The p-domination number of complete multipartite graphs

You Lu
Department of Applied Mathematics
Northwestern Polytechnical University
Xi'an Shaanxi 710072, P. R. China
luyou@nwpu.edu.cn
Jun-Ming Xu
Department of Mathematics
University of Science and Technology of China
Wentsun Wu Key Laboratory of CAS
Hefei, Anhui 230026, P. R. China
xujm@ustc.edu.cn

Received 24 November 2012
Accepted 9 September 2014
Published 26 September 2014

Abstract

Let $G=(V, E)$ be a graph and p be a positive integer. A subset $S \subseteq V$ is called a p-dominating set of G if every vertex not in S has at least p neighbors in S. The p domination number is the minimum cardinality of a p-dominating set in G. This paper establishes an exact formula of the p-domination number of all complete multipartite graphs for arbitrary positive integer p.

Keywords: Combinatorics; p-domination set; p-domination number; complete multipartite graph.

Mathematics Subject Classification 2010: 05C69

1. Introduction

For notation and graph-theoretical terminology not defined here, we refer the reader to [3]. Let $G=(V, E)$ be a finite simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The neighborhood and degree of a vertex $v \in V$ are $N_{G}(v)=$ $\{u \in V: u v \in E\}$ and $d_{G}(v)=\left|N_{G}(v)\right|$, respectively. A dominating set of G is a subset $S \subseteq V$ such that every vertex of $V-S$ has at least one neighbor in S. The domination number $\gamma(G)$ is the minimum cardinality of all dominating sets in G. The domination is a classical concept in graph theory. The early literature on the domination with related topics is, in detail, surveyed in the two outstanding books by Haynes, Hedetniemi and Slater [10, 11].

Fink and Jacobson [8, 9] generalized the concept of dominating set. Let p be a positive integer. A subset $D \subseteq V$ is a p-dominating set of G if $\left|N_{G}(v) \cap D\right| \geq p$ for each $v \in V-D$. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality of all p-dominating sets in G. A p-dominating set D with $|D|=\gamma_{p}(G)$ is called a γ_{p}-set of G (for short, $\gamma_{p}(G)$-set). For $S, T \subseteq V, S p$-dominate T in G if $\left|N_{G}(v) \cap S\right| \geq p$ for each $v \in T-S$. Clearly, the 1-dominating set is the well-known dominating set in a graph G, and so $\gamma_{1}(G)=\gamma(G)$. By the definition of p-dominating set, the following observation is obvious.

Observation 1. Every p-dominating set contains all the vertices with degree at most $p-1$.

The determination of the p-domination number for graphs seems to be a difficult problem. In 1989, Jacobson and Peters [12] showed that the problem is NP-complete in general graphs. In 1994, Bean, Henning and Swart [1] proved the problem remains NP-complete in bipartite or chordal graphs. These results show that the following study is of important significance.

- Find the lower and upper bounds of γ_{p} with difference as small as possible.
- Determine exact values of γ_{p} for some graphs, specially well-known networks.

Many works focused on the bounds of γ_{p} for general graphs or some special classes of graphs (see, for example, $[2,4,6,7,13]$). Very recently, Chellali et al. [5] have given an excellent survey on this topics. Until now, however, no research has been done on calculating the exact values of γ_{p} even for some particular graphs except [14]. In [14], the author obtained the exact 2-domination number of the toroidal grid graphs $C_{m} \square C_{n}$ in some cases.

In this paper, we give an exact formula of γ_{p} for arbitrary positive integer p and the complete t-partite graph $K_{n_{1}, n_{2}, \ldots, n_{t}}$.

Throughout this paper, the graph G always denotes a complete t-partite graph $K_{n_{1}, n_{2}, \ldots, n_{t}}$ with t-partition $\left\{V_{1}, V_{2}, \ldots, V_{t}\right\}, N_{t}=\{1,2, \ldots, t\}$ and

$$
f(I)=\sum_{i \in I} n_{i} \quad \text { for } I \subseteq N_{t}
$$

Note that if $t=1$ or $f\left(N_{t}\right) \leq p$ then $\gamma_{p}(G)=|V(G)|$ by Observation 1. Thus, we always assume $t \geq 2$ and $f\left(N_{t}\right)>p$.

2. Optimal γ_{p}-Sets of G

For any $D \subseteq V(G)$, define

$$
D_{i}=V_{i} \cap D \quad \text { for each } i \in N_{t} \quad \text { and } \quad I_{D}=\left\{i \in N_{t}:\left|D_{i}\right|=\left|V_{i}\right|\right\} .
$$

Lemma 2. If $t \geq 2$ and $f\left(N_{t}\right)>p$, then

$$
\gamma_{p}(G) \leq \min \left\{f(I): I \subseteq N_{t} \text { with } f(I) \geq p\right\}
$$

with equality if G has a γ_{p}-set D with $f\left(I_{D}\right) \geq p$.

Proof. Let $I \subseteq N_{t}$ with $f(I) \geq p$ and $S=\bigcup_{i \in I} V_{i}$. Then

$$
|S|=\sum_{i \in I}\left|V_{i}\right|=\sum_{i \in I} n_{i}=f(I) \geq p
$$

Since G is a complete t-partite graph, for any $v \in V(G)-S$, we have $S \subseteq N_{G}(v)$ and so $\left|N_{G}(v) \cap S\right|=|S| \geq p$. This implies that S is a p-dominating set of G, and so

$$
\gamma_{p}(G) \leq \min \left\{f(I): I \subseteq N_{t} \text { with } f(I) \geq p\right\}
$$

On the other hand, let D be a $\gamma_{p}(G)$-set with $f\left(I_{D}\right) \geq p$. Then

$$
\begin{aligned}
\gamma_{p}(G)=|D| & \geq \sum_{i \in I_{D}}\left|V_{i}\right|=\sum_{i \in I_{D}} n_{i}=f\left(I_{D}\right) \\
& \geq \min \left\{f(I): I \subseteq N_{t} \text { with } f(I) \geq p\right\}
\end{aligned}
$$

The lemma follows.

Lemma 3. If $t \geq 2$ and $f\left(N_{t}\right)>p$, then $\left|I_{D}\right| \leq t-2$ for any $\gamma_{p}(G)$-set D with $f\left(I_{D}\right)<p$.

Proof. Clearly $\left|I_{D}\right| \leq t-1$ by $f\left(N_{t}\right)>p>f\left(I_{D}\right)$. If $\left|I_{D}\right|=t-1$, then there is a unique index $i_{0} \in N_{t}$ such that $N_{t}-I_{D}=\left\{i_{0}\right\}$. By the definition of I_{D}, $V(G)-V_{i_{0}} \subseteq D$ and there exists a vertex x in $V_{i_{0}}$ but not in D. Since D is a $\gamma_{p}(G)$-set and $f\left(I_{D}\right)<p$, we can deduce a contradiction as follows:

$$
p \leq\left|N_{G}(x) \cap D\right|=\left|V(G)-V_{i_{0}}\right|=\sum_{i \in I_{D}} n_{i}=f\left(I_{D}\right)<p .
$$

Hence $\left|I_{D}\right| \leq t-2$.
For a $\gamma_{p}(G)$-set D with $\left|I_{D}\right|<t,|D|=f\left(I_{D}\right)+\sum_{i \in N_{t}-I_{D}}\left|D_{i}\right|$. By Lemma 3, the value of $\left|\left|D_{i}\right|-\frac{|D|-f\left(I_{D}\right)}{t-\left|I_{D}\right|}\right|$ is well-defined for any $i \in N_{t}-I_{D}$ if $t \geq 2$ and $f\left(N_{t}\right)>p$. Define

$$
\mu(D)=\sum_{i \in N-I_{D}}| | D_{i}\left|-\frac{|D|-f\left(I_{D}\right)}{t-\left|I_{D}\right|}\right| .
$$

Definition 2.1. A $\gamma_{p}(G)$-set D is called to be optimal if the following conditions hold: (1) $f\left(I_{D}\right)<p$; (2) $\left|I_{D}\right| \geq\left|I_{S}\right|$ for any $\gamma_{p}(G)$-set S; (3) $\mu(D) \leq \mu(S)$ for any $\gamma_{p}(G)$-set S with $I_{D}=I_{S}$.

By the definition, if each $\gamma_{p}(G)$-set D has $f\left(I_{D}\right)<p$, then there must be at least one optimal γ_{p}-set in G. To obtain the upper bound of $\gamma_{p}(G)$, by Lemma 2, we only need to consider the case that every $\gamma_{p}(G)$-set D satisfies $f\left(I_{D}\right)<p$. We investigate properties of optimal γ_{p}-sets starting with the following critical lemma.

Lemma 4. $\| D_{i}\left|-\left|D_{j}\right|\right| \leq 1$ for any optimal $\gamma_{p}(G)$-set D and $i, j \in N_{t}-I_{D}$.

Proof. By Lemma $3, t-\left|I_{D}\right| \geq 2$ and so $N_{t}-I_{D} \neq \emptyset$. Let

$$
\left|D_{s}\right|=\max \left\{\left|D_{i}\right|: i \in N_{t}-I_{D}\right\} \quad \text { and } \quad\left|D_{w}\right|=\min \left\{\left|D_{i}\right|: i \in N_{t}-I_{D}\right\} .
$$

Suppose, to be contrary, that $\left|D_{s}\right|-\left|D_{w}\right| \geq 2$. Clearly, $\left|D_{s}\right| \geq 2$. Since $w \in$ $N_{t}-I_{D}, D_{w} \nsubseteq V_{w}$. Hence there are $x \in D_{s}$ and $y \in V_{w}-D_{w}$. Let

$$
D^{*}=(D-\{x\}) \cup\{y\} .
$$

Then

$$
I_{D^{*}}= \begin{cases}I_{D} & \text { if }\left|D_{w}\right|<\left|V_{w}\right|-1 \tag{2.1}\\ I_{D} \cup\{w\} & \text { if }\left|D_{w}\right|=\left|V_{w}\right|-1\end{cases}
$$

Thus $I_{D} \subseteq I_{D^{*}}$. We first claim that D^{*} is a $\gamma_{p}(G)$-set. In fact, it is easy to see that D^{*} can p-dominate $V(G)-V_{w}$. By the choice of $s \in N_{t}-I_{D}, V_{s}-D_{s} \neq \emptyset$. Since $D-D_{s}$ can p-dominate $V_{s}-D_{s}$, we have $|D|-\left|D_{s}\right| \geq p$. It follows that, for any vertex $z \in V_{w}-D^{*}$,

$$
\left|N_{G}(z) \cap D^{*}\right|=\left|D^{*}\right|-\left|D_{w}^{*}\right|=|D|-\left(\left|D_{w}\right|+1\right) \geq|D|-\left|D_{s}\right|+1 \geq p+1,
$$

which means that D^{*} can p-dominate z and, hence, D^{*} is a $\gamma_{p}(G)$-set.
By the second condition of the optimality of D, we have $\left|I_{D}\right| \geq\left|I_{D^{*}}\right|$. Thus $I_{D}=I_{D}^{*}$ by $I_{D} \subseteq I_{D^{*}}$. Combined with $|D|=\left|D^{*}\right|=\gamma_{p}(G)$, we can obtain that

$$
\frac{|D|-f\left(I_{D}\right)}{t-\left|I_{D}\right|}=\frac{\left|D^{*}\right|-f\left(I_{D^{*}}\right)}{t-\left|I_{D^{*}}\right|}
$$

For convenience, we use the notation λ to represent them.
We now show $\mu\left(D^{*}\right)-\mu(D)<0$. Since $|D|=\gamma_{p}(G)=f\left(I_{D}\right)+\sum_{i \in N_{t}-I_{D}}\left|D_{i}\right|$,

$$
\lambda=\frac{1}{t-\left|I_{D}\right|} \sum_{i \in N_{t}-I_{D}}\left|D_{i}\right| .
$$

By $\left|D_{s}\right|-\left|D_{w}\right| \geq 2$ and the choices of s and w, we have that

$$
\left|D_{w}\right|+1 \leq\left|D_{s}\right|-1 \quad \text { and } \quad\left|D_{w}\right|<\lambda<\left|D_{s}\right| .
$$

It follows that

$$
\begin{aligned}
\mu\left(D^{*}\right)-\mu(D) & =\sum_{i \in N_{t}-I_{D^{*}}}\left|\left(\left|D_{i}^{*}\right|-\lambda\right)\right|-\sum_{i \in N_{t}-I_{D}}\left|\left(\left|D_{i}\right|-\lambda\right)\right| \\
& =\left|\left(\left|D_{w}^{*}\right|-\lambda\right)\right|+\left|\left(\left|D_{s}^{*}\right|-\lambda\right)\right|-\left(\lambda-\left|D_{w}\right|\right)-\left(\left|D_{s}\right|-\lambda\right) \\
& =\left|\left(\left|D_{w}\right|+1-\lambda\right)\right|+\left|\left(\left|D_{s}\right|-1-\lambda\right)\right|-\left(\left|D_{s}\right|-\left|D_{w}\right|\right) \\
& = \begin{cases}2\left(\left|D_{w}\right|-\lambda\right) & \text { if } \lambda<\left|D_{w}\right|+1, \\
-2 & \text { if }\left|D_{w}\right|+1 \leq \lambda \leq\left|D_{s}\right|-1, \\
2\left(\lambda-\left|D_{s}\right|\right) & \text { if } \lambda>\left|D_{s}\right|-1\end{cases} \\
& <0 .
\end{aligned}
$$

This contradicts with the third condition of the optimality of D, and so $\left|D_{s}\right|-$ $\left|D_{w}\right| \leq 1$.

The lemma follows.

For an optimal $\gamma_{p}(G)$-set $D, t-\left|I_{D}\right| \geq 2$ by Lemma 3 , and so $N_{t}-I_{D} \neq \emptyset$. Thus we denote

$$
\begin{equation*}
k=\max \left\{\left|D_{i}\right|: i \in N_{t}-I_{D}\right\} \quad \text { and } \quad \ell=\min \left\{\left|D_{i}\right|: i \in N_{t}-I_{D}\right\} . \tag{2.2}
\end{equation*}
$$

If $k \neq \ell$, then $k=\ell+1$ by Lemma 4 . Define

$$
\begin{align*}
& A= \begin{cases}\left\{i \in N_{t}-I_{D}:\left|D_{i}\right|=\ell+1\right\} & \text { if } k=\ell+1 ; \\
\emptyset & \text { if } k=\ell,\end{cases} \tag{2.3}\\
& B=\left\{i \in N_{t}-I_{D}:\left|D_{i}\right|=\ell\right\} .
\end{align*}
$$

Then $\{A, B\}$ is a partition of $N_{t}-I_{D}$ and $B \neq \emptyset$.
Lemma 5. $|A|=0$ or $2 \leq|A| \leq t-\left|I_{D}\right|-1$ for any optimal $\gamma_{p}(G)$-set D.

Proof. Since $\{A, B\}$ is a partition of $N_{t}-I_{D}$ and $B \neq \emptyset$, it is obvious that $|A| \leq$ $t-\left|I_{D}\right|-1$. We now show $|A| \neq 1$. Assume to the contrary that $|A|=1$.

Let $A=\left\{i_{1}\right\}$. Then $\left|D_{i_{1}}\right|=\ell+1 \geq 1$ and $V_{i_{1}}-D_{i_{1}} \neq \emptyset$ since $i_{1} \in N_{t}-I_{D}$. Since $D-D_{i_{1}} p$-dominates $V_{i_{1}}-D_{i_{1}}$, we have $|D|-\left|D_{i_{1}}\right| \geq p$. Take any vertex $x \in D_{i_{1}}$ and let

$$
D^{\prime}=D-\{x\} .
$$

Consider any vertex y in $V(G)-D^{\prime}$. If $y \in V_{i_{1}}$, then

$$
\left|N_{G}(y) \cap D^{\prime}\right|=\left|D^{\prime}\right|-\left|D_{i_{1}}^{\prime}\right|=(|D|-1)-\left(\left|D_{i_{1}}\right|-1\right)\left|=|D|-\left|D_{i_{1}}\right| \geq p\right.
$$

If $y \notin V_{i_{1}}$, then there exists some $j \in B$ such that $y \in V_{j}$. Noting $\left|D_{j}\right|=\left|D_{i_{1}}\right|-1$, we have that

$$
\left|N_{G}(y) \cap D^{\prime}\right|=\left|D^{\prime}\right|-\left|D_{j}^{\prime}\right|=(|D|-1)-\left|D_{j}\right|=|D|-\left|D_{i_{1}}\right| \geq p
$$

Hence D^{\prime} is a p-dominating set of G with $\left|D^{\prime}\right|=|D|-1=\gamma_{p}(G)-1$, a contradiction. The lemma follows.

Lemma 6. $\gamma_{p}(G) \geq p+\ell+\delta_{A}$ for any optimal $\gamma_{p}(G)$-set D, where ℓ and A are defined in (2.2) and (2.3), respectively, δ_{A} is the characteristic function on A, i.e., $\delta_{A}=0$ if $|A|=0$ and $\delta_{A}=1$ otherwise.

Proof. Note that $N_{t}-I_{D} \neq \emptyset$ and $V_{i}-D_{i} \neq \emptyset$ for $i \in N_{t}-I_{D}$. To p-dominate $V_{i}-D_{i},\left|D-D_{i}\right|=|D|-\left|D_{i}\right| \geq p$ for $i \in N_{t}-I_{D}$.

If $|A|=0$, then $\delta_{A}=0$ and $N_{t}-I_{D}=B$. For any $i \in B,\left|D_{i}\right|=\ell$ by (2.3), and so $\gamma_{p}(G)=|D| \geq p+\left|D_{i}\right|=p+\ell=p+\ell+\delta_{A}$.

If $|A| \neq 0$, then $\delta_{A}=1$. For $i \in A,\left|D_{i}\right|=\ell+1$ by (2.3). Thus $\gamma_{p}(G)=|D| \geq$ $p+\left|D_{i}\right|=p+\ell+1=p+\ell+\delta_{A}$.

The lemma follows.
Lemma 7. $\left\lceil\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right\rceil \leq n_{i}$ for any optimal $\gamma_{p}(G)$-set D and $i \in N_{t}-I_{D}$.
Proof. Let $N-I_{D}=A \cup B$ as defined in (2.3). Then $\left|D_{i}\right|=\ell+1$ for $i \in A$ and $\left|D_{j}\right|=\ell$ for $j \in B$. Note that $n_{i}=\left|V_{i}\right| \geq\left|D_{i}\right|+1 \geq \ell+1$ for any $i \in N_{t}-I_{D}$. It follows that

$$
\begin{aligned}
|D| & =f\left(I_{D}\right)+\sum_{i \in A}\left|D_{i}\right|+\sum_{i \in B}\left|D_{i}\right| \\
& =f\left(I_{D}\right)+|A|(\ell+1)+\left(t-\left|I_{D}\right|-|A|\right) \ell \\
& =f\left(I_{D}\right)+\left(t-\left|I_{D}\right|-1\right) \ell+\ell+|A|,
\end{aligned}
$$

from which we have

$$
\begin{aligned}
{\left[\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right] } & =\ell+\left\lceil\frac{|A|-\delta_{A}}{t-\left|I_{D}\right|-1}-\frac{|D|-\left(p+\ell+\delta_{A}\right)}{t-\left|I_{D}\right|-1}\right] \\
& \leq \ell+\left\lceil\frac{|A|-\delta_{A}}{t-\left|I_{D}\right|-1}\right] \quad(\text { by Lemma } 6) \\
& \leq \ell+\delta_{A} \quad(\text { by Lemma } 5) \\
& \leq \ell+1 \\
& \leq n_{i} \quad \text { for any } i \in N_{t}-I_{D}
\end{aligned}
$$

as desired, and so the lemma follows.

3. Main Results

In this section, we will give an exact formula of γ_{p} for a complete t-partite graph $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$. By Lemma 2, if G contains a γ_{p}-set D with $f\left(I_{D}\right) \geq p$, then

$$
\gamma_{p}(G)=\min \left\{f(I): I \subseteq N_{t} \text { with } f(I) \geq p\right\}
$$

Thus, we only need to consider the case of $f\left(I_{D}\right)<p$ for any $\gamma_{p}(G)$-set D. In this case, G must have optimal $\gamma_{p}(G)$-sets. Moreover, for any optimal $\gamma_{p}(G)$-set D, $\left|I_{D}\right| \leq t-2$ by Lemma 3, and $\left\lceil\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right\rceil \leq n_{i}$ for any $i \in N_{t}-I_{D}$ by Lemma 7 . Thus, the following family \mathscr{I}_{p} of the subsets of N_{t} is well-defined.

$$
\begin{array}{r}
\mathscr{I}_{p}=\left\{I \subset N_{t}:|I| \leq t-2, f(I)<p \text { and }\left[\frac{p-f(I)}{t-|I|-1}\right] \leq n_{i}\right. \\
\left.\quad \text { for each } i \in N_{t}-I\right\} .
\end{array}
$$

Some examples of \mathscr{I}_{p} for $G=K_{2,2,10,17}$ can be found in Table 1.

Table 1. Examples of $s_{1}, \mathscr{I}_{p}, s_{2}$ and $\gamma_{p}(G)$ for $G=K_{2,2,10,17}$, where $N_{4}=\{1,2,3,4\}$.

p	s_{1}	\mathscr{I}_{p}	s_{2}	$\gamma_{p}(G)$
1	2	$\{\emptyset\}$	1	$s_{1}=p+s_{2}=2$
2	2	$\{\emptyset\}$	1	$s_{1}=2$
3	4	$\{\emptyset,\{1\},\{2\}\}$	1	$s_{1}=p+s_{2}=4$
4	4	$\{\emptyset,\{1\},\{2\}\}$	1	$s_{1}=4$
5	10	$\{\emptyset,\{1\},\{2\},\{1,2\}\}$	1	$p+s_{2}=6$
6	10	$\{\emptyset,\{1\},\{2\},\{1,2\}\}$	2	$p+s_{2}=8$
7	10	$\{\{1,2\}\}$	3	$s_{1}=p+s_{2}=10$
9	10	$\{\{1,2\}\}$	5	$s_{1}=10$
11	12	$\{\{1\},\{2\},\{3\},\{1,2\}\}$	1	$s_{1}=p+s_{2}=12$
13	14	$\{\{3\},\{1,2\},\{1,3\},\{2,3\}\}$	1	$s_{1}=p+s_{2}=14$
14	17	$\{\{3\},\{1,2\},\{1,3\},\{2,3\}\}$	2	$p+s_{2}=16$
15	17	\emptyset	∞	$s_{1}=17$

Let

$$
\begin{array}{ll}
s_{1}=\min \left\{f(I): I \subseteq N_{t} \text { with } f(I) \geq p\right\} & \text { and } \\
s_{2}= \begin{cases}\min \left\{\left[\frac{p-f(I)}{t-|I|-1}\right]: I \in \mathscr{I}_{p}\right\} & \text { if } \mathscr{I}_{p} \neq \emptyset \\
\infty & \text { if } \mathscr{I}_{p}=\emptyset\end{cases}
\end{array}
$$

Lemma 8. Let $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ with $t \geq 2$ and $f\left(N_{t}\right)>p$. Then $\gamma_{p}(G) \leq p+s_{2}$.
Proof. If $\mathscr{I}_{p}=\emptyset$, then $s_{2}=\infty$ and so $\gamma_{p}(G)<p+s_{2}$. Assume that $\mathscr{I}_{p} \neq \emptyset$ below. Let $I \in \mathscr{I}_{p}$ (without loss of generality, say $I=\{1, \ldots, k\}$) with

$$
k \leq t-2, \quad f(I)<p \quad \text { and } \quad s_{2}=\left\lceil\frac{p-f(I)}{t-k-1}\right\rceil \leq n_{i} \quad \text { for each } i \in\{k+1, \ldots, t\}
$$

Since $t-k-1 \geq 1$ and $p-f(I)>0$, there are two integers q and r with $q \geq 0$ and $0 \leq r \leq t-k-2$ such that

$$
p-f(I)=q(t-k-1)+r .
$$

Then for each $i \in\{k+1, \ldots, t\}$,

$$
n_{i} \geq s_{2}= \begin{cases}q+1 & \text { if } r \neq 0 \tag{3.1}\\ q & \text { if } r=0\end{cases}
$$

Thus, we can choose $D \subseteq V(G)$ such that

$$
D=\left(V_{1} \cup \cdots \cup V_{k}\right) \cup\left(V_{k+1}^{\prime} \cup \cdots \cup V_{k+r}^{\prime}\right) \cup\left(V_{k+r+1}^{\prime} \cup \cdots \cup V_{t-1}^{\prime}\right) \cup V_{t}^{\prime},
$$

where, for each $i \in\{k+1, \ldots, t\}, V_{i}^{\prime}$ is a subset of V_{i} satisfying

$$
\left|V_{i}^{\prime}\right|= \begin{cases}q+1 & \text { if } k+1 \leq i \leq k+r \tag{3.2}\\ q & \text { if } k+r+1 \leq i \leq t-1 \\ s_{2} & \text { if } i=t\end{cases}
$$

Thus,

$$
\begin{aligned}
|D| & =\sum_{i=1}^{k}\left|V_{i}\right|+\sum_{i=k+1}^{k+r}\left|V_{i}^{\prime}\right|+\sum_{j=k+r+1}^{t-1}\left|V_{j}^{\prime}\right|+\left|V_{t}^{\prime}\right| \\
& =\left(n_{1}+\cdots+n_{k}\right)+r(q+1)+(t-k-r-1) q+s_{2} \\
& =(f(I)+q(t-k-1)+r)+s_{2} \\
& =p+s_{2} .
\end{aligned}
$$

To complete the proof, we only need to show that D is a p-dominating set of G. To this aim, let v be any vertex in $V(G)-D$. By the choice of D, there is some $i_{0} \in\{k+1, \ldots, t\}$ such that $v \in V_{i_{0}}-V_{i_{0}}^{\prime}$. Since G is a complete t-partite graph,

$$
\left|N_{G}(v) \cap D\right|=|D|-\left|V_{i_{0}}^{\prime}\right|=p+s_{2}-\left|V_{i_{0}}^{\prime}\right| .
$$

By (3.1) and (3.2), we have

$$
\begin{aligned}
s_{2}-\left|V_{i_{0}}^{\prime}\right| & = \begin{cases}1 & \text { if } r \neq 0 \text { and } k+r+1 \leq i_{0} \leq t-1, \\
0 & \text { otherwise }\end{cases} \\
& \geq 0
\end{aligned}
$$

It follows that $\left|N_{G}(v) \cap D\right|=p+s_{2}-\left|V_{i_{0}}^{\prime}\right| \geq p$, which implies that D can p-dominate v. Hence D is a p-dominating set of G. The lemma follows.

We now state our main result as follows.
Theorem 9. For any integer $p \geq 1$ and a complete t-partite graph $G=K_{n_{1}, n_{2}, \ldots, n_{t}}$ with $t \geq 2$ and $f\left(N_{t}\right)>p$,

$$
\gamma_{p}(G)=\min \left\{s_{1}, p+s_{2}\right\}
$$

Proof. From Lemmas 2 and 8, we can obtain that $\gamma_{p}(G) \leq \min \left\{s_{1}, p+s_{2}\right\}$, and if G has a γ_{p}-set D with $f\left(I_{D}\right) \geq p$ then $\gamma_{p}(G)=s_{1} \geq \min \left\{s_{1}, p+s_{2}\right\}$.

In the following, assume that every $\gamma_{p}(G)$-set D satisfies $f\left(I_{D}\right)<p$. Let D be an optimal $\gamma_{p}(G)$-set. To the end, we only need to show $\gamma_{p}(G) \geq p+s_{2}$.

Since $\left|I_{D}\right| \leq t-2$ by Lemma 3 and $\left\lceil\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right\rceil \leq n_{i}$ for any $i \in N_{t}-I_{D}$ by Lemma 7, we have $I_{D} \in \mathscr{I}_{p}$, and so $\left\lceil\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right\rceil \geq s_{2}$. From the proof of Lemma 7, we know that $\ell+\delta_{A} \geq\left\lceil\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right\rceil$. Hence, by Lemma 6 ,

$$
\gamma_{p}(G) \geq p+\ell+\delta_{A} \geq p+\left\lceil\frac{p-f\left(I_{D}\right)}{t-\left|I_{D}\right|-1}\right\rceil \geq p+s_{2}
$$

The theorem follows.

Some illustrations of s_{1}, s_{2} and $\gamma_{p}(G)=\min \left\{s_{1}, p+s_{2}\right\}$ for the complete 4-partite graph $G=K_{2,2,10,17}$ are shown in Table 1.

Acknowledgments

This work was supported by NNSF of China (Nos. 11201374, 61272008) and the Fundamental Research Funds for the Central University (No. 3102014JCQ01074).

References

[1] T. J. Bean, M. A. Henning and H. C. Swart, On the integrity of distance domination in graphs, Australas. J. Combin. 10 (1994) 29-43.
[2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory (Springer, 2008).
[4] Y. Caro and Y. Roditty, A note on the k-domination number of a graph, Int. J. Math. Sci. 13 (1990) 205-206.
[5] M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k independence in graphs: A survey, Graphs Combin. 28 (2012) 1-55.
[6] E. DelaViña, W. Goddard, M. A. Henning, R. Pepper and E. R. Vaughan, Bounds on the k-domination number of a graph, Appl. Math. Lett. 24 (2011) 996-998.
[7] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, J. Combin. Theory Ser. B 39 (1985) 101-102.
[8] J. F. Fink and M. S. Jacobson, n-domination in graphs, in Graph Theory with Applications to Algorithms and Computer Science, eds. Y. Alavi and A. J. Schwenk (Wiley, New York, 1985), pp. 283-300.
[9] J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in Graph Theory with Applications to Algorithms and Computer Science, eds. Y. Alavi and A. J. Schwenk (Wiley, New York, 1985), pp. 301-311.
[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
[12] M. S. Jacobson and K. Peters, Complexity questions for n-domination and related parameters, Congr. Numer. 68 (1989) 7-22.
[13] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007) 98-102.
[14] R. S. Shaheen, Bounds for the 2-domination number of toroidal grid graphs, Int. J. Comput. Math. 86(4) (2009) 584-588.

