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Transitivity of varietal hypercube networks

Li XIAO, Jin CAO, Jun-Ming XU

School of Mathematical Sciences, University of Science and Technology of China,
Wentsun Wu Key Laboratory of CAS, Hefei 230026, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Abstract The varietal hypercube V Qn is a variant of the hypercube Qn and
has better properties than Qn with the same number of edges and vertices.
This paper proves that V Qn is vertex-transitive. This property shows that
when V Qn is used to model an interconnection network, it is high symmetrical
and obviously superior to other variants of the hypercube such as the crossed
cube.
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1 Introduction

We follow [8] for graph-theoretical terminology and notation not defined here.
A graph G = (V,E) always means a simple undirected graph, where V = V (G)
is the vertex set and E = E(G) is the edge set of G. It is well known that
interconnection networks play an important role in parallel computing/
communication systems. An interconnection network can be modeled by a
graph G = (V,E), where V is the set of processors and E is the set of
communication links in the network.

The hypercube network Qn has proved to be one of the most popular
interconnection networks since it has a simple structure and has many nice
properties. The varietal hypercubes were proposed by Cheng and Chuang [2]
in 1994 as an attractive alternative to Qn when they were used to model the
interconnection network of a large-scale parallel processing system.

The n-dimensional varietal hypercube V Qn is the labeled graph defined
recursively as follows. V Q1 is the complete graph of two vertices labeled
with 0 and 1, respectively. Assume that V Qn−1 has been constructed. Let
V Q0

n (resp. V Q1
n) be a labeled graph obtained from V Qn−1 by inserting a zero

(resp. 1) in front of each vertex-labeling in V Qn−1. For n > 1, V Qn is obtained
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by joining vertices in V Q0
n and V Q1

n, according to the following rule: a vertex
Xn = 0xn−1xn−2xn−3 · · · x2x1 in V Q0

n and a vertex Yn = 1yn−1yn−2yn−3 · · · y2y1

in V Q1
n are adjacent in V Qn if and only if

(i) xn−1xn−2xn−3 · · · x2x1 = yn−1yn−2yn−3 · · · y2y1 if n �= 3k, or
(ii) xn−3 · · · x2x1 = yn−3 · · · y2y1 and (xn−1xn−2, yn−1yn−2) ∈ I if n = 3k,

where I = {(00, 00), (01, 01), (10, 11), (11, 10)}.
Figure 1 shows the examples of varietal hypercubes V Qn for n = 1, 2, 3, and

4.
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Fig. 1 Varietal hypercubes V Q1, V Q2, V Q3, and V Q4

Like Qn, V Qn is an n-regular graph with 2n vertices and n2n−1 edges, and
has many properties similar or superior to Qn. For example, the connectivity
and restricted connectivity of V Qn and Qn are the same (see Wang and Xu [7]),
while, all the diameter and the average distance, fault-diameter and wide-
diameter of V Qn are smaller than that of the hypercube (see Cheng and
Chuang [2], Jiang et al. [4]). Very recently, Cao et al. [1] have shown that
V Qn has better pancyclicity and panconnectivity than Qn.

An automorphism of a graph G is a permutation σ on V (G) satisfying the
adjacency-preserving condition

xy ∈ E(G) ⇐⇒ σ(x)σ(y) ∈ E(G).

Under the operation of composition, the set of all automorphisms of G forms a
group, denoted by Aut(G) and referred to as the automorphism group of G.
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A graph G is vertex-transitive if for any given two vertices x and y in G,
there is some σ ∈ Aut(G) such that y = σ(x). A graph G is called to be edge-
transitive if for any two given edges xy and uv of G, there is some σ ∈ Aut(G)
such that uv = σ(x)σ(y).

It has known that Qn is vertex-transitive and edge-transitive, the folded
hypercube FQn is vertex-transitive (see Ma and Xu [6]), the crossed hyper-
cube CQn is not vertex-transitive for n � 5 (see Kulasinghe and Bettayeb [5]).
However, transitivity of some variants of the hypercube has not been
investigated (see Xu [9]). In this paper, we consider transitivity of V Qn. Choose
three vertices X = 0101, Y = 1101, and Z = 0001 in V Q4 (see Fig. 1), the
edge XZ is contained in a cycle of length 5, but the edge XY is not. This fact
shows that there is no σ ∈ Aut(V Q4) such that XZ = σ(X)σ(Y ). However,
we can show that V Qn is vertex-transitive. This property shows that when
V Qn is used to model an interconnection network, it is high symmetrical and
obviously superior to other variants of the hypercube, such as the crossed cube
CQn.

2 Main results

An edge XnYn in V Qn, where

Xn = xnxn−1 · · · x2x1, Yn = ynyn−1 · · · y2y1,

is called the i-transversal edge if

xn · · · xi−1 = yn · · · yi−1, xi �= yi.

For convenience, we express V Qn as V Q0
n � V Q1

n, where

V Q0
n
∼= V Q1

n
∼= V Qn−1.

Then edges between V Q0
n and V Q1

n are n-transversal edges. We call the edges
of Type 2 crossing edges when

(xn−1xn−2, yn−1yn−2) ∈ {(10, 11), (11, 10)},
and call the other edges normal edges. For a given position integer n, let
In = {1, 2, . . . , n}, and let

Vn = {xn · · · x2x1 | xi ∈ {0, 1}, i ∈ In}.
Clearly, V (V Qn) = Vn. For a given Xn = xn · · · x2x1 ∈ Vn, let Xi = xi · · · x2x1.
For b ∈ {0, 1}, let b = {0, 1} \ {b}. By definitions, we immediately obtain the
following simple observation.

Observation 1 Let V Qn = V Q0
n � V Q1

n, and let XnYn be an n-transversal
edge in V Qn, where Xn ∈ V Q0

n and Yn ∈ V Q1
n. For n � 3, if

Xn = 0abxn−3 · · · x1,
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then
Yn = 1a′b′Xn−3,

where ab = a′b′ if XnYn is a normal edge, and (ab, a′b′) = (1b, 1b) if XnYn is a
crossing edge.

Lemma 1 Define a mapping

σ1 : Vn → Vn,

Xn 	→ xnXn−1.
(1)

Then σ1 ∈ Aut(V Qn).

Proof Clearly, σ1 is a permutation on Vn. We only need to show that σ1

preserves the adjacency of vertices in V Qn. To the end, let XnYn ∈ E(V Qn),
where

Xn = xnxn−1 · · · x2x1, Yn = ynyn−1 · · · y2y1.

Without loss of generality, assume xn = 0. Then σ1(Xn) = 1Xn−1 in V Q1
n.

If yn = 0, then XnYn ∈ E(V Q0
n), and so Xn−1Yn−1 ∈ E(V Qn−1). Since

σ1(Yn) = 1Yn−1 in V Q1
n, σ1(Xn)σ1(Yn) is an edge in V Q1

n, and so in V Qn.
We now assume yn = 1. Then Yn is in V Q1

n and σ1(Yn) is in V Q0
n. Thus,

XnYn is an n-transversal edge.
If XnYn is a normal edge, then Xn−1 = Yn−1, and clearly,

σ1(Xn)σ1(Yn) = YnXn ∈ E(V Qn).

If XnYn is a crossing edge, then

(xn−1xn−2, yn−1yn−2) = (1xn−2, 1xn−2).

That is,
X = 01xn−2Xn−3, Y = 11xn−2Xn−3,

and so
σ1(Xn) = 11xn−2Xn−3,

σ1(Yn) = 01xn−2Xn−3,

which shows that σ1(Xn)σ1(Yn) is a crossing edge in V Qn.
The lemma follows. �

Lemma 2 For a given φ ∈ Aut(V Qn−3), define a mapping ϕi from Vn−1 to
Vn−1 for each i = 0, 1, 2, 3 subjected to

ϕ0(Xn−1) = xn−1xn−2φ(Xn−3),

ϕ1(Xn−1) = xn−1xn−2φ(Xn−3),

ϕ2(Xn−1) = xn−1xn−2φ(Xn−3),

ϕ3(Xn−1) = xn−1xn−2φ(Xn−3).

(2)
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If n = 3k, then ϕi ∈ Aut(Qn−1) for each i = 0, 1, 2, 3.

Proof We first show ϕ1, ϕ2 ∈ Aut(Qn−1). To the end, we only need to show
that both ϕ1 and ϕ2 preserve the adjacency of vertices in V Qn−1. Let Xn−1Yn−1

∈ E(V Qn−1), where

Xn−1 = xn−1 · · · x2x1, Yn−1 = yn−1 · · · y2y1.

We want to show that

ϕi(Xn−1)ϕi(Yn−1) ∈ E(V Qn−1)

for each i = 1, 2.
Without loss of generality, assume xn−1xn−2 = 0b, where b ∈ {0, 1}. Then

ϕ1(Xn−1) = 0bφ(Xn−3)

is in V Q0
n−1 and

ϕ2(Xn−1) = 1bφ(Xn−3)

is in V Q1
n−1. Note n − 1 �= 3k since n = 3k. There are two cases according to

yn−1 = 0 or 1.
Case 1 yn−1 = 0.

Then Xn−1Yn−1 ∈ E(V Q0
n−1).

(i) If yn−2 = b, then

Xn−1Yn−1 ∈ E(V Q0b
n−1),

where V Q0b
n−1 denotes a subgraph of V Qn−1 obtained from V Qn−3 by inserting

two digits 0b in front of each vertex-labeling in V Qn−3, which is isomorphic to
V Qn−3. Thus,

Xn−3Yn−3 ∈ E(V Qn−3).

Since φ ∈ Aut(V Qn−3), we have

φ(Xn−3)φ(Yn−3) ∈ E(V Qn−3).

Thus, two vertices 0bφ(Xn−3) and 0bφ(Yn−3) are adjacent in V Q0b
n−1, and so

two vertices

ϕ1(Xn−1) = 0bφ(Xn−3), ϕ1(Yn−1) = 0bφ(Yn−3)

(resp. ϕ2(Xn−1) = 1bφ(Xn−3), ϕ2(Yn−1) = 1bφ(Yn−3))

are adjacent in V Q0b
n−1 (resp. V Q1b

n−1), that is,

ϕi(Xn−1)ϕi(Yn−1) ∈ E(V Qn−1)

for each i = 1, 2.
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(ii) If yn−2 = b, then (bXn−3)(bYn−3) is an (n− 2)-transversal normal edge
in V Q0

n−1 since n − 2 �= 3k. Thus, Xn−3 = Yn−3, and so φ(Xn−3) = φ(Yn−3).
Since

ϕ1(Xn−1) = 0bφ(Xn−3), ϕ1(Yn−1) = 0bφ(Xn−3)

(resp. ϕ2(Xn−1) = 1bφ(Xn−3), ϕ2(Yn−1) = 1bφ(Xn−3)),

we know that ϕ1(Xn−1)ϕ1(Yn−1) (resp. ϕ2(Xn−1)ϕ2(Yn−1)) is also an (n − 2)-
transversal normal edge in V Q0

n−1 (resp. V Q1
n−1).

Case 2 yn−1 = 1.
Then Xn−1Yn−1 is an (n−1)-transversal normal edge in V Qn−1 since n−1 �=

3k, and so Xn−2 = Yn−2. Since φ(Xn−3) = φ(Yn−3), we have

ϕ1(Xn−1) = 0bφ(Xn−3), ϕ1(Yn−1) = 1bφ(Xn−3)

(resp. ϕ2(Xn−1) = 1bφ(Xn−3), ϕ2(Yn−1) = 0bφ(Xn−3)),

which implies that ϕi(Xn−1)ϕi(Yn−1) is an (n − 1)-transversal edge in V Qn−1

for each i = 1, 2.
Thus, ϕi ∈ Aut(Qn−1) for each i = 1, 2. Since ϕ3 = ϕ1ϕ2 and ϕ0 = ϕ2

3, we
have ϕ3, ϕ0 ∈ Aut(Qn−1) immediately. The lemma follows. �
Lemma 3 For a given ϕ ∈ Aut(V Qn−1), define a mapping

σ0 : Vn → Vn,

Xn 	→ xnϕ(Xn−1).
(3)

When n �= 3k, σ0 ∈ Aut(V Qn) for any ϕ ∈ Aut(V Qn−1). When n = 3k, if

ϕ = ϕ0 or ϕ1 or

ϕ = ϕ2 when xn = b and ϕ = ϕ3 when xn = b, b ∈ {0, 1}, (4)

where ϕi is defined in (2) for each i = 0, 1, 2, 3, then σ0 ∈ Aut(V Qn).

Proof It is easy to see that σ0 is a permutation on Vn. We show σ0 ∈ Aut(V Qn).
To the end, we only need to prove that σ0 preserves the adjacency of vertices
in V Qn. Let

V Qn = V Q0
n � V Q1

n,

and let
Xn = xnxn−1 · · · x2x1, Yn = ynyn−1 · · · y2y1

be any two adjacent vertices in V Qn. Without loss of generality, let xn = 0.
Then Xn is in V Q0

n. There are two cases according to yn = 0 or 1.
Case 1 yn = 0.

Since both Xn and Yn are in V Q0
n, for any ϕ ∈ Aut(V Qn−1), by (3), we

have
σ0(Xn) = 0ϕ(Xn−1), σ0(Yn) = 0ϕ(Yn−1).
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Since XnYn ∈ E(V Q0
n), we have

Xn−1Yn−1 ∈ E(V Qn−1),

and so
ϕ(Xn−1)ϕ(Yn−1) ∈ E(V Qn−1),

and hence,
ϕ(Xn)ϕ(Yn) ∈ E(V Q0

n) ⊂ E(V Qn).

Case 2 yn = 1.
In this case, Yn is in V Q1

n and XnYn is an n-transversal edge in V Qn, which
is either a normal edge or a crossing edge.

(i) XnYn is a crossing edge.
In this subcase, n = 3k, Xn−3 = Yn−3, and

Xn = 01xn−2Xn−3, Yn = 11xn−2Xn−3

by Observation 1.
Since

Xn−1 = 1xn−2Xn−3, Yn−1 = 1xn−2Xn−3,

we know that Xn−1Yn−1 is an (n− 2)-dimensional normal edge in V Q1
n−1 since

n − 1 �= 3k. Thus, for any ϕ ∈ Aut(V Qn−1), ϕ(Xn−1)ϕ(Yn−1) is an (n − 2)-
dimensional normal edge in V Q1

n−1. Without loss of generality, let

ϕ(Xn−1) = 10Un−3.

Then
ϕ(Yn−1) = 11Un−3,

and so
σ0(Xn) = xnϕ(Xn−1) = 010Un−3,

σ0(Yn) = ynϕ(Yn−1) = 111Un−3.

Thus, σ0(Xn)σ0(Yn) is an n-dimensional crossing edge in V Qn.

(ii) XnYn is a normal edge.
In this subcase, Xn−1 = Yn−1, and so

ϕ(Xn−1) = ϕ(Yn−1)

for any ϕ ∈ Aut(V Qn−1). By (3), we have

σ0(Xn) = 0ϕ(Xn−1), σ0(Yn) = 1ϕ(Yn−1).

If n �= 3k, then σ0(Xn)σ0(Yn) ∈ E(V Qn) is a normal edge. Assume now
n = 3k. Then

{xn−1xn−2, yn−1yn−2) ∈ {(00, 00), (01, 01)}.
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If ϕ = ϕ0 or ϕ1, then{
σ0(Xn−1) = 0ϕ0(Xn−1) = 0xn−1xn−2φ(Xn−3),

σ0(Yn−1) = 1ϕ0(Yn−1) = 1xn−1xn−2φ(Xn−3)

or {
σ0(Xn) = 0ϕ1(Xn−1) = 0xn−1xn−2φ(Xn−3),

σ0(Yn) = 1ϕ1(Yn−1) = 1xn−1xn−2φ(Xn−3).

Thus, σ0(Xn−1)σ0(Yn−1) is an n-dimensional normal edge in V Qn.
If ϕ = ϕ2 when xn = 1 and ϕ = ϕ3 when xn = 0, then{

σ0(Xn) = 0ϕ3(Xn−1) = 0xn−1xn−2φ(Xn−3),

σ0(Yn) = 1ϕ2(Yn−1) = 1xn−1xn−2φ(Xn−3).

If ϕ = ϕ2 when xn = 0 and ϕ = ϕ3 when xn = 1, then{
σ0(Xn) = 0ϕ2(Xn−1) = 0xn−1xn−2φ(Xn−3),

σ0(Yn) = 1ϕ3(Yn−1) = 1xn−1xn−2φ(Xn−3).

Since
{xn−1xn−2, xn−1xn−2) ∈ {(11, 10), (10, 11)},

we know that σ0(Xn) and σ0(Yn) are linked by an n-dimensional crossing edge
in V Qn.

Thus, we have proved that σ0 preserves the adjacency of vertices in V Qn,
and so σ0 ∈ Aut(V Qn). The lemma follows. �
Theorem 1 V Qn is vertex-transitive for any n � 1.

Proof We proceed by induction on n � 1. The conclusion is true for each
n = 1, 2, clearly. Since V Q3 is isomorphic to a Cayley graph C(Z8, {1, 4, 7})
(see Huang and Xu [3]), the conclusion is also true for n = 3.

Assume the induction hypothesis for any positive integer fewer than n with
n � 4, that is, for any i with 1 � i � n − 1, V Qi is vertex-transitive.

Let V Qn = V Q0
n�V Q1

n be an n-dimensional varietal hypercube with n � 4.
To prove that V Qn is vertex-transitive, we need to prove that for any two
vertices Xn and Yn in V Qn, there is some σ ∈ Aut(V Qn) such that σ(Xn) = Yn.
To the end, let

Xn = xnxn−1 · · · x2x1, Yn = ynyn−1 · · · y2y1

be any two vertices in V Qn. By the induction hypothesis, there is some ϕ ∈
Aut(V Qn−1) such that ϕ(Xn−1) = Yn−1.

We now construct a σ ∈ Aut(V Qn) with σ(Xn) = Yn. Without loss of
generality, let xn = 0. Then Xn is in V Q0

n. There are two cases.
Case 1 yn = 0.
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In this case, both Xn and Yn are in V Q0
n. Assume first n �= 3k. By the

induction hypothesis, there is some ϕ ∈ Aut(V Qn−1) such that ϕ(Xn−1) =
Yn−1. Let σ = σ0, where σ0 is defined in (3). By Lemma 3, σ ∈ Aut(V Qn), and

σ(Xn) = 0ϕ(Xn−1) = 0Yn−1 = Yn.

Assume n = 3k below. Since Yn−1 is one of the following four forms:

Yn−1 = xn−1xn−2Yn−3,

Yn−1 = xn−1xn−2Yn−3,

Yn−1 = xn−1xn−2Yn−3,

Yn−1 = xn−1xn−2Yn−3,

by the induction hypothesis, there is some φ ∈ Aut(V Qn−3) such that

φ(Xn−3) = Yn−3.

Let σ = σ0, where σ0 ∈ Aut(V Qn) is defined in (3). Then

σ0(Xn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xnϕ0(Xn−1) = 0xn−1xn−2φ(Xn−3) = Yn, Yn−1 = xn−1xn−2Yn−3,

xnϕ1(Xn−1) = 0xn−1xn−2φ(Xn−3) = Yn, Yn−1 = xn−1xn−2Yn−3,

0ϕ2(Xn−1) = 0xn−1xn−2φ(Xn−3) = Yn, Yn−1 = xn−1xn−2Yn−3,

0ϕ3(Xn−1) = 0xn−1xn−2φ(Xn−3) = Yn, Yn−1 = xn−1xn−2Yn−3.

Case 2 yn = 1.
In this case, Yn is in V Q1

n. Consider σ1 and σ0, defined in (1) and (3),
respectively. When Xn−1 = Yn−1, let σ = σ0. Then σ ∈ Aut(V Qn), and

σ(Xn) = σ0(Xn) = 1Xn−1 = Yn.

When Xn−1 �= Yn−1, let σ = σ1σ0. Then σ = σ1σ0 ∈ Aut(V Qn), and

σ(Xn) = σ1σ0(Xn) = σ1(xnϕ(Xn−1)) = σ1(0Yn−1) = 1Yn−1 = Yn.

Thus, we have proved that for any two vertices Xn and Yn in V Qn, there is
a σ ∈ Aut(V Qn) such that σ(Xn) = Yn, and so V Qn is vertex-transitive. The
theorem follows. �

Acknowledgements The authors would like to express their gratitude to the anonymous

referees for their kind comments and valuable suggestions on the original manuscript. This

work was supported in part by the National Natural Science Foundation of China (Grant

No. 61272008).



1410 Li XIAO et al.

References

1. Cao J, Xiao L, Xu J -M. Cycles and paths embedded in varietal hypercubes. J Univ
Sci Technol China, 2014, 44(9): 782–789

2. Cheng S -Y, Chuang J -H. Varietal hypercube—a new interconnection networks
topology for large scale multicomputer. Proc Internat Conf Parallel Distributed
Systems, 1994: 703–708

3. Huang J, Xu J -M. Multiply-twisted hypercube with four or less dimensions is vertex-
transitive. Chinese Quart J Math, 2005, 20(4): 430–434

4. Jiang M, Hu X -Y, Li Q -L. Fault-tolerant diameter and width diameter of varietal
hypercubes. Appl Math J Chinese Univ Ser A, 2010, 25(3): 372–378 (in Chinese)

5. Kulasinghe P, Bettayeb S. Multiply-twisted hypercube with five or more dimensions is
not vertex-transitive. Inform Process Lett, 1995, 53: 33–36

6. Ma M -J, Xu J -M. Algebraic properties and panconnectivity of folded hypercubes. Ars
Combinatoria, 2010, 95: 179–186

7. Wang J -W, Xu J -M. Reliability analysis of varietal hypercube networks. J Univ Sci
Technol China, 2009, 39(12): 1248–1252

8. Xu J -M. Theory and Application of Graphs. Dordrecht/Boston/London: Kluwer
Academic Publishers, 2003

9. Xu J -M. Combinatorial Theory in Networks. Beijing: Science Press, 2013


