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a b s t r a c t

Let G = (V , E) be a graph and p a positive integer. The p-domination number γp(G) is
the minimum cardinality of a set D ⊆ V with |NG(x) ∩ D| ≥ p for all x ∈ V \ D. The
p-reinforcement number rp(G) is the smallest number of edges whose addition to G results
in a graph G′ with γp(G′) < γp(G). It is showed by Lu et al. (2013) that rp(T ) ≤ p + 1 for
any tree T and p ≥ 2. This paper characterizes all trees attaining this upper bound when
p ≥ 3.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For graph-theoretical terminology and notation not defined here we follow [19]. Let G = (V , E) = (V (G), E(G)) be a
simple graph and x ∈ V . The neighborhood and degree of x are NG(x) = {y ∈ V : xy ∈ E} and dG(x) = |NG(x)|, respectively. If
dG(x) = 1, then x is called a leaf and its unique neighbor is called a stem. The set of leaves of G is denoted by L(G). Let p ≥ 1
be an integer and X ⊆ V with x ∈ X . A vertex y ∈ NG(x) is called a p-private neighbor of xwith respect to X if y ∈ V − X and
|NG(y) ∩ X | = p. We use Np(x, X,G) to denote the set of p-private neighbors of xwith respect to X in G.

For X ⊆ V , the subgraph induced by X (resp. V − X) is denoted by G[X] (resp. G − X). The complement Gc of G is the
simple graph with vertex-set V and edge-set E(Gc) = {xy : xy ∉ E}. For B ⊆ E(Gc),G + B denotes the graph obtained from
G by adding B. To simplify notation, for x ∈ V and subgraph H ⊆ G, we write G − x and G − H for G − {x} and G − V (H),
respectively.

Let p ≥ 1 be an integer and X ⊆ V . For Y ⊆ V , Xp-dominates Y in G if for each y ∈ Y , either y ∈ X or |NG(y) ∩ X | ≥ p.
We write X ≻p Y if Xp-dominates Y , and write X ⊁p Y otherwise. In particular, if X ≻p V then X is called a p-dominating set,
abbreviated DSp, of G. The p-domination number γp(G) is the minimum cardinality of a DSp of G. A DSp with cardinality γp(G)
is called a γp-set of G. The p-reinforcement number rp(G) is the smallest number of edges in Gc that have to be added to G in
order to reduce γp(G), that is

rp(G) = min{|B| : B ⊆ E(Gc) with γp(G + B) < γp(G)}.

By convention,

rp(G) = 0 if γp(G) ≤ p. (1.1)

Clearly, γ1 and r1 are the well-known domination γ and reinforcement r , respectively.
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Fig. 1. Trees Fp−1 and Ft,p−1 , where t ≥ p and each yi has p − 1 leaves.

The concept of p-domination was introduced by Fink and Jacobson [10] in 1985 and has been well studied for recent
decade (see, for example, [2–4,7–9,11]). Chellali et al. [5] gave an excellent survey on this topic. The p-reinforcement number,
introduced by Lu, Hu and Xu [17], is a parameter for measuring vulnerability of p-domination, is also a natural extension of
the classical reinforcement number which was introduced by Kok and Mynhardt [15] and studied by a number of authors
(see, for example, [6,12–14,20]). Motivated by the work of these authors, Lu, Hu and Xu [17] studied p-reinforcement, found
a method to determine rp in terms of γp and showed that the decision problem on rp is NP-hard and established some upper
bounds.

Surprisingly, for a tree T of order n, the known upper bounds for rp(T ) are of distinct forms according to p = 1 and p ≥ 2.
For p = 1, Blair et al. [1] gave a sharp upper bound r1(T ) ≤

n
2 . For p ≥ 2, however, there is an upper bound for rp(T ) which

is independent of n.

Theorem 1.1 (Lu, Hu and Xu [17]). rp(T ) ≤ p + 1 for any tree T and p ≥ 2.

In this paper we characterize all extremal trees in Theorem 1.1 for p ≥ 3 by a recursive construction. The rest of this
paper is organized as follows. The main result of this paper is stated in Section 2. To prove the main result, we propose two
needed parameters ηp andµp in Section 3 and use them to establish some structural properties of a tree T with rp(T ) = p+1
for p ≥ 3 in Section 4. In Section 5 we complete the proof of the main result. A conclusion is in Section 6.

2. Main result

Throughout this paper, we always suppose that p ≥ 3 is an integer. In this section we will give a constructive
characterization of trees with p-reinforcement number p + 1. First, we state two known results.

Lemma 2.1. Every DSp of a graph contains all vertices of degree less than p.

Lemma 2.2 (Lu et al. [16]). Let p ≥ 2 be an integer and D be a DSp of a tree T . Then D is the unique γp-set of T if and only if for
each x ∈ D with dT (x) ≥ p, |NG(x) ∩ D| ≤ p − 2 or |Np(x,D, T )| ≥ 2.

Let t ≥ p be an integer. The spider St is a tree obtained from a star K1,t by attaching one leaf at each leaf of K1,t . Two
important trees Fp−1 and Ft,p−1 in our construction are shown in Fig. 1, where Fp−1 (resp. Ft,p−1) is obtained from a star K1,2
(resp. a spider St ) by attaching p − 1 leaves at each leaf of K1,2 (resp. St ).

In Fig. 1, we call y the center of Fp−1 (resp. Ft,p−1). It is obvious that the set of black vertices in Fp−1 (resp. Ft,p−1 for t ≥ p)
is the unique γp-set of Fp−1 (resp. Ft,p−1). For a star K1,m (m ≥ 2), the unique stem is also called the center of K1,m.

For two disjoint graphsG andH , letG⊕xy H denote the graphwith vertex-set V (G)∪V (H) and edge-set E(G)∪{xy}∪E(H),
where x ∈ V (G) and y ∈ V (H).

Definition 2.3. Let G be a tree with a unique γp-set X . A new tree T is constructed from G by the following operation O .

O : T = G⊕xy H,

where H ∈ {K1,p−1, K1,p, Fp−1, Ft,p−1}, y is the center of H and xmust fulfil the following conditions:

(1) x ∈ X if H = K1,p−1.
(2) x ∉ X if H = K1,p.
(3) x ∈ X and |Np(x, X,G)| ≥ min{p + 1, |NG(x) ∩ X | + 2} if H = Fp−1.
(4) x is an arbitrary vertex in G if H = Ft,p−1.

Note that the tree H ∈ {K1,p, Fp−1, Ft,p−1} with t ≥ p has a unique γp-set, denoted by UH . By Definition 2.3, the following
observation follows almost immediately from Lemmas 2.1 and 2.2.

Observation 2.4. Let p ≥ 3 and t ≥ p be two integers and G a tree different to K1,p−1 with a unique γp-set X. Then the tree
T = G⊕xy H obtained from G by operation O has a unique γp-set

X ∪


L(H) if H = K1,p−1;

UH if H ∈ {K1,p, Fp−1, Ft,p−1}.
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Since the star K1,p has a unique γp-set, by Observation 2.4, we can define a family Tp of trees as follows.

Tp = {T : T is obtained from the star K1,p via a finite series of operation O}.

It must be pointed out that K1,p ∉ Tp. We now are ready to establish our main result whose proof is postponed to
Section 5.

Theorem 2.5. For an integer p ≥ 3 and a tree T , rp(T ) = p + 1 if and only if T ∈ Tp.

3. Notations and lemmas

The notations ηp and µp introduced by Lu, Hu and Xu [17] play important roles in the study of p-reinforcement. In this
section, we present their definitions and fundamental results.

Let G = (V , E) be a graph and X ⊆ V . For each vertex x ∈ V , define

ηp(x, X,G) =


p − |NG(x) ∩ X | if X ⊁p x;
0 if X ≻p x.

(3.1)

If |X | ≥ p, then there is a subset Bx ⊆ E(Gc)with |Bx| = ηp(x, X,G) such thatX ≻p x inG+Bx, and soX is aDSp ofG+(∪x∈V Bx),
which implies that rp(G) ≤ | ∪x∈V Bx| =


x∈V ηp(x, X,G) by the definition of rp. Motivated by this inequality, Lu, Hu and

Xu [17] define

ηp(S, X,G) =


x∈S

ηp(x, X,G) for S ⊆ V , (3.2)

and prove the following two lemmas.

Lemma 3.1 (Lu, Hu and Xu [17]). Let p be an integer and G a graph. If γp(G) > p, then

rp(G) = min{ηp(V (G), X,G) : X ⊆ V (G) with |X | < γp(G)}.

Let G be a graph and X ⊆ V (G). If |X | < γp(G) and ηp(V (G), X,G) = rp(G), then X is called an ηp-set of G.

Lemma 3.2 (Lu, Hu and Xu [17]). Let p be an integer and G be a graph. If X is an ηp-set of G, then |X | = γp(G) − 1.

The following observation is trivial by (3.1) and (3.2).

Observation 3.3. Let G be a graph and S, X ⊆ V (G). Then
(1) ηp(S, X,G) ≥ ηp(S1, X,G) for any S1 ⊆ S.
(2) ηp(S, X,G) ≤ ηp(S, X1,G) for any X1 ⊆ X.
(3) ηp(S, X,G) ≥ ηp(S, X,H) for any supergraph H of G.

By the definitions of ηp and ⊕, the following lemma follows from Observation 3.3 and Lemmas 3.2 and 3.1 immediately.

Lemma 3.4. Let Gi be a graph with xi ∈ V (Gi) for i = 1, 2 and H = G1 ⊕x1x2 G2.
(1) For any Xi ⊆ V (Gi) (i = 1, 2),

ηp(V (G1), X1,G1) − ηp(V (G1), X1 ∪ X2,H) =


1 if X1 ⊁p x1 and X2 ∋ x2;
0 otherwise.

(2) If γp(G1) > p and γp(H) ≥ γp(G1) + γp(G2), then rp(H) ≤ rp(G1).

Now we present the parameter µp. Let G = (V , E) be a graph and X ⊆ V . For x ∈ X , define

µp(x, X,G) = |Np(x, X,G)| + max{0, p − |NG(x) ∩ X |}. (3.3)

Lemma 3.5 (Lu, Hu and Xu [17]). For a graph G,

rp(G) ≤ min{µp(x, X,G) : X is a γp-set of G and x ∈ X}.

4. Properties for a tree T with rp(T ) = p + 1

In this section, we use the parameters ηp and µp to establish some lemmas of a tree T with rp(T ) = p + 1, which will be
applied in the proof of Theorem 2.5.

Lemma 4.1. Let p ≥ 3 and T a tree with rp(T ) = p + 1. If D is a γp-set of T , then
(1) Np(x,D, T ) ≠ ∅ for each x ∈ D.
(2) D is the unique γp-set of T .
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Proof. Let x be any vertex in D. Then

|Np(x,D, T )| = µp(x,D, T ) − max{0, p − |NT (x) ∩ D|} (by (3.3))
≥ µp(x,D, T ) − p
≥ rp(T ) − p (by Lemma 3.5)
= 1

and so the conclusion (1) holds.
We now prove the conclusion (2). Since D is a γp-set of T and rp(T ) = p + 1 > 0, |D| = γp(T ) ≥ p + 1 by (1.1). If

dT (x) < p for any x ∈ D, then D is the unique γp-set by Lemma 2.1, and so the conclusion follows. Assume now that there is
some x ∈ D such that dT (x) ≥ p. By Lemma 3.5 and (3.3),

p + 1 = rp(T ) ≤ µp(x,D, T ) = |Np(x,D, T )| + max{0, p − |NT (x) ∩ D|},

that is,

|Np(x,D, T )| ≥ p + 1 − max{0, p − |NT (x) ∩ D|}.

If |NT (x) ∩ D| ≥ p − 1, then max{0, p − |NT (x) ∩ D|} ≤ 1, and so |Np(x,D, T )| ≥ p ≥ 3. This fact implies that D satisfies the
second condition in Lemma 2.2, from which D is the unique γp-set of T . The lemma follows. �

Let p ≥ 3 and T a tree with rp(T ) = p + 1. Through this paper, we use UT to represent the unique γp-set of T . For any
xy ∈ E(T ), let Ty denote the component of T − x containing y.

Lemma 4.2. Let p ≥ 3 and T a tree with rp(T ) = p + 1. For any x ∈ UT and y ∈ NT (x),

(1) If y ∉ Np(x, UT , T ), then rp(Ty) = p + 1 and UTy = UT ∩ V (Ty).
(2) If y ∈ Np(x, UT , T ), then

(a) either Ty is a star K1,p−1 with center y or rp(Ty) = 1 and UT ∩ V (Ty) is an ηp-set of Ty, and
(b) ηp(V (Ty), X, Ty) ≥ p − 1 for X ⊆ V (Ty) with y ∈ X and |X | ≤ |UT ∩ V (Ty)|.

Proof. Let Y = UT ∩ V (Ty) and Z = {z ∈ V (Ty) \ Y : |NT (z) ∩ UT | = p}. Note that x ∈ UT and UT is the unique γp-set of T .
Since p ≥ 3, Y ≠ ∅ and so Z ≠ ∅ by Lemma 4.1(1). For any z ∈ Z , since UT ≻p z and x ∈ UT ,

|NTy(z) ∩ UT | = |NT (z) ∩ UT − {x}| ≥ p − 1,

with equality if and only if z = y. Hence either Ty is a star K1,p−1 with center y or |V (Ty)| > p. In the former case, the
conclusion (b) in (2) is trivial by (3.1) and (3.2). Thus, to prove the lemma, we only need to consider the case of |V (Ty)| > p.

We claim that γp(Ty) > p. Suppose, to be contrary, that γp(Ty) ≤ p. Furthermore, γp(Ty) = p since |V (Ty)| > p. Note
that p ≥ 3 and p vertices in a tree have at most one common neighbor. Since Ty is a tree, Ty = K1,p. Let z be the center
of Ty. Since p ≥ 3 and UT is a DSp of T , it follows from Lemmas 2.1 and 4.1(1) that L(Ty) = Y and z ∈ Z . If z = y, then
|NT (z) ∩ UT | = |L(Ty) ∪ {x}| = p + 1, which contradicts that z ∈ Z . If z ≠ y, then y ∈ Y ⊆ UT and NT (y) = {x, z},
furthermore, NT (y) ∩ UT = {x} and Np(y, UT , T ) = {z}. By (3.3),

µp(y, UT , T ) = |Np(y, UT , T )| + max{0, p − |NT (y) ∩ UT |} = 1 + (p − 1) = p,

from which and Lemma 3.5 we obtain that rp(T ) ≤ µp(y, UT , T ) = p, a contradiction. The claim holds.
Firstly, we prove (1). Let T − Ty = Tx. Then T = Tx ⊕xy Ty. Since x ∈ UT and y ∉ Np(x, UT , T ), UT ∩ V (Tx) ≻p V (Tx) and

Y ≻p V (Ty). It follows that γp(T ) = |UT | = |UT ∩ V (Tx)| + |Y | ≥ γp(Tx) + γp(Ty), furthermore, γp(T ) = γp(Tx) + γp(Ty)
since the union of a γ -set of Tx and a γp-set of Ty is a DSp of T . So Y is a γp-set of Ty. By Theorem 1.1 and Lemma 3.4(2),
p + 1 ≥ rp(Ty) ≥ rp(T ) = p + 1, and so UTy = Y by Lemma 4.1(2).

Secondly, we prove the conclusion (a) of (2). Since y ∈ Np(x, UT , T ) and UT ≻p V (T ), |NTy(y)∩Y | = |NT (y)∩UT −{x}| =

p − 1 and Y ≻p V (Ty) − {y}. Thus, by (3.2) and (3.1),

ηp(V (Ty), Y , Ty) = ηp(y, Y , Ty) +


z∈V (Ty)−{y}

ηp(z, Y , Ty) = 1. (4.1)

We claim that |Y | < γp(Ty). Assume, to the contrary, that |Y | ≥ γp(Ty). Let Y ′ be a γp-set of Ty. Since x ∈ UT and UT is a
unique γp-set of T , UT − Y ≻p V (T ) − V (Ty). So (UT − Y ) ∪ Y ′

≻p V (T ) and

|(UT − Y ) ∪ Y ′
| = (|UT | − |Y |) + |Y ′

| = γp(T ) − |Y | + γp(Ty) ≤ γp(T ).

This factmeans that (UT −Y )∪Y ′ is a γp-set of T different fromUT , a contradiction. The claim holds. Therefore, by Lemma 3.1
and (4.1),

rp(Ty) ≤ ηp(V (Ty), Y , Ty) = 1.

Note that rp(Ty) ≥ 1 by (1.1) since γp(Ty) > p. Thus, rp(Ty) = ηp(V (Ty), Y , Ty) = 1 and Y (=UT ∩ V (Ty)) is an ηp-set of Ty.
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Finally, we prove the conclusion (b) of (2). Let X ⊆ V (Ty) such that y ∈ X and |X | ≤ |Y |. It suffices to show that
ηp(V (Ty), X, Ty) ≥ p− 1. For any u ∈ NTy(y), let Tu be the component of T − y containing u. Since y ∈ X − UT and |X | ≤ |Y |,

u∈NTy (y)

|X ∩ V (Tu)| = |X − {y}| ≤ |Y | − 1 =


u∈NTy (y)

|UT ∩ V (Tu)| − 1,

which implies that there is some u ∈ NTy(y) such that |X ∩ V (Tu)| < |UT ∩ V (Tu)|. Let

S = (UT − V (Tu)) ∪ (X ∩ V (Tu)).

Then |S| < |UT | = γp(T ). Since |NT (y) ∩ S| ≥ |NT (y) ∩ (UT − V (Tu))| ≥ |NT (y) ∩ UT | − 1 = p − 1, by (3.1),

ηp(y, S, T ) ≤ 1. (4.2)

Since UT − V (Tu) ≻p V (T − Tu − y), by (3.1) and (3.2),

ηp(V (T ), S, T ) = ηp(V (Tu), S, T ) + ηp(y, S, T ). (4.3)

It follows from Lemma 3.1 that

p + 1 = rp(T ) ≤ ηp(V (T ), S, T )

(by (4.3)) = ηp(V (Tu), S, T ) + ηp(y, S, T )

(by Observation 3.3(2) and (4.2)) ≤ ηp(V (Tu), S ∩ V (Tu), T ) + 1
(by Observation 3.3(3)) ≤ ηp(V (Tu), S ∩ V (Tu), Ty) + 1,

that is, ηp(V (Tu), S ∩ V (Tu), Ty) ≥ p. Note that Ty = (Ty − Tu) ⊕yu Tu and X ∩ V (Tu) = S ∩ V (Tu). Therefore,

ηp(V (Ty), X, Ty) ≥ ηp(V (Tu), X, Ty) (by Observation 3.3(1))
≥ ηp(V (Tu), S ∩ V (Tu), Ty) − 1 (by (3.1) and (3.2))
≥ p − 1

as required. The lemma follows. �

Remark 4.3. With a similar argument, both Lemmas 4.1 and 4.2 are also true for p = 2.

Lemma 4.4. Let p ≥ 3, T a tree with rp(T ) = p + 1, and x ∈ UT such that µp(x, UT , T ) ≥ p + 2. For any X ⊆ V (T − x) with
|X | < γp(T ), ηp(V (T ), X, T ) ≥ p + 2.

Proof. Let X be a counterexample to the lemma with |X ∩ UT | as large as possible. Since |X | < γp(T ), Lemma 3.1 implies
that ηp(V (T ), X, T ) ≥ rp(T ) = p + 1, furthermore, ηp(V (T ), X, T ) = p + 1 = rp(T ) since X is a counterexample to the
lemma. Thus X is an ηp-set of T and |X | = γp(T ) − 1 by Lemma 3.2.

Let Np(x, UT , T ) = {x1, . . . , xt} and NT (x) = {x1, . . . , xt , xt+1, . . . , xd}, where d = dT (x). For each i, let Ti be the
component of T − x containing xi. Since x ∈ UT − X and |X | = γp(T ) − 1,

d
i=1

|X ∩ V (Ti)| = |X | = γp(T ) − 1 = |UT | − 1 =

d
i=1

|UT ∩ V (Ti)| (4.4)

and, by (3.2) and Lemma 3.4(1),

p + 1 = ηp(V (T ), X, T ) = ηp(x, X, T ) +

d
i=1

ηp(V (Ti), X ∩ V (Ti), Ti). (4.5)

Claim 1. For t + 1 ≤ i ≤ d, X ∩ V (Ti) = UT ∩ V (Ti) if |X ∩ V (Ti)| = |UT ∩ V (Ti)|.

Proof. Suppose, to be contrary, that X ∩ V (Ti) ≠ UT ∩ V (Ti). Let X ′
= (UT ∩ V (Ti)) ∪ (X − V (Ti)). Then x ∉ X ′, |X ′

| = |X | <
γp(T ) and |X ′

∩ UT | > |X ∩ UT |.
Since xi ∉ Np(x, UT , T ), UT ∩ V (Ti) is the unique γp-set of Ti by Lemma 4.2(1), and so X ∩ V (Ti) ⊁p V (Ti) but X ′

≻p V (Ti)
in T . Thus,

ηp(V (Ti), X ∩ V (Ti), T ) ≥ 1, (4.6)

ηp(V (Ti), X ′, T ) = 0. (4.7)
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Note that T = Ti ⊕xix(T − Ti) and X ′
∩ V (T − Ti) = X ′

− V (Ti) = X − V (Ti). By (3.2),

ηp(V (T ), X ′, T ) = ηp(V (Ti), X ′, T ) + ηp(V (T − Ti), X ′, T )

(by (4.7) amd Lemma 3.4(1)) ≤ 0 + ηp(V (T − Ti), X ′
− V (Ti), T − Ti)

= ηp(V (T − Ti), X − V (Ti), T − Ti)
(by Lemma 3.4(1)) ≤ ηp(V (T − Ti), X, T ) + 1
(by (4.6)) ≤ ηp(V (T − Ti), X, T ) + ηp(V (Ti), X ∩ V (Ti), T )

(since x ∉ X) = ηp(V (T − Ti), X, T ) + ηp(V (Ti), X, T )
= ηp(V (T ), X, T )
= p + 1,

which means that X ′ is another counterexample to Lemma 4.4 with |X ′
∩ UT | > |X ∩ UT |, a contradiction to the choice

of X . �

Claim 2. |X ∩ V (Ti)| = |UT ∩ V (Ti)| for 1 ≤ i ≤ d.

Proof. Suppose not, (4.4) implies that there is some i such that |X ∩ V (Ti)| < |UT ∩ V (Ti)|. Let

X ′
= (UT − V (Ti)) ∪ (X ∩ V (Ti)).

Then |X ′
| < |UT | = γp(T ). Since UT ≻p V (T ) and x ∈ UT − V (Ti) ⊆ X ′, X ′

≻p V (T − Ti) in T and so ηp(V (T − Ti), X ′, T ) = 0.
Therefore,

ηp(V (Ti), X ∩ V (Ti), Ti) ≥ ηp(V (Ti), X ′, T ) (by Lemma 3.4(1))
= ηp(V (T ), X ′, T )

≥ rp(T ) = p + 1, (by Lemma 3.1)

from which and (4.5), it follows that

ηp(V (T ), X ′, T ) = p + 1, (4.8)

ηp(V (Tj), X ∩ V (Tj), Tj) = 0 for j ≠ i, (4.9)

ηp(x, X, T ) = 0. (4.10)

Note that X ′ is an ηp-set of T by (4.8) since rp(T ) = p + 1 and |X ′
| < γp(T ). By Lemma 3.2, |X ′

| = γp(T ) − 1 = |UT | − 1 and
so

|X ∩ V (Ti)| = |X ′
| − |UT − V (Ti)| = |UT | − 1 − |UT − V (Ti)| = |UT ∩ V (Ti)| − 1. (4.11)

On the other hand, (4.9) implies that, for j ≠ i, X ∩ V (Tj) ≻p V (Tj) in Tj and it follows from Lemmas 4.2 and 3.2 that

|X ∩ V (Tj)| ≥ γp(Tj) =


|UT ∩ V (Tj)| + 1 if 1 ≤ j ≤ t;
|UT ∩ V (Tj)| if t + 1 ≤ j ≤ d. (4.12)

(4.4), (4.11) and (4.12) together imply that |{1, . . . , t} − {i}| ≤ 1, that is, t ≤ 2. Furthermore, from the hypothesis
µp(x, UT , T ) ≥ p + 2 and (3.3), we obtain that

t = |Np(x, UT , T )| = µp(x, UT , T ) − max{0, p − |NT (x) ∩ UT |} = 2

and |NT (x) ∩ UT | = 0. It follows from (4.4), (4.11) and (4.12) that

|X ∩ V (Tj)| = |UT ∩ V (Tj)|, for j ≥ t + 1 = 3.

By Claim 1, X ∩ V (Tj) = UT ∩ V (Tj) for 3 ≤ j ≤ d and so

|NT (x) ∩ X | =

2
j=1

|NT (x) ∩ (X ∩ V (Tj))| +

d
j=3

|NT (x) ∩ (UT ∩ V (Tj))|

≤ (1 + 1) + |NT (x) ∩ UT | = 2 < p,

which means that ηp(x, X, T ) ≥ 1 by (3.1) since x ∉ X , a contradiction to (4.10). The claim follows. �

We now continue to prove the lemma. Let I = {i | 1 ≤ i ≤ t and xi ∈ X}. Since p ≥ 3, it follows from Claim 2 and the
conclusion (b) in Lemma 4.2(2) that

i∈I

ηp(V (Ti), X ∩ V (Ti), Ti) ≥


i∈I

(p − 1) = |I|(p − 1). (4.13)
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Fig. 2. A tree T with r2(T ) = 3.

For i ∈ {1, . . . , t}\ I , Claim 2 and the conclusion (a) in Lemma 4.2(2) together imply that |X ∩V (Ti)| = |UT ∩V (Ti)| < γp(Ti),
and so X ∩ V (Ti) ⊁p V (Ti). Thus,

i∈{1,...,t}\I

ηp(V (Ti), X ∩ V (Ti), Ti) ≥


i∈{1,...,t}\I

1 = t − |I| = |Np(x, UT , T )| − |I|. (4.14)

On the other hand, Claims 1 and 2 together imply that X ∩ V (Ti) = UT ∩ V (Ti) for t + 1 ≤ t ≤ d. Note that xi ∉ UT for
1 ≤ i ≤ t . Thus

|NT (x) ∩ X | =

d
i=1

|NT (x) ∩ (X ∩ V (Ti))|

= |I| +

d
i=t+1

|NT (x) ∩ (UT ∩ V (Ti))| = |NT (x) ∩ UT | + |I|. (4.15)

Since x ∉ X, ηp(x, X, T ) = max{0, p − |NT (x) ∩ X |} by (3.1). Therefore,

p + 1 = ηp(x, X, T ) +

d
i=1

ηp(V (Ti), X ∩ V (Ti), Ti) (by (4.5))

≥ max{0, p − |NT (x) ∩ X |} + |Np(x, UT , T )| + |I|(p − 2) (by (4.13)–(4.14))
≥ max{0, p − |NT (x) ∩ UT |} − |I| + |Np(x, UT , T )| + |I|(p − 2) (by (4.15))
≥ µp(x, UT , T ) (by (3.3), since p ≥ 3)
≥ p + 2,

a contradiction. The lemma follows. �

Remark 4.5. Lemma 4.4 is not true for p = 2.

Consider the tree T shown in Fig. 2, in which UT consists of all large circles in T , γ2(T ) = |UT | = 17, r2(T ) = 3, x ∈ UT
and µ2(x, UT , T ) = 4 by (3.3). Let X be the set of black vertices in T . Then |X | = 16 < γ2(T ), however, η2(V (T ), X, T ) = 3
by (3.1) and (3.2).

5. Proof of Theorem 2.5

In this section, we will complete the proof of Theorem 2.5. For the convenience, let H1 = K1,p−1,H2 = K1,p,H3 = Fp−1
and H4 = Ft,p−1 with t ≥ p. Let Oi denote the operation O if H = Hi for i ∈ {1, 2, 3, 4} in Definition 2.3.

Let p ≥ 3 and T a tree obtained from a star K1,p by Oi for some i ∈ {1, 2, 3, 4}. By the condition of Oi, i ≠ 3 and

T =

Fp−1 if i = 1;
Sp,p if i = 2;
Ft+1,p−1 or K1,p ⊕xy Ft,p−1 if i = 4,

where t ≥ p, x is the center of K1,p, and Sp,p is a tree obtained from a complete graph K2 by attaching p leaves at each vertex
of K2. By calculating ηp in (3.1) and (3.2), rp(T ) = p + 1 by Lemma 3.1.

The sufficiency of Theorem 2.5 follows from the above fact and the following lemma by the definition of Tp.

Lemma 5.1. Let p ≥ 3 be an integer and G a tree with rp(G) = p + 1. If T is obtained from G by operation Oi for i = 1, 2, 3, 4,
then rp(T ) = p + 1.

Proof. Since T is obtained from G by operation Oi for some i ∈ {1, 2, 3, 4},

T = G⊕xy Hi,
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where y is the center of Hi and x satisfies the conditions in Definition 2.3. Note that rp(G) = p + 1 and G has the unique
γp-set UG by Lemma 4.1(2). By Observation 2.4,

γp(T ) = |UG| +


p − 1 if i = 1;
γp(Hi) if i ∈ {2, 3, 4}. (5.1)

To complete the proof of the lemma, it suffices to show that rp(T ) ≥ p + 1 by Theorem 1.1. Suppose, to be contrary, that
rp(T ) ≤ p. Let S be an ηp-set of T such that

(1) |S ∩ V (G)| is as small as possible,
(2) subject to (1), |S ∩ UG| is as large as possible.

Then ηp(V (T ), S, T ) = rp(T ) ≤ p and |S| = γp(T ) − 1 by Lemma 3.2. We will deduce a contradiction by distinguishing the
following two cases.

Case 1. |S ∩ V (G)| ≥ |UG|.
We claim that S ∩ V (G) = UG. Suppose, to be contrary, that S ∩ V (G) ≠ UG. Let

S ′
= UG ∪


S ∩ V (Hi) if |S ∩ V (G)| = |UG|;

(S ∩ V (Hi)) ∪ {y} if |S ∩ V (G)| > |UG|.

Then |S ′
| ≤ |S| = γp(T ) − 1 and either |S ′

∩ V (G)| < |S ∩ V (G)| or |S ′
∩ V (G)| = |S ∩ V (G)| and |S ′

∩ UG| > |S ∩ UG|. This
contradicts the choice of S if S ′ is an ηp-set of T . Thus, to prove the claim, it suffices to show that S ′ is an ηp-set of T . Since S
is an ηp-set of T , by the definition of ηp-set,

ηp(V (T ), S ′, T ) ≥ ηp(V (T ), S, T ). (5.2)

Note that ηp(V (G), S ′, T ) = 0 since S ′
∩ V (G) = UG ≻p V (G). If |S ∩ V (G)| > |UG|, then S ′

∩ V (Hi) = S ∩ V (Hi) ∪ {y} and so
ηp(V (Hi), S ′, T ) ≤ ηp(V (Hi), S, T ) by (3.1) and (3.2). Therefore, by (3.2),

ηp(V (T ), S ′, T ) = ηp(V (G), S ′, T ) + ηp(V (Hi), S ′, T )

≤ ηp(V (G), S, T ) + ηp(V (Hi), S, T ) = ηp(V (T ), S, T ). (5.3)

If |S ∩ V (G)| = |UG|, then S ∩ V (G) ⊁p V (G) since S ∩ V (T ) ≠ UG and UG is the unique γp-set of G. Note that S ∩ V (Hi) =

S ′
∩ V (Hi) and T = G⊕xy Hi. Let δ = 0 if y ∈ S, and δ = 1 if y ∉ S. By (3.1) and (3.2),

ηp(V (T ), S, T ) = ηp(V (G), S, T ) + ηp(V (Hi), S, T )

≥ δ + (ηp(V (Hi), S ′, T ) − δ)

= ηp(V (G), S ′, T ) + ηp(V (Hi), S ′, T )

= ηp(V (T ), S ′, T ). (5.4)

Since S is an ηp-set of T , S ′ is also an ηp-set of T by (5.2)–(5.4). The claim holds.
By the above claim, |UG| + |S ∩ V (Hi)| = |S| = γp(T ) − 1 and so, by (5.1),

|S ∩ V (Hi)| =


p − 2 if i = 1;
γp(Hi) − 1 if i ∈ {2, 3, 4}.

Note that Hi ∈ {K1,p−1, K1,p, Fp−1, Ft,p−1} with t ≥ p ≥ 3. By calculating directly ηp by (3.1) and (3.2),

ηp(V (Hi), S ∩ V (Hi),Hi) ≥


p + 2 if i ≠ 2 and S ∩ V (Hi) ⊁p y;
p + 1 otherwise. (5.5)

Note that T = G⊕xy Hi. Since S ∩ V (G) = UG, ηp(V (G), S, T ) = 0 and, by Definition 2.3, i ≠ 2 if x ∈ S. It follows from (3.2),
Lemma 3.4 and (5.5) that

ηp(V (T ), S, T ) = ηp(V (Hi), S, T ) + ηp(V (G), S, T )

=


ηp(V (Hi), S ∩ V (Hi),Hi) − 1 if x ∈ S and S ∩ V (Hi) ⊁p y;
ηp(V (Hi), S ∩ V (Hi),Hi) otherwise.

≥ p + 1.

Since S is an ηp-set of T , rp(T ) = ηp(V (T ), S, T ) ≥ p + 1 by Lemma 3.1, which contradicts the assumption rp(T ) ≤ p.
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Case 2. |S ∩ V (G)| < |UG|.
Note that T = G⊕xy Hi with rp(T ) ≤ p and S is an ηp-set of T . Since |S ∩ V (G)| < |UG|, Lemma 3.1 implies that

ηp(V (G), S ∩ V (G),G) ≥ rp(G) = p + 1, and hence

p ≥ rp(T ) = ηp(V (T ), S, T )

(by (3.2)) = ηp(V (G), S, T ) + ηp(V (Hi), S, T )

(by Lemma 3.4(1)) ≥ ηp(V (G), S ∩ V (G),G) −


1 if S ∩ V (G) ⊁p x and y ∈ S;
0 otherwise.

≥


p if S ∩ V (G) ⊁p x and y ∈ S;
p + 1 otherwise,

from which we obtain that S ∩ V (G) ⊁p x (and so x ∉ S), y ∈ S,

ηp(V (G), S ∩ V (G),G) = p + 1, and (5.6)

ηp(V (Hi), S, T ) = 0. (5.7)

By (5.6), ηp(V (G), S ∩ V (G),G) = rp(G) and so S ∩ V (G) is an ηp-set of G. Note that |S| = γp(T ) − 1. By Lemma 3.2 and (5.1),
|S ∩ V (G)| = |UG| − 1 and

|S ∩ V (Hi)| =


p − 1 if i = 1;
γp(Hi) if i ∈ {2, 3, 4}. (5.8)

Note that Hi ∈ {K1,p−1, K1,p, Fp−1, Ft,p−1} (t ≥ p ≥ 3) with center y and y ∈ S ∩ V (Hi). Since x ∉ S, S ∩ V (Hi) ≻p V (Hi) by
(5.7), which and (5.8) together imply that Hi = Fp−1. By the definition of O in Definition 2.3,

|Np(x, UG,G)| ≥ min{p + 1, |NG(x) ∩ UG| + 2}.

Thus either µp(x, UG,G) ≥ p + 2 by (3.3) or |Np(x, UG,G)| = p + 1 and |NG(x) ∩ UG| ≥ p.
In the former case, it follows from Lemma 4.4 that ηp(V (G), S ∩ V (G),G) ≥ p + 2 since x ∉ S and S ∩ V (G) = |UG| − 1,

which contradicts (5.6).
In the latter case, since S ∩ V (G) ⊁p x and |NG(x) ∩ UG| ≥ p, there is a vertex z ∈ NG(x) such that z ∈ UG but z ∉ S. Let

Gz denote the component of G − x containing z. Note that z ∉ Np(x, UG,G) and ηp(x, S ∩ V (G),G) ≥ 1 since x ∈ UG and
S ∩ V (G) ⊁p x. If |S ∩ V (Gz)| < |UG ∩ V (Gz)|, then ηp(V (Gz), S ∩ V (Gz),Gz) ≥ rp(Gz) = p + 1 by Lemmas 3.1 and 4.2(1).
Since x ∉ S, Lemma 3.4(1) implies that ηp(V (Gz), S ∩ V (G),G) = ηp(V (Gz), S ∩ V (Gz),Gz). Hence, by (3.2),

ηp(V (G), S ∩ V (G),G) ≥ ηp(x, S ∩ V (G),G) + ηp(V (Gz), S ∩ V (G),G)

≥ 1 + ηp(V (Gz), S ∩ V (Gz),Gz)

≥ p + 2,

which contradicts (5.6). If |S ∩ V (Gz)| ≥ |UG ∩ V (Gz)|, then let

S ′
= (S − V (Gz)) ∪ (UG ∩ V (Gz)).

Obviously, |S ′
∩ V (G)| ≤ |S ∩ V (G)| and |S ′

∩ UG| > |S ∩ UG| since z ∈ UG − S. To end the proof, it suffices to prove that S ′

is an ηp-set of T (this is a contradiction to the choice of S). Note that T = (T − Gz) ⊕xz Gz . Since S ′
− V (Gz) = S − V (Gz) and

z ∈ S ′
− S, it follows from (3.1) and (3.2) that

ηp(V (T − Gz), S ′, T ) ≤ ηp(V (T − Gz), S, T ).

Since z ∉ Np(x, UG,G), Lemma 4.2(1) implies that UG ∩ V (Gz) is the unique γp-set of Gz and so S ′
≻p V (Gz) in T . By (3.2),

ηp(V (T ), S ′, T ) = ηp(V (T − Gz), S ′, T ) + ηp(V (Gz), S ′, T )

≤ ηp(V (T − Gz), S, T ) + 0
≤ ηp(V (T − Gz), S, T ) + ηp(V (Gz), S, T ) = ηp(V (T ), S, T ).

On the other hand, since |S ′
| = |S − V (Gz)| + |UG ∩ V (Gz)| ≤ |S − V (Gz)| + |S ∩ V (Gz)| = |S| and S is an ηp-set of T ,

ηp(V (T ), S ′, T ) ≥ ηp(V (T ), S, T ) by Lemma 3.1. Hence,

ηp(V (T ), S ′, T ) = ηp(V (T ), S, T ),

which means that S ′ is also an ηp-set of T . The lemma holds. �

It remains to establish the necessity of Theorem 2.5. We do so by proving Lemma 5.2.
Let T be a tree with the unique γp-set UT . Define

Mp(T ) = {x ∈ V (T ) | there is some y ∈ UT such that x ∈ Np(y, UT , T )}
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andmp(T ) = |Mp(T )|. Since each vertex inMp(T ) is the common p-private neighbor of exactly p vertices of UT with respect
to UT ,

mp(T ) = |Mp(T )| =
1
p


x∈UT

|Np(x, UT , T )|. (5.9)

Let T be a tree rooted at r and y ∈ V (T ).We use C(y) andD(y) to denote the sets of children and descendants, respectively,
of y, and define D[y] = D(y) ∪ {y}. For x ∈ V (T ), the notation dT (x, y) represents the distance between x and y in T . Define

ℓ(y) = max{dT (x, y) | x ∈ D[y]}. (5.10)

Lemma 5.2. Let p ≥ 3 be an integer and T a tree. If rp(T ) = p + 1, then T ∈ Tp.

Proof. Induction on mp(T ). Since p ≥ 3 and rp(T ) = p + 1, Lemma 4.1 implies that T has the unique γp-set UT and
|Np(v, UT , T )| ≥ 1 for v ∈ UT . Note that |UT | = γp(T ) > p by (1.1) since rp(T ) = p + 1 > 0. By (5.9),

mp(T ) =
1
p


v∈UT

|Np(v, UT , T )| ≥
1
p


v∈UT

1 =
1
p
|UT | > 1.

Furthermore,mp(T ) ≥ 2 since mp(T ) is an integer.
If mp(T ) = 2, then letMp(T ) = {x, y}. Since |Np(v, UT , T )| ≥ 1 for v ∈ UT , UT = (NT (x) ∩ UT ) ∪ (NT (y) ∩ UT ). Suppose

that T has a vertex z not in UT ∪ {x, y}. Since p ≥ 3 and UT ≻p z, z has two neighbors in either NT (x) ∩ UT or NT (y) ∩ UT ,
which means that T contains a cycle with length 4. This contradicts that T is a tree. So

V (T ) = UT ∪ {x, y} = (NT (x) ∩ UT ) ∪ (NT (y) ∩ UT ) ∪ {x, y}.

Note that x and y have at most one common neighbor in T . Since |NT (x) ∩ UT | = p and |NT (y) ∩ UT | = p,

T = Fp−1 or Sp,p.

Thus T is obtained from K1,p by O1 if T = Fp−1, otherwise by O2, and so T ∈ Tp. This establishes the base case.
Letmp(T ) ≥ 3. Assume that, for any tree T ′ with rp(T ′) = p + 1, ifmp(T ′) < mp(T ) then T ′

∈ Tp.
We root T at a leaf r . Since mp(T ) ≥ 3, T is not a star and so ℓ(r) ≥ 3 by (5.10). By (5.10), 0 ≤ ℓ(y) ≤ ℓ(r) for y ∈ V (T ).

Let

Vi = {y ∈ V (T ) | ℓ(y) = i} for 0 ≤ i ≤ ℓ(r). (5.11)

Then {V0, V1, . . . , Vℓ(r)} is a partition of V (T ), and satisfies the following properties.
I. V0 = L(T ) − {r} ⊆ UT . It is trivial by (5.11) and Lemma 2.1.
II. For y ∈ V1, (i) y ∈ Mp(T ); (ii) dT (y) = p or p + 1; (iii) T ∈ Tp if dT (y) = p + 1.

Proof of II. By (5.11), D(y) ⊆ V0 and y has exactly one neighbor (i.e., the father of y) not in V0. By I and Lemma 4.1(1),
y ∈ Mp(T ) and so dT (y) = p or p + 1. Both (i) and (ii) hold.

We now prove (iii). Let T ′
= T − D[y] and x be the father of y. Since D(y) ⊆ V0 ⊆ UT by I and dT (y) = p + 1, x ∉ UT

and T [D[y]] = K1,p with center y. So T = T ′
⊕xy K1,p. Since UT is a DSp of T containing no {x, y}, UT ∩ V (T ′) ≻p V (T ′) and

D(y) ≻p D[y]. Thus

γp(T ) = |UT | = |UT ∩ V (T ′)| + |D(y)| ≥ γp(T ′) + γp(K1,p).

Furthermore, γp(T ) = γp(T ′) + γp(K1,p) since the union between a γp-set of T ′ and a γp-set of K1,p is also a DSp of T , which
implies that UT ∩ V (T ′) is a γp-set of T ′. Since Mp(T ) ≥ 3, T ′ contains at least two vertices not in UT and, to p-dominate
them, |UT ∩ V (T ′)| ≥ p + 1. By Theorem 1.1 and Lemma 3.4(2),

p + 1 ≥ rp(T ′) ≥ rp(T ) = p + 1,

which implies that rp(T ′) = p + 1. So UT ′ = UT ∩ V (T ′) by Lemma 4.1(2), and then mp(T ′) = mp(T ) − 1 since y ∈ Mp(T )
by (i). Applying the induction on T ′, T ′

∈ Tp. Since T = T ′
⊕xy K1,p and y ∉ UT ∩ V (T ′), T is obtained from T ′ by O2, and so

T ∈ Tp. (iii) follows. �

To the end, assume, by II, that

v ∈ Mp(T ) and dT (v) = p, for each v ∈ V1. (5.12)

Then the father of each vertex in V1 belongs to UT , and so

V2 ⊆ UT . (5.13)

Let x ∈ V3 and P = xwvu be a path in T [D[x]] such that dT (w) is as large as possible. By I, (5.12) and (5.13),
u ∈ V0 ⊆ UT , v ∈ V1 ⊆ Mp(T ) is a stem of T with dT (x) = p, and w ∈ V2 ⊆ UT . By Lemma 3.5,

µp(w, UT , T ) ≥ rp(T ) = p + 1.



Author's personal copy

Y. Lu, J.-M. Xu / Discrete Applied Mathematics 175 (2014) 43–54 53

Case 1. µp(w, UT , T ) ≥ p + 2.
Let T ′

= T − D[v]. Since v is a stem of T and |D(v)| = dT (v) − 1 = p − 1, T [D[v]] = K1,p−1 with center v
and so T = T ′

⊕wv K1,p−1. Since mp(T ) ≥ 3, T ′ contains at least two p-private neighbors with respect to UT and hence
|V (T ′)| ≥ p + 2, which implies that γp(T ′) ≥ p + 1 since p vertices of the tree T ′ have at least one common neighbor in T ′.

We claim that rp(T ′) = p + 1. It suffices to prove rp(T ′) ≥ p + 1 by Theorem 1.1. Since w ∈ V2 ⊆ UT , UT ∩ V (T ′) ≻p T ′,
and so γp(T ) = |UT | = |UT ∩ V (T ′)| + (p− 1) ≥ γp(T ′) + p− 1. Let X ′ be an ηp-set of T ′ and X = X ′

∪D(v). By Lemma 3.2,

|X | = |X ′
| + |D(v)| = (γp(T ′) − 1) + (p − 1) < γp(T ),

and then ηp(V (T ), X, T ) ≥ rp(T ) = p + 1 by Lemma 3.1. Since v ∉ X , Lemma 3.4(1) implies that ηp(V (T ′), X ′, T ′) =

ηp(V (T ′), X, T ). If w ∈ X ′, then ηp(V (K1,p−1), X, T ) = 0 and

rp(T ′) = ηp(V (T ′), X ′, T ′) = ηp(V (T ′), X, T )

= ηp(V (T ), X, T ) − ηp(V (K1,p−1), X, T ) ≥ p + 1.

If w ∉ X ′, then ηp(V (K1,p−1), X, T ) = 1 by (3.1) and (3.2), and ηp(V (T ), X, T ) ≥ p + 2 by Lemma 4.4 since rp(T ) = p + 1
and µp(w, UT , T ) ≥ p + 2. Thus

rp(T ′) = ηp(V (T ′), X ′, T ′) = ηp(V (T ′), X, T )

= ηp(V (T ), X, T ) − ηp(V (K1,p−1), X, T ) ≥ p + 1.

The claim follows.
Since rp(T ′) = p + 1, T ′ has the unique γp-set UT ′ of T ′ by Lemma 4.1(1). We now show UT ′ = UT ∩ V (T ′). Suppose, to

the contrary, that UT ′ ≠ UT ∩ V (T ′). Note that UT ∩ V (T ′) ≻p V (T ′) since w ∈ UT . Then |UT ∩ V (T ′)| ≥ |UT ′ | + 1. Since
UT ′ ∪ D[v] ≻p V (T ) and |UT ′ ∪ D[v]| = |UT ′ | + p ≤ |UT ∩ V (T ′)| + (p − 1) = γp(T ), UT ′ ∪ D[v] is a γp-set of T different to
UT . This contradicts that UT is the unique γp-set of T . Hence UT ′ = UT ∩ V (T ′).

Since UT ′ = UT ∩ V (T ′) and v ∈ Np(w, UT , T ),mp(T ′) = mp(T ) − 1. Applying the induction on T ′, T ′
∈ Tp. Since

w ∈ UT ∩ V (T ′) = UT ′ , T is obtained from T ′ by O1, and hence T ∈ Tp.
Case 2. µp(w, UT , T ) = p + 1.
By the definition of µp in (3.3),

|Np(w, UT , T )| + max{0, p − |NT (w) ∩ UT |} = p + 1. (5.14)

Since w ∈ V2 ⊆ UT by (5.13), w is not a stem of T and so C(w) ⊆ V1 ⊆ Mp(T ) by (5.11) and II(i). Therefore,

C(w) ⊆ Np(w, UT , T ), (5.15)

and, for v′
∈ C(w), the component of T − w containing v′ is a star K1,p−1 with center v′.

Case 2.1 x ∈ UT .
Let T ′

= T − D[w]. Since x ∈ UT , Np(w, UT , T ) = C(w) by (5.15) and NT (w) ∩ UT = {x}. Thus |C(w)| = 2 by (5.14). So
T [D[w]] = Fp−1 with center w and T = T ′

⊕xw Fp−1.
Since x ∉ Np(w, UT , T ), rp(T ′) = p+1 and UT ′ = UT ∩V (T ′) by Lemma 4.2(1). Thusmp(T ′) = mp(T )−|C(w)| < mp(T ).

Applying the induction on T ′, T ′
∈ Tp. Hence if x satisfies the condition of O3, that is,

|Np(x, UT ′ , T ′)| ≥ min{p + 1, |NT ′(x) ∩ UT ′ | + 2}, (5.16)

then T is obtained from T ′ by O3 and T ∈ Tp.
We now show (5.16). Since x ∈ UT and rp(T ) = p+1, (3.3) and Lemma3.5 together imply that |Np(x, UT , T )|+max{0, p−

|NT (x) ∩ UT |} = µp(x, UT , T ) ≥ rp(T ) = p + 1, that is,

|Np(x, UT , T )| ≥ min{p + 1, |NT (x) ∩ UT | + 1}. (5.17)

Since w ∈ NT (x) ∩ UT and UT ′ = UT ∩ V (T ′), |Np(x, UT ′ , T ′)| = |Np(x, UT , T )| and |NT ′(x) ∩ UT ′ | = |NT (x) ∩ UT | − 1.
Therefore, (5.16) follows from (5.17).

Case 2.2 x ∉ UT .
Let T ′

= T − D[x] and T0 = T [D[x]]. Then T = T ′
⊕yx T0, where y is the father of x.

We claim that T0 = Ft,p−1 with center x, where t = |C(x)| ≥ p. Note that NT (w) = C(w) ∪ {x}. Since x ∉ UT and
C(w) ⊆ Np(w, UT , T ) by (5.15),NT (w)∩UT = ∅ and so |Np(w, UT , T )| = 1 by (5.14). Therefore, C(w) = Np(w, UT , T ) = {v}

and

x ∉ UT ∪ Np(w, UT , T ). (5.18)

By (5.18), |NT (x) ∩ UT | ≥ p + 1 and so t = |C(x)| = |NT (x)| − 1 ≥ p. Let w′
∈ C(x). By the choice of P4 = xwvu, dT (w′) ≤

dT (w) = 2 < p. By Lemmas 2.1 and 4.1(1), w′
∈ UT and Np(w

′, UT , T ) ≠ ∅. It follows that dT (w′) = 2 since x ∈ NT (w
′)

is not a p-private neighbor with respect to UT . Let Np(w
′, UT , T ) = {v′

}. Then v′
∈ V1 and dT (v′) = p by (5.12). By the

arbitrariness of w′, T0 = T [D[x]] = Ft,p−1 with center x. The claim holds.
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SinceUT∩V (T ′) ≻p V (T ′) andUT∩V (T0) ≻p V (T0) by (5.18), γp(T ) = |UT | = |UT∩V (T ′)|+|UT∩V (T0)| ≥ γp(T ′)+γp(T0).
Furthermore, γp(T ) = γp(T ′)+γp(T0) because the union between a γp-set of T ′ and a γp-set of T0 is a DSp of T . So UT ∩V (T ′)
(resp., UT ∩ V (T0)) is a γp-set of T ′ (resp., T0).

Note that Np(z, UT , T ) ≠ ∅ for any z ∈ UT by Lemma 4.1(1). (5.18) implies that T ′ has at least one p-private neighbor
with respect to UT , and so γp(T ′) = |UT ∩ V (T ′)| ≥ p.

If γp(T ′) = p, then T ′
= K1,p. Thus T is obtained from K1,p by O4 and T ∈ Tp.

If γp(T ′) ≥ p + 1, then rp(T ′) ≥ rp(T ) = p + 1 by Lemma 3.4(2), furthermore, rp(T ′) = p + 1 by Theorem 1.1. Since
UT∩V (T ′) is a γp-set of T ′, it follows fromLemma4.1(2) thatUT ′ = UT∩V (T ′), and hencemp(T ′) = mp(T )−mp(T0) < mp(T ).
Applying the induction on T ′, T ′

∈ Tp. Thus T is obtained from T ′ by O4 and T ∈ Tp. �

6. Conclusion

We characterize all trees with p-reinforcement number p + 1 for p ≥ 3 by a recursive construction. Our proof strongly
depends on Lemma 4.4. However, Lemma 4.4 is not true for p = 2 (see Remark 4.5). When p = 2, Theorem 1.1 implies that
r2(T ) ≤ 3 for any tree T . Very recently, Lu, Song and Yang [18] have presented a sufficient and necessary condition for a tree
to have the 2-reinforcement number 3.
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