4), the latter
was obtained by Brešar et al. (2007).

Lemma 4.1 γp(Gn,4) = γt (Gn,4) = n + 1 for n ≡ 1,3 (mod 4).

Proof For n ≡ 1 (mod 4), let

D = {
xi1, xi2, x(i+2)3, x(i+2)4 : i ≡ 1 (mod 4), i �= n

} ∪ {xn1, xn2}.
Then D is a paired dominating set of Gn,4 with cardinality n + 1. For n ≡ 3 (mod 4),
D = {xi1, xi2, x(i+2)3, x(i+2)4 : i ≡ 1 (mod 4)} is a paired dominating set of Gn,4 with
cardinality n + 1. Thus, γt (Gn,4) ≤ γp(Gn,4) ≤ n + 1 for n ≡ 1,3 (mod 4).

By Lemma 2.2, γt (Gn,4) ≥ 4n
4 = n. Now, we prove γt (Gn,4) ≥ n + 1. Suppose to

the contrary that γt (Gn,4) = n. By Lemma 2.2, Gn,4 has an efficient total dominating
set D′. By Lemma 2.1, |D′| = n is even, a contradiction. Therefore γt (Gn,4) > n, and
hence γp(Gn,4) = γt (Gn,4) = n + 1. �

Lemma 4.2 γt (Gn,4) ≤ γp(Gn,4) ≤ n + 2 for n ≡ 2 (mod 4).

Proof Let

D = {
xi1, xi2, x(i+2)3, x(i+2)4 : i ≡ 1 (mod 4), i ≤ n − 2

}
∪ {x(n−1)1, x(n−1)2, xn1, xn2}.

Then D is a paired dominating set of Gn,4 with cardinality n + 2. Thus, γt (Gn,4) ≤
γp(Gn,4) ≤ n + 2. �
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To prove γt (Gn,4) ≥ n + 2 for n ≡ 2 (mod 4), we need the following notations
and two lemmas. Let H

j
i = Yi ∪ Yi+1 ∪ · · · ∪ Yi+j−1, and let G

j
i be the graph ob-

tained from Gn,4 −H
j
i by adding the edge-set {x(i−1)kx(i+j)k : 1 ≤ k ≤ 4}, where the

subscripts are modulo n. Clearly, G
j
i

∼= Gn−j,4.

Lemma 4.3 Let D be a total dominating set of Gn,4. Then |D ∩ H 4
i | ≥ 4 for

any i with 1 ≤ i ≤ n. Moreover, if there exists some i with 1 ≤ i ≤ n such that
|N(v) ∩ D| = 1 for any vertex v in H 4

i , then D′ = D \ (D ∩ H 4
i ) is a total domi-

nating set of G4
i .

Proof Without loss of generality, assume i = 2. It can be easy verified to dominate 8
vertices in Y3 ∪ Y4, at least 4 vertices are needed, and hence |D ∩ H 4

2 | ≥ 4.
We now show the second assertion. Suppose to the contrary that D′ is not a total

dominating set of G4
2. Then there is a vertex u in Y1 ∪Y6 such that it is not dominated

by D′, that is, NG4
2
(u) ∩ D′ = ∅. Without loss of generality assume u = x11. Then

x21 ∈ D and x61 /∈ D. Also x41 /∈ D since |N(x31) ∩ D| = 1.
Since x33 should be dominated by D and |N(x33) ∩ D| = 1, only one of x32,

x34, x23, and x43 belongs to D. If x32 ∈ D or x34 ∈ D, then |N(x31) ∩ D| ≥ 2, a
contradiction. If x23 ∈ D, then |N(x22) ∩ D| ≥ 2, a contradiction. Thus, x43 ∈ D.
Since x51 should be dominated by D, x52 ∈ D or x54 ∈ D. But then |N(x53)∩D| ≥ 2,
a contradiction. Thus, D′ = D \ (D ∩ H 4

2 ) is a total dominating set of G4
i . �

Lemma 4.4 Let D be a total dominating set of Gn,4. If xij is dominated by two ver-
tices u,v ∈ D, then there exists a vertex w in H 2

i−1 or H 2
i such that |N(w) ∩ D| ≥ 2.

Proof Without loss of generality, let i = j = 2. If u,v ∈ Y2, then assume u = x21,
v = x23 and, hence, |N(x24) ∩ D| ≥ 2.

If one of u and v is in Y2 and another is in Y1 ∪ Y3, then without loss of generality
assume u = x21 ∈ Y2 and v = x32 ∈ Y3. And then |N(x31) ∩ D| ≥ 2.

If one of u and v is in Y1 and another is in Y3, then without loss of generality
assume u = x12 ∈ Y2 and v = x32 ∈ Y3. Since x24 should be dominated by D, let
s ∈ N(x24) ∩ D. It is clearly that N(s) ∩ N(u) �= ∅ or N(s) ∩ N(v) �= ∅, which
implies that there exists a vertex w /∈ {u,v} in H 2

1 ∪H 2
2 such that |N(w)∩D| ≥ 2. �

Lemma 4.5 γt (Gn,4) = γp(Gn,4) = n + 2 for n ≡ 2 (mod 4).

Proof By Lemma 4.2, we only need to show γt (Gn,4) ≥ n + 2. To this end, let n =
4k + 2. We proceed by induction on k ≥ 1. It is easy to verify that γt (G6,4) = 8
and γt (G10,4) = 12. The conclusion is true for k = 1,2. Assume that the induction
hypothesis is true for k − 1 with k ≥ 3.

Let D be a minimum total dominating set of Gn,4, where n = 4k + 2 for k ≥ 3.
Assume to the contrary that |D| ≤ n + 1. Since any vertex u can dominate at most 4
vertices in Gn,4 and |V (Gn,4)| = 4n, there are at most four vertices such that each of
them is dominated by at least two vertices in D.

We now prove that there exists some i ∈ {1,2, . . . , n} such that |N(v)∩D| = 1 for
any vertex v ∈ H 4

i . There is nothing to do if there are at most three vertices such that
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each of them is dominated by at least two vertices since n ≥ 14. Now, assume there
are exactly four vertices such that each of them is dominated by at least two vertices.
By Lemma 4.4, there exists two integers s and t with 1 ≤ s, t ≤ n such that two of the
four vertices are in H 2

s and the other two are in H 2
t . Therefore, there exists an integer

i with 1 ≤ i ≤ n such that for any vertex v ∈ H 4
i , |N(v) ∩ D| = 1 since n ≥ 14.

By Lemma 4.3, |D ∩ H 4
i | ≥ 4 and D′ = D \ (D ∩ H 4

i ) is a total dominating set
of G4

i
∼= Gn−4,4. By the inductive hypothesis, |D′| ≥ γt (Gn−4,4) ≥ n − 2. It follows

that

n + 1 ≥ |D| = ∣∣D ∩ H 4
i

∣∣ + ∣∣D′∣∣ ≥ 4 + n − 2 = n + 2,

a contradiction, which implies that γt (Gn,4) = |D| ≥ n + 2. By the induction princi-
ple, the lemma follows. �

By combining the above results in this section and Lemma 2.3, we get the follow-
ing theorem immediately.

Theorem 4.1 For any integer n ≥ 3,

γt (Gn,4) = γp(Gn,4) =
⎧⎨
⎩

n, if n ≡ 0 (mod 4);
n + 1, if n ≡ 1,3 (mod 4);
n + 2, if n ≡ 2 (mod 4).

5 Upper bounds of γp(Gn,m) for n,m ≥ 5

The values of γt (Gn,m) and γp(Gn,m) for m ∈ {3,4} have been determined in the
above sections, but their values for m ≥ 5 have been not determined yet. In this sec-
tion, we present their upper bounds. Since γt (G) ≤ γp(G) for any graph G without
isolated vertices, we establish upper bounds only for γp(Gn,m) if we can not obtain
a smaller upper bound of γt (Gn,m) than that of γp(Gn,m).

Lemma 5.1 γt (Gn,m) ≤ γt (Gn+1,m) and γp(Gn,m) ≤ γp(Gn+1,m).

Proof Let D be a minimum paired (total) dominating set of Gn+1,m.
If D ∩Yn+1 = ∅, then D is also a paired (total) dominating set of Gn,m, and hence

γp(Gn,m) ≤ |D| (γt (Gn,m) ≤ |D|).
Assume D ∩ Yn+1 �= ∅ below. Let A = {j |x(n+1)j ∈ D} and B = {j |xnj ∈ D}.

Then D′ = (D \ Yn+1) ∪ {x(n−1)j |j ∈ A ∩ B} ∪ {xnj |j ∈ A \ B} is a total dominating
set of Gn,m and |D′| ≤ |D|. Therefore γt (Gn,m) ≤ γt (Gn+1,m).

The vertex set D′ may not be a paired dominating set of Gn,m, that means, the
induced subgraph G by D′ in Gn,m may contains odd connected components. Let
p be the number of odd connected components in G. It is clear that |D′| ≤ |D| − p

by the construction of D′ from D. Therefore, we can obtain D′′ by adding at most
p vertices to D′ such that the induced subgraph by D′′ in Gn,m does not contain
odd connected components. Then D′′ is a paired dominating set of Gn,m, and hence
γp(Gn,m) ≤ |D′′| ≤ |D|. �
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Fig. 3 Two paired dominating sets (bold vertices) of G9,4 and G9,5 in Theorems 5.2 and 5.3, respectively

Theorem 5.1 γp(Gn,m) ≤ 4	n
4 
	m

4 
.

Proof Let n = 4a − i and m = 4b − j where 0 ≤ i, j ≤ 3. By Lemma 2.3,
γp(G4a,4b) = 4ab = 4	n

4 
	m
4 
. By Lemma 5.1,

γp(Gm,n) ≤ γp(G4a,4b) = 4

⌈
n

4

⌉⌈
m

4

⌉
. �

For n,m ≥ 5, let m ≡ a (mod 4) and n ≡ b (mod 4) where 0 ≤ a, b ≤ 3. We will
establish some better bounds of γt (Gn,m) and γp(Gn,m) than those in Theorem 5.1
for some special a and b. Let

De = {
xij , xi(j+1), x(i+2)(j+2), x(i+2)(j+3) : i, j ≡ 1 (mod 4)

}
,

where 1 ≤ i ≤ n − 2, 1 ≤ j ≤ m − 3, and n,m ≥ 5.

Theorem 5.2 γp(Gn,m) ≤ (n+1)m
4 for m ≡ 0 (mod 4) and n ≡ 1 (mod 4).

Proof Let D = De ∪ {xnj , xn(j+1) : j ≡ 1 (mod 4)}, where 1 ≤ j ≤ m − 3. Then, it
is easy to see that D is a paired dominating set of Gn,m with cardinality (n+1)m

4 (see

Fig. 3 for n = 9 and m = 4). Thus, γp(Gn,m) ≤ (n+1)m
4 . �

Theorem 5.3 γt (Gn,m) ≤ (n+1)(m+1)
4 and γp(Gn,m) ≤ (n+1)(m+3)

4 − 2 for m,n ≡
1 (mod 4).

Proof Let D = De ∪ {xnj , xn(j+1), x(i+1)(m−1), x(i+2)m : i, j ≡ 1 (mod 4)} ∪ {xnm},
where 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ m − 3. Then, it is easy to see that D is a total
dominating set of Gn,m with cardinality (n+1)(m+1)

4 (see Fig. 3 for n = 9 and m = 5),
and D ∪ {xi(m−1), x(i+1)m : i ≡ 1 (mod 4)} \ {xnm} is a paired dominating set of Gn,m

with cardinality (n+1)(m+3)
4 − 2, where 1 ≤ i ≤ n − 2. Thus, γt (Gn,m) ≤ (n+1)(m+1)

4

and γp(Gn,m) ≤ (n+1)(m+3)
4 − 2. �

Theorem 5.4 γp(Gn,m) ≤ (n+1)(m+1)
4 − 2 for m ≡ 3 (mod 4) and n ≡ 1 (mod 4).

Proof Let D = (De ∪ {xi(m−2), xi(m−1), x(i+1)m, x(i+2)m : i ≡ 1 (mod 4)} ∪
{xnj , xn(j+1) : j ≡ 1 (mod 4)} ∪ {x(n−1)m, xn(m−2)}) \ {x(n−3)m, x1(m−1)}, where
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Fig. 4 Two paired dominating sets (bold vertices) of G9,7 and G10,6 in Theorems 5.4 and 5.5, respec-
tively

1 ≤ i ≤ n − 2 and 1 ≤ j ≤ m − 3 (see Fig. 4 for n = 9 and m = 7). Then, D is a
paired dominating set of Gn,m with cardinality (n+1)(m+1)

4 − 2. �

Corollary 5.1 γp(Gn,m) ≤ (n+1)(m+2)
4 − 2 for m ≡ 2 (mod 4) and n ≡ 1 (mod 4).

Proof By Lemma 5.1, γp(Gn,m) ≤ γp(Gn,m+1). The corollary follows from Theo-
rem 5.4. �

Theorem 5.5 γp(Gn,m) ≤ (n+2)(m+2)
4 − 6 for m,n ≡ 2 (mod 4).

Proof Let D = (De ∪ {xi(m−2), xi(m−1), x(i+2)(m−1), x(i+2)m : i ≡ 1 (mod 4)} ∪
{x(n−1)j , x(n−1)(j+1), xn(j+2), xn(j+3) : j ≡ 1 (mod 4)} ∪ {xn(m−1)}) \ {x1(m−2),

x1(m−1), xn(m−3)}, where 1 ≤ i ≤ n − 2 and 1 ≤ j ≤ m − 3 (see Fig. 4 for n = 10 and
m = 6). Then D is a paired dominating set of Gn,m with cardinality (n+2)(m+2)

4 − 6.

Thus, γp(Gn,m) ≤ (n+2)(m+2)
4 − 6. �
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