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h-Super connectivity

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An
interconnection network can be modeled by a graph in which vertices correspond to processors and edges correspond to
communication links.

The connectivity 1(G) of a graph G is defined as the minimum number of vertices whose deletion disconnects G. As an
important measure for the fault-tolerance of a network, the larger connectivity x is, the more reliable the network is. How-
ever, the definition of k is implicitly assumed that any subset of system components is equally likely to be faulty simulta-
neously, which may not be true in real applications, thus connectivity x underestimate the reliability of a network. To
compensate such shortcoming, Harary [12] introduced the concept of the conditional connectivity by appending some
requirements on the resulting graph. In this trend, Esfahanian [11] proposed the concept of the restricted connectivity, Latifi
et al. [16] generalized it to the restricted h-connectivity which can measure fault tolerance of an interconnection network
more accurately than the classical connectivity k. The concepts stated here are slightly different from theirs.

For a given nonnegative integer h, a subset S of vertices of a connected graph G is called an h-super vertex-cut, or h-cut for

short, if G — S is disconnected and has the minimum degree at least h. The h-super connectivity of G, denoted by Kﬁ'”(G). is
defined as the minimum cardinality over all h-cuts of G. Since a complete graph K, is nonseparable, ;cgh)(Kn) does not exist
for any h with 0 < h < n — 1. Furthermore, if G is not a complete graph then k{”(G) = x(G); for h > 1, if k{"(G) exists, then
k" "V (G) < k" (G). For any graph G and integer h, determining " (G) is quite difficult. In fact, the existence of «{" (G) is an
open problem so far when h > 1. Only a little knowledge of results have been known on k" for particular classes of graphs
and small h’s.
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As a topological structure of interconnection networks, the star graph S,,, proposed by Akers and Krishnamurthy [1], is an
attractive alternative to the hypercube as an interconnection network, and has superior degree and diameter compared to the
comparable hypercube as well as it is highly hierarchical and symmetrical [9]. However, the number of vertices of an n-
dimensional star is n!, there is a large gap between n! and (n + 1)! if S, is extended to S,,;. To achieve scalability, Chiang
and Chen [7] generalized the star graph S, to the (n, k)-star graph S, x, which preserves many ideal properties of the star graph
[8]. Since then the (n, k)-star graph has received considerable attention in the literature [2,3,5,6,4,10,14,15,19,18,22,24-27].

This paper is concerned about " for the (n, k)-star graph S, x. Fork =n — 1, S,,_; is isomorphic to a star graph S,, Hu and
Yang [13], Nie et al. [20] and Rouskovet al. [21], independently, determined x{"(S,) = 2n — 4 for n > 3. Wan and Zhang [23]
showed x§2>(sn) =6n—18 for n > 4. Yang et al. [26] proved that if 2 < k < n — 2 then Kg”(S,,,k) =n+k-3forn >3 and
K& (Suk) =n+2k—5forn > 4.

We, in this paper, will generalize these results by proving that x{" (Snk) =n+h(k—2)—1 for 2<k<n-1 and
O<h<gn-k

The main proof of this result is in Section 3. In Section 2, we recall the structure of S, and some lemmas used in our
proofs. Conclusions and some remarks are in Section 4.

2. Definitions and lemmas

For a given integer n with n > 2, let I, ={1,2,...,n}, I, ={2,...,n}. For an integer k with 1<k<n-1, let

P(n,k) ={pip>---Pr: Pi € In, p; # pj, 1 <i#j <k}, the set of k-permutations on I,. Clearly, |P(n, k)| = (nﬂ’k)!.

Definition 2.1. (Chiang et al. [7]) The (n, k)-star graph S, is a graph with vertex-set P(n, k). The adjacency is defined as
follows: a vertex p = pyp, ...D;---Dy is adjacent to a vertex

(@) PiP; - - - Pi_1P1Dis1 - - - Pro Where i € I (swap p; with p;).
(b) PiP2Ps - - - Pro Where p} € In \ {p; : i € I} (replace p, by p}).

The vertices of type (a) are referred to as swap-neighbors of the vertex p and the edges between them are referred to as
swap-edges or i-edges. The vertices of type (b) are referred to as unswap-neighbors of the vertex p and the edges between them
are referred to as unswap-edges. Clearly, every vertex in S, has k — 1 swap-neighbors and n — k unswap-neighbors. Usually,
if p=p,p,...p is a vertex in S, x, we call p; the ith bit of p for each i € I,.

It has been known that the (n, k)-star graph S, is a vertex transitive graph with order (nﬁ!k)! and regular degree n — 1 (see
Chiang et al. [7]). In addition, S, ,_1 is isomorphic to the star graph S, and S,,; is isomorphic to the complete graph K,. Fig. 1
shows the (4,2)-star S4, and the (4, 3)-star Sa3.

Lemma 2.2. For any o.=p,p;...py € P(n,k—1) (k = 2), let Vo, = {p0t: py € In\ {p;: i€ l,}}. Then the subgraph of S,
induced by V, is a complete graph of order n — k + 1, denoted by K . ;.

Proof. For any two vertices p,a and pjo in V, with p; # p}, by the condition (b) of Definition 2.1, p;a and p;o are linked in
S.x by an unswap-edge. Thus, the subgraph of S, induced by V, is a complete graph K,_,;. O

14 41

24 34 21 31

42 12 43 13

32 23
8472 S4.3

Fig. 1. The (4,2)-star Sy, and the (4,3)-star Sy3
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By Lemma 2.2, the vertex-set P(n, k) of S, x can be decomposed into |P(n, k — 1)| subsets, each of which induces a complete

graph K, 1. It is clear that, if uv is an edge between two different complete subgraphs K,_,,; and Kﬁfkﬂ (o0 # B), then o and

B differ in only one bit and uv is a swap-edge. Thus, we have the following conclusion.

Lemma 2.3. The vertex-set of S, can be partitioned into |P(n,k — 1)| subsets, each of which induces a complete graph of order
n — k + 1. Furthermore, there is at most one swap-edge between any two complete graphs.

Let S, , denote a subgraph of S, induced by all vertices with i in the tth bit for ¢ € I,. The following lemma is a slight
modification of the result of Chiang and Chen [7].

Lemma 2.4. For a fixed integer t with 2 < t < k, Sp can be partitioned into n subgraphs Sf,{].’,H, which is isomorphic to Sy,_1 1,

for each i € I,. Moreover, there are E'r’lj;.' independent swap-edges between S, ; and St | | for any i,j € I with i # .

Lemma 2.5. (Chen et al. [3]) In S,, a cycle has length at least 6 if it contains a swap-edge.

Lemma 2.6. (Chiang et al. [7]) k(Spx) =n—1.

3. Main results

In this section, we present our main results, that is, we determine the h-super connectivity of the (n, k)-star graph S, .
Since S, = K,, we only consider the case of k > 2 in the following discussion.

Lemma 3.1. K§h>(5n‘k) <n+hk-2)—1for2<k<n—-1and0O<h<n-k

Proof. By our hypothesis of h < n—k, for any o € P(n,k — 1), we can choose a subset X C V(K}_,,;) such that |X| =h+ 1.
Then the subgraph of K, ,.; induced by X is a complete graph K. Let S be the neighbor-set of X in S, — X. Clearly,
V(K} .1 —X)CS, that is, X has exactly n — k+ 1 — |X| unswap-neighbors in V(K}_, ; — X)NS. Since S, is (n — 1)-regular,
every vertex of X has exactly (k — 1) swap-neighbors are not in Kj,_, ;. Moreover, by Lemma 2.3, every vertex outside of
K}_,., has at most one swap-neighbor in K},_,,;, thus any two swap-neighbors of X are different from each other. It follows

that
ISl=n—k+1—|X|+X|(k—1)=n+h(k—2)—1. (3.1)

Since S|+ |X| =n+h(k-1) < (nﬁ—'k), for k > 2, there exists some vertex not adjacent to X in S, x, and so S is a vertex-cut of
Snk- We now need to show that S is an h-cut of S,, x. We show that every vertex of S, — (X US) has degree at least h. Let u be a
vertex in S, — (X US). If u has a neighbor »in SN V(K},_,. ), then u is a swap-neighbor of »since all the unswap-neighbors of
varein V(K}_,,,).If u hasaneighbor vin S\ V(K] _,,,), then vhas a swap-neighbor in V(K}_,, ;). Moreover, if u has two neigh-
bor v, ¢/ in S, then three vertices u, v and ¢’ are contained in a cycle that has length at most 5 and contains at least one swap-
edge, which contradicts with Lemma 2.5. Thus, u has at most one neighbor in S. In other words, u has at least n — 2 neighbors
inS,, —S.Sincen—2 > n—k > hfork > 2,u has degree at least h in S, — S. By the arbitrariness of u € S, — (X US),Sis an

h-cut of S,x, and so
K" (Sur) < IS|=n+h(k-2) -1

S

as required. The Lemma follows. O
Corollary 3.2. k{"(S,2)=n—1for0O<h<n-2.

Proof. It is easy to know Kﬁh)(Sn‘z) < n-—1byLemma 3.1. And on the other hand, by Lemma 2.6, Kg’”(sn_;) > K(Sp2)=n-1.
Thus the conclusion holds. O

To state and prove our main results, we need some notations. Let S be an h-cut of S, and X be the vertex-set of a con-
nected component of S, — S. For a fixed t € [, and any i € I, let
Y=VSu-S-X), Si=Sn V(Sf;’;likfl),
Xi=XNV(Sili). Yi=YnVS).
and let
Ix={ieh: Xi= 0}, Jy={ich: Yi#0} Jo=JxNJy. 33)
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Lemma 3.3. Let S be a minimum h-cut of Sp. If 3<k<n-—1and 1 <h<n—kthen, forany t €I,

(a) Siisan (h—1)-cut ofSn 161 forany i€ ],
(b) K(Sus) > ol K (S1s 1)
() Jx Uly = In.

Proof

(a) By the definition of J,,S; is a vertex-cut of St 1x_1 for any i € J,. For any vertex x in S 1 —Si, since x has degree at
least h in S, — S and has exactly one neighbor outsider S, «_1,X has degree at least h — 1in fl’k — Si. This fact shows that
Siisan (h—1)-cut of S, , , for any i € J.
(b) By the assertion (a), we have |S;| > k" (S,_14_1), and so
KM (Suk) = 181 = D _ISil = Vol (Sn-141)-
icjo

(c) If Jy Uy # I, that is, I, \ (IX U]Y) # =, then there exists an i € I, such that V(S;’“l 1) = Si,- Thus, we have

K" (Sak) = 1] = 1S, | =
>n-1)n-2)
>n+n-3)(n-3)-1
>n+hk-2)-1,

which contradicts to Lemma 3.1. Thus, Jx UJy = I,. The Lemma follows. O
Theorem 3.4. k" (S, ) =n+h(k—2)—1for2<k<n—1and0<h<n—k

Proof. By Corollary 3.2, the conclusion holds for k = 2. And by Lemma 3.1, we only need to prove that, for3 <k <n -1 and
0<hgn-k,

KW (Sue) = n+hk—2)—1. (3.4)

S
For fixed k and n, we prove the inequality (3.4) by induction on h(> 0). Since k” (S,x) = K(Spx) = n — 1, the inequality
(3.4) is true for h = 0. Assume the induction hypothesis for h — 1 with h > 1. We have
KD (Sacrie) = 04 (h=1)(k—3) - 2. (3.5)

Let S be a minimum h-cut of S, and X be the vertex-set of a minimum connected component of S, — S. Use notations
defined in (3.2) and (3.3). Choose t € I} such that |J| is as large as possible. For each i € I, we write S, ;, ; for S, for
short. We consider three cases depending on |Jo| =0, |/;| =1 or |J;| = 2

Case 1. |Jy| =0,

In this case, Jx NJy = 0. By Lemma 3.3 (c), |Jx| = 2 or |Jy| > 2 since n > 4. Clearly, Jx # 0 and Jy # 0. Without loss of
generality, assume |Jx| > 2, {i1,i2} CJx and i3 € Jy. By Lemma 2.4, there are En 7l ! independent swap-edges between Sn The1
(resp. S;f 1k-1)and S;H’,H, each edge of which has at least one end-vertex in S. Since Jy NJy =0 and S;, N S;, = 0, we have

that

(n—2)!
(n—k

Noting that, for k = 3

IS| =2 (3.6)

2 Eﬁiiil >2n-2)=n+(Mn-3)-1>n+hk-2)-1,
and, fork > 4
(n—2)!

=22 =3 = nem=3)n-3) = 1> n+hk-2)- 1,

we have that
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(n—2)!
(n—k)!
It follows from (3.6) and (3.7) that
(n -2)!
(nfk)! >n+h(k—-2)-1.

Note that the proof of case || > 2 does not use the minimality of X. So, we can give the proof of case |Jy| > 2 using the
same way as the case of |J;| > 2

Case 2. |Jy| =1,

Without loss of generality, assume J, = {1}. By Lemma 3.3 (a), Sy is an (h — 1)-cut of 5;1171,k71- Let S =S\ S;.

If |S'| = n— 2 then, by (3.5),

K (Suk) = ISI = IS1] +1S| = K"V (Su-rucn) + (0= 2)
>m+th-1)k-3)-2)+(n-2)
>n+h-1)(k-3)-2)+(h+k-2)
=n+hk-2)-1.

Now assume |S'| < n — 3. We claim |J4| = 1. Suppose to the contrary |J,| >
If |Jlyl=1, then |x/=n by Lemma 3.3 (c). If there exists some iec]Jy\J, such that |S;|=0, then
X| > 1Xi| = |V(Sn 1x-1)| > 1Y1] =1Y|, which contradicts to the minimality of X. If |S;/ > 1 for each ic]Jyx\]J, then

ISl = n— 1, a contradiction.
If Ily] = 2,sayi; €Jx \Jo and i, ejy \Jo. then X;, #0,Y; =0,X;, =0,Y;, # 0. By Lemma 2.4, there are (< mdependent
1» each edge of which must have one end-vertex in S'. Thus,

>n+hk-2)-1 fork > 3. (3.7

(h)( nk) |5‘

=

swap-edges between Sn 141 and S
(n-2)!
(n—Tr~

a contradiction.
Thus, |Jx| = 1, thatis, Jy = {1} since {1} = J, CJx. Thus, X; = X and |X;| = h + 1. By the choice of ¢, the ith (i # 1) bits of all
vertices in X; are same, and so X; is a complete graph. Thus, as computed in (3.1),

KPS = IS/ =n+(X:| - 1)(k=2) -1 =n+hk-2)-1.

S

n—1.k—

N >n-2 fork >3

Case 3. |Jo| = 2
By Lemma 3.3 (b) and (3.5) we have that

1" (Suk) = IS| K (Sn-141)
+(h-1)(k-3)-2)
(h4+k)+2h—1)(k—3)—
+h(k-2)-1.

By the induction principle, the theorem follows. O

ﬁo

VvV VvV WV WV

U
2(n
n+
n

Corollary 3.5. (Yang et al. [26]) If 2 < k < n— 2 then k" (Sux) =n+k—3 forn > 3 and kK (Sax) =n+2k—5 forn > 4.

4. Conclusions and Remarks

In this paper, we consider a refined measure for the fault tolerance of a network, called the k-super connectivity «™. For
the (n,k)-star graph S,,, which is an attractive alternative network to the hypercube, we prove that
K (Sp)=n+hk—2)—1for2<k<n—-1land0<h<n—k

This result shows that at least n + h(k — 2) — 1 vertices of S,x have to be removed to get a disconnected graph without
vertices of degree less than h. When the (n, k)-star graph is used to model the topological structure of a large-scale parallel
processing system, this result can provide a more accurate measure for the fault tolerance of the system.

We should notice that the condition k > 2 is necessary in our result since if k = 1 then S, ; =~ K, for which Kéh) (K,) does
not exist for any h with0O <h<n-1.

We should also notice that when k=n-1,S,, ; is isomorphic to the star graph S,. In this case, the condition
0 < h <n-—kimplies that 0 < h < 1. Akers and Krishnamurthy [1] determined x(S,) =n—1 for n > 2; Hu and Yang [13],
Nie et al. [20] and Rouskov et al. [21], independently, determined «{"(S,) = 2n — 4 for n > 3. All these results are special
cases of our result by setting k=n—-1 and h=0,1, respectively. However, Wan and Zhang [23] determined
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K2 (S,) =6(n—3) for n > 4, which cannot be deduced from our result. In fact, very recently we have shown that
K™ (Sy) = (h+1)!(n— h — 1) for any h with 0 < h < n — 2 (see Li and Xu [17]).
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