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This paper considers a refined measure jðhÞs for the fault-tolerance of a network and, for the
generalized star network Sn;k , determines jðhÞs ðSn;kÞ ¼ nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and
0 6 h 6 n� k, which implies that at least nþ hðk� 2Þ � 1 vertices of Sn;k have to be
removed to get a disconnected graph without vertices of degree less than h. This work gen-
eralizes some known results. When the ðn; kÞ-star graph is used to model the topological
structure of a large-scale parallel processing system, this result can provide a more accu-
rate measure for the fault tolerance of the system.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An
interconnection network can be modeled by a graph in which vertices correspond to processors and edges correspond to
communication links.

The connectivity jðGÞ of a graph G is defined as the minimum number of vertices whose deletion disconnects G. As an
important measure for the fault-tolerance of a network, the larger connectivity j is, the more reliable the network is. How-
ever, the definition of j is implicitly assumed that any subset of system components is equally likely to be faulty simulta-
neously, which may not be true in real applications, thus connectivity j underestimate the reliability of a network. To
compensate such shortcoming, Harary [12] introduced the concept of the conditional connectivity by appending some
requirements on the resulting graph. In this trend, Esfahanian [11] proposed the concept of the restricted connectivity, Latifi
et al. [16] generalized it to the restricted h-connectivity which can measure fault tolerance of an interconnection network
more accurately than the classical connectivity j. The concepts stated here are slightly different from theirs.

For a given nonnegative integer h, a subset S of vertices of a connected graph G is called an h-super vertex-cut, or h-cut for

short, if G� S is disconnected and has the minimum degree at least h. The h-super connectivity of G, denoted by jðhÞs ðGÞ, is

defined as the minimum cardinality over all h-cuts of G. Since a complete graph Kn is nonseparable, jðhÞs ðKnÞ does not exist

for any h with 0 6 h 6 n� 1. Furthermore, if G is not a complete graph then jð0Þs ðGÞ ¼ jðGÞ; for h P 1, if jðhÞs ðGÞ exists, then

jðh�1Þ
s ðGÞ 6 jðhÞs ðGÞ. For any graph G and integer h, determining jðhÞs ðGÞ is quite difficult. In fact, the existence of jðhÞs ðGÞ is an

open problem so far when h P 1. Only a little knowledge of results have been known on jðhÞs for particular classes of graphs
and small h’s.
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As a topological structure of interconnection networks, the star graph Sn, proposed by Akers and Krishnamurthy [1], is an
attractive alternative to the hypercube as an interconnection network, and has superior degree and diameter compared to the
comparable hypercube as well as it is highly hierarchical and symmetrical [9]. However, the number of vertices of an n-
dimensional star is n!, there is a large gap between n! and ðnþ 1Þ! if Sn is extended to Snþ1. To achieve scalability, Chiang
and Chen [7] generalized the star graph Sn to the ðn; kÞ-star graph Sn;k, which preserves many ideal properties of the star graph
[8]. Since then the ðn; kÞ-star graph has received considerable attention in the literature [2,3,5,6,4,10,14,15,19,18,22,24–27].

This paper is concerned about jðhÞs for the ðn; kÞ-star graph Sn;k. For k ¼ n� 1; Sn;n�1 is isomorphic to a star graph Sn, Hu and

Yang [13], Nie et al. [20] and Rouskovet al. [21], independently, determined jð1Þs ðSnÞ ¼ 2n� 4 for n P 3. Wan and Zhang [23]

showed jð2Þs ðSnÞ ¼ 6n� 18 for n P 4. Yang et al. [26] proved that if 2 6 k 6 n� 2 then jð1Þs ðSn;kÞ ¼ nþ k� 3 for n P 3 and

jð2Þs ðSn;kÞ ¼ nþ 2k� 5 for n P 4.
We, in this paper, will generalize these results by proving that jðhÞs ðSn;kÞ ¼ nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and

0 6 h 6 n� k.
The main proof of this result is in Section 3. In Section 2, we recall the structure of Sn;k and some lemmas used in our

proofs. Conclusions and some remarks are in Section 4.

2. Definitions and lemmas

For a given integer n with n P 2, let In ¼ f1;2; . . . ;ng; I0n ¼ f2; . . . ;ng. For an integer k with 1 6 k 6 n� 1, let
Pðn; kÞ ¼ fp1p2 . . . pk : pi 2 In; pi – pj; 1 6 i – j 6 kg, the set of k-permutations on In. Clearly, jPðn; kÞj ¼ n!

ðn�kÞ!.

Definition 2.1. (Chiang et al. [7]) The ðn; kÞ-star graph Sn;k is a graph with vertex-set Pðn; kÞ. The adjacency is defined as
follows: a vertex p ¼ p1p2 . . . pi . . . pk is adjacent to a vertex

(a) pip2 . . . pi�1p1piþ1 . . . pk, where i 2 I0k (swap p1 with pi).
(b) p01p2p3 . . . pk, where p01 2 In n fpi : i 2 Ikg (replace p1 by p01).

The vertices of type ðaÞ are referred to as swap-neighbors of the vertex p and the edges between them are referred to as
swap-edges or i-edges. The vertices of type ðbÞ are referred to as unswap-neighbors of the vertex p and the edges between them
are referred to as unswap-edges. Clearly, every vertex in Sn;k has k� 1 swap-neighbors and n� k unswap-neighbors. Usually,
if p ¼ p1p2 . . . pk is a vertex in Sn;k, we call pi the ith bit of p for each i 2 Ik.

It has been known that the ðn; kÞ-star graph Sn;k is a vertex transitive graph with order n!
ðn�kÞ! and regular degree n� 1 (see

Chiang et al. [7]). In addition, Sn;n�1 is isomorphic to the star graph Sn, and Sn;1 is isomorphic to the complete graph Kn. Fig. 1
shows the ð4;2Þ-star S4;2 and the ð4;3Þ-star S4;3.

Lemma 2.2. For any a ¼ p2p3 . . . pk 2 Pðn; k� 1Þ ðk P 2Þ, let Va ¼ fp1a : p1 2 In n fpi : i 2 I0kgg. Then the subgraph of Sn;k

induced by Va is a complete graph of order n� kþ 1, denoted by Ka
n�kþ1.
Proof. For any two vertices p1a and p01a in Va with p1 – p01, by the condition ðbÞ of Definition 2.1, p1a and p01a are linked in
Sn;k by an unswap-edge. Thus, the subgraph of Sn;k induced by Va is a complete graph Kn�kþ1. h
Fig. 1. The (4,2)-star S4;2 and the (4,3)-star S4;3
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By Lemma 2.2, the vertex-set Pðn; kÞ of Sn;k can be decomposed into jPðn; k� 1Þj subsets, each of which induces a complete
graph Kn�kþ1. It is clear that, if uv is an edge between two different complete subgraphs Ka

n�kþ1 and Kb
n�kþ1 ða – bÞ, then a and

b differ in only one bit and uv is a swap-edge. Thus, we have the following conclusion.

Lemma 2.3. The vertex-set of Sn;k can be partitioned into jPðn; k� 1Þj subsets, each of which induces a complete graph of order
n� kþ 1. Furthermore, there is at most one swap-edge between any two complete graphs.

Let St:i
n�1;k�1 denote a subgraph of Sn;k induced by all vertices with i in the tth bit for t 2 I0k. The following lemma is a slight

modification of the result of Chiang and Chen [7].

Lemma 2.4. For a fixed integer t with 2 6 t 6 k; Sn;k can be partitioned into n subgraphs St:i
n�1;k�1, which is isomorphic to Sn�1;k�1,

for each i 2 In. Moreover, there are ðn�2Þ!
ðn�kÞ! independent swap-edges between St:i

n�1;k�1 and St:j
n�1;k�1 for any i; j 2 In with i – j.
Lemma 2.5. (Chen et al. [3]) In Sn;k, a cycle has length at least 6 if it contains a swap-edge.
Lemma 2.6. (Chiang et al. [7]) jðSn;kÞ ¼ n� 1.
3. Main results

In this section, we present our main results, that is, we determine the h-super connectivity of the ðn; kÞ-star graph Sn;k.
Since Sn;1 ffi Kn, we only consider the case of k P 2 in the following discussion.

Lemma 3.1. jðhÞs ðSn;kÞ 6 nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and 0 6 h 6 n� k.
Proof. By our hypothesis of h 6 n� k, for any a 2 Pðn; k� 1Þ, we can choose a subset X # VðKa
n�kþ1Þ such that jXj ¼ hþ 1.

Then the subgraph of Ka
n�kþ1 induced by X is a complete graph Khþ1. Let S be the neighbor-set of X in Sn;k � X. Clearly,

VðKa
n�kþ1 � XÞ# S, that is, X has exactly n� kþ 1� jXj unswap-neighbors in VðKa

n�kþ1 � XÞ \ S. Since Sn;k is ðn� 1Þ-regular,
every vertex of X has exactly ðk� 1Þ swap-neighbors are not in Ka

n�kþ1. Moreover, by Lemma 2.3, every vertex outside of
Ka

n�kþ1 has at most one swap-neighbor in Ka
n�kþ1, thus any two swap-neighbors of X are different from each other. It follows

that
jSj ¼ n� kþ 1� jXj þ jXjðk� 1Þ ¼ nþ hðk� 2Þ � 1: ð3:1Þ
Since jSj þ jXj ¼ nþ hðk� 1Þ < n!
ðn�kÞ! for k P 2, there exists some vertex not adjacent to X in Sn;k, and so S is a vertex-cut of

Sn;k. We now need to show that S is an h-cut of Sn;k. We show that every vertex of Sn;k � ðX [ SÞ has degree at least h. Let u be a
vertex in Sn;k � ðX [ SÞ. If u has a neighbor v in S \ VðKa

n�kþ1Þ, then u is a swap-neighbor of v since all the unswap-neighbors of
v are in VðKa

n�kþ1Þ. If u has a neighbor v in S n VðKa
n�kþ1Þ, then v has a swap-neighbor in VðKa

n�kþ1Þ. Moreover, if u has two neigh-
bor v ;v 0 in S, then three vertices u;v and v 0 are contained in a cycle that has length at most 5 and contains at least one swap-
edge, which contradicts with Lemma 2.5. Thus, u has at most one neighbor in S. In other words, u has at least n� 2 neighbors
in Sn;k � S. Since n� 2 P n� k P h for k P 2;u has degree at least h in Sn;k � S. By the arbitrariness of u 2 Sn;k � ðX [ SÞ; S is an
h-cut of Sn;k, and so
jðhÞs ðSn;kÞ 6 jSj ¼ nþ hðk� 2Þ � 1
as required. The Lemma follows. h
Corollary 3.2. jðhÞs ðSn;2Þ ¼ n� 1 for 0 6 h 6 n� 2.
Proof. It is easy to know jðhÞs ðSn;2Þ 6 n� 1 by Lemma 3.1. And on the other hand, by Lemma 2.6, jðhÞs ðSn;2ÞP jðSn;2Þ ¼ n� 1.
Thus the conclusion holds. h

To state and prove our main results, we need some notations. Let S be an h-cut of Sn;k and X be the vertex-set of a con-
nected component of Sn;k � S. For a fixed t 2 I0k and any i 2 In, let
Y ¼ VðSn;k � S� XÞ; Si ¼ S \ VðSt:i
n�1;k�1Þ;

Xi ¼ X \ VðSt:i
n�1;k�1Þ; Yi ¼ Y \ VðSt:i

n�1;k�1Þ;
ð3:2Þ
and let
JX ¼ fi 2 In : Xi – ;g; JY ¼ fi 2 In : Yi – ;g; J0 ¼ JX \ JY : ð3:3Þ



528 X.-J. Li, J.-M. Xu / Applied Mathematics and Computation 248 (2014) 525–530
Lemma 3.3. Let S be a minimum h-cut of Sn;k. If 3 6 k 6 n� 1 and 1 6 h 6 n� k then, for any t 2 I0k,

(a) Si is an ðh� 1Þ-cut of St:i
n�1;k�1 for any i 2 J0,

(b) jðhÞs ðSn;kÞP jJ0j j
ðh�1Þ
s ðSn�1;k�1Þ,

(c) JX [ JY ¼ In.
Proof

(a) By the definition of J0; Si is a vertex-cut of St:i
n�1;k�1 for any i 2 J0. For any vertex x in St:i

n�1;k�1 � Si, since x has degree at

least h in Sn;k � S and has exactly one neighbor outsider St:i
n�1;k�1; x has degree at least h� 1 in St:i

n;k � Si. This fact shows that

Si is an ðh� 1Þ-cut of St:i
n�1;k�1 for any i 2 J0.

(b) By the assertion (a), we have jSijP jðh�1Þ
s ðSn�1;k�1Þ, and so
jðhÞs ðSn;kÞ ¼ jSjP
X

i2J0

jSijP jJ0jjðh�1Þ
s ðSn�1;k�1Þ:

(c) If JX [ JY – In, that is, In n ðJX [ JYÞ – ¼ ;, then there exists an i0 2 In such that VðSt:i0
n�1;k�1Þ ¼ Si0 . Thus, we have

jðhÞs ðSn;kÞ ¼ jSjP jSi0 j ¼
ðn�1Þ!
ðn�kÞ!

P ðn� 1Þðn� 2Þ
> nþ ðn� 3Þðn� 3Þ � 1
P nþ hðk� 2Þ � 1;

which contradicts to Lemma 3.1. Thus, JX [ JY ¼ In. The Lemma follows. h
Theorem 3.4. jðhÞs ðSn;kÞ ¼ nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and 0 6 h 6 n� k.
Proof. By Corollary 3.2, the conclusion holds for k ¼ 2. And by Lemma 3.1, we only need to prove that, for 3 6 k 6 n� 1 and
0 6 h 6 n� k,
jðhÞs ðSn;kÞP nþ hðk� 2Þ � 1: ð3:4Þ
For fixed k and n, we prove the inequality (3.4) by induction on hðP 0Þ. Since jð0Þs ðSn;kÞ ¼ jðSn;kÞ ¼ n� 1, the inequality
(3.4) is true for h ¼ 0. Assume the induction hypothesis for h� 1 with h P 1. We have
jðh�1Þ
s ðSn�1;k�1ÞP nþ ðh� 1Þðk� 3Þ � 2: ð3:5Þ
Let S be a minimum h-cut of Sn;k and X be the vertex-set of a minimum connected component of Sn;k � S. Use notations

defined in (3.2) and (3.3). Choose t 2 I0k such that jJX j is as large as possible. For each i 2 In, we write Si
n�1;k�1 for St:i

n�1;k�1 for
short. We consider three cases depending on jJ0j ¼ 0; jJ0j ¼ 1 or jJ0jP 2.

Case 1. jJ0j ¼ 0,

In this case, JX \ JY ¼ ;. By Lemma 3.3 (c), jJX jP 2 or jJY jP 2 since n P 4. Clearly, JX – ; and JY – ;. Without loss of

generality, assume jJX jP 2; fi1; i2g# JX and i3 2 JY . By Lemma 2.4, there are ðn�2Þ!
ðn�kÞ! independent swap-edges between Si1

n�1;k�1

(resp. Si2
n�1;k�1) and Si3

n�1;k�1, each edge of which has at least one end-vertex in S. Since JX \ JY ¼ ; and Si1 \ Si2 ¼ ;, we have

that
jSjP 2
ðn� 2Þ!
ðn� kÞ! : ð3:6Þ
Noting that, for k ¼ 3,
2
ðn� 2Þ!
ðn� kÞ! P 2ðn� 2Þ ¼ nþ ðn� 3Þ � 1 P nþ hðk� 2Þ � 1;
and, for k P 4,
2
ðn� 2Þ!
ðn� kÞ! P 2ðn� 2Þðn� 3ÞP nþ ðn� 3Þðn� 3Þ � 1 P nþ hðk� 2Þ � 1;
we have that
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ðn� 2Þ!
ðn� kÞ! P nþ hðk� 2Þ � 1 for k P 3: ð3:7Þ
It follows from (3.6) and (3.7) that
jðhÞs ðSn;kÞ ¼ jSjP 2
ðn� 2Þ!
ðn� kÞ! P nþ hðk� 2Þ � 1:
Note that the proof of case jJX jP 2 does not use the minimality of X. So, we can give the proof of case jJY jP 2 using the
same way as the case of jJX jP 2.

Case 2. jJ0j ¼ 1,
Without loss of generality, assume J0 ¼ f1g. By Lemma 3.3 (a), S1 is an ðh� 1Þ-cut of S1

n�1;k�1. Let S0 ¼ S n S1.
If jS0jP n� 2 then, by (3.5),
jðhÞs ðSn;kÞ ¼ jSj ¼ jS1j þ jS0jP jðh�1Þ
s ðSn�1;k�1Þ þ ðn� 2Þ

P ðnþ ðh� 1Þðk� 3Þ � 2Þ þ ðn� 2Þ
P ðnþ ðh� 1Þðk� 3Þ � 2Þ þ ðhþ k� 2Þ
¼ nþ hðk� 2Þ � 1:
Now assume jS0 j 6 n� 3. We claim jJX j ¼ 1. Suppose to the contrary jJX jP 2.
If jJY j ¼ 1, then jJX j ¼ n by Lemma 3.3 (c). If there exists some i 2 JX n J0 such that jSij ¼ 0, then

jXj > jXij ¼ jVðSi
n�1;k�1Þj > jY1j ¼ jYj, which contradicts to the minimality of X. If jSijP 1 for each i 2 JX n J0, then

jS0jP n� 1, a contradiction.
If jJY jP 2, say i1 2 JX n J0 and i2 2 JY n J0, then Xi1 – ;;Yi1

¼ ;;Xi2
¼ ;; Yi2 – ;. By Lemma 2.4, there are ðn�2Þ!

ðn�kÞ! independent

swap-edges between Si1
n�1;k�1 and Si2

n�1;k�1, each edge of which must have one end-vertex in S0. Thus,
jS0jP ðn� 2Þ!
ðn� kÞ! P n� 2 for k P 3;
a contradiction.
Thus, jJX j ¼ 1, that is, JX ¼ f1g since f1g ¼ J0 # JX . Thus, X1 ¼ X and jX1jP hþ 1. By the choice of t, the ith (i – 1) bits of all

vertices in X1 are same, and so X1 is a complete graph. Thus, as computed in (3.1),
jðhÞs ðSn;kÞ ¼ jSj ¼ nþ ðjX1j � 1Þðk� 2Þ � 1 P nþ hðk� 2Þ � 1:
Case 3. jJ0jP 2.
By Lemma 3.3 (b) and (3.5), we have that
jðhÞs ðSn;kÞ ¼ jSj P jJ0jj
ðh�1Þ
s ðSn�1;k�1Þ

P 2ðnþ ðh� 1Þðk� 3Þ � 2Þ
P nþ ðhþ kÞ þ 2ðh� 1Þðk� 3Þ � 4
P nþ hðk� 2Þ � 1:
By the induction principle, the theorem follows. h
Corollary 3.5. (Yang et al. [26]) If 2 6 k 6 n� 2 then jð1Þs ðSn;kÞ ¼ nþ k� 3 for n P 3 and jð2Þs ðSn;kÞ ¼ nþ 2k� 5 for n P 4.
4. Conclusions and Remarks

In this paper, we consider a refined measure for the fault tolerance of a network, called the k-super connectivity jðhÞs . For
the ðn; kÞ-star graph Sn;k, which is an attractive alternative network to the hypercube, we prove that

jðhÞs ðSn;kÞ ¼ nþ hðk� 2Þ � 1 for 2 6 k 6 n� 1 and 0 6 h 6 n� k.
This result shows that at least nþ hðk� 2Þ � 1 vertices of Sn;k have to be removed to get a disconnected graph without

vertices of degree less than h. When the ðn; kÞ-star graph is used to model the topological structure of a large-scale parallel
processing system, this result can provide a more accurate measure for the fault tolerance of the system.

We should notice that the condition k P 2 is necessary in our result since if k ¼ 1 then Sn;1 ffi Kn, for which jðhÞs ðKnÞ does
not exist for any h with 0 6 h 6 n� 1.

We should also notice that when k ¼ n� 1; Sn;n�1 is isomorphic to the star graph Sn. In this case, the condition
0 6 h 6 n� k implies that 0 6 h 6 1. Akers and Krishnamurthy [1] determined jðSnÞ ¼ n� 1 for n P 2; Hu and Yang [13],

Nie et al. [20] and Rouskov et al. [21], independently, determined jð1Þs ðSnÞ ¼ 2n� 4 for n P 3. All these results are special
cases of our result by setting k ¼ n� 1 and h ¼ 0;1, respectively. However, Wan and Zhang [23] determined
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jð2Þs ðSnÞ ¼ 6ðn� 3Þ for n P 4, which cannot be deduced from our result. In fact, very recently we have shown that

jðhÞs ðSnÞ ¼ ðhþ 1Þ!ðn� h� 1Þ for any h with 0 6 h 6 n� 2 (see Li and Xu [17]).
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