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and Q, are the same'”, while all the diameter and

0 Introduction _ . .
the average distance, fault-diameter and wide-

The hypercube network Q, has proved to be diameter of VQ, are smaller than those of the

one of the most popular interconnection networks hypercubel .

since it has a simple structure and has many nice Several topological structures of
properties. As a variant of Q,, the varietal multicomputer systems are commonly used in
hypercube VQ,, proposed in Ref. [ 1], has many various applications such as image processing and
properties similar or superior to Q,. For example, scientific computing. Among them, the most
the connectivity and restricted connectivity of VQ, common structures are paths and cycles.
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Embedding these structures in various well-known
networks, such as Q,, has been extensively
investigated in the literatures (see, for example,

Ref. [ 4 D.
conducted on embedding them in VQ,.

However, no study has yet been
In this
paper, we show that VQ, should be capable of
embedding these structures. The main results are
stated as follows:

Every edge of VQ, is contained in cycles of
every length from 4 to 2" except 5, and every pair
of vertices with distance d is connected by paths of
every length from d to 2" — 1 except 2 and 4 if
d=1.

Some definitions and basic properties of VQ,
are given in Section 1. The proofs of the results

are given in Section 2.

1 Definitions and lemmas

We follow Ref. [ 5] for graph-theoretical
terminology and notation not defined here. A
graph G = (V, E) always means a simple and
connected graph, where V=V (() is the vertex-set
and E=E(G) is the edge-set of G. For uvE E(G),
we call u (resp. ©) is a neighbor of v (resp. w. A
wv-path is a sequence of adjacent vertices, written
as (wsvs s s v,), in which u=w, v= 1, and
all the vertices w s v s vss* s v, are different from
each other, u and v are called the end-vertices of
P. If u=wv, then a uvpath P is called a cycle. The
length of a path P, denoted by e(P), is the
number of edges in P. The length of the shortest
wv-path in G is called the distance between u and v
in G, denoted by ds(u,v). For a path

P=Cuw v svs Ui1ss U)o
we can write
P = P(w,v) + vvi 1+ PCusu) s
and the notation P — w;v,—; denotes the subgraph
obtained from P by deleting the edge vv; .

The ndimensional varietal hypercube VQ, is
the labeled graph defined recursively as follows.
VQ); is the complete graph of two vertices labeled 0
and 1, respectively. Assume that VQ,—; has been

constructed. Let VQ5 | (resp. VQ) 1) be a labeled

graph obtained from VQ, ; by inserting a zero
(resp. 1 ) in front of each vertex-labeling in
VQ, .. For n>1, VQ, is obtained by joining
vertices in VQY% ; and VQ, |, according to the
following rule: a vertex

= 0 X Ty Tz *** Tz X
in VQ’—, and a vertex

y = 1}/,1 1Yn 2Yn 37" Y201
in VQ!—, are adjacent in VQ, if and only if O

Ty 1 Ly 2 Ly 3" g X1 —

if =3k, or @

Ly 3°°° L2 — Y 3" V2 M1

yn 1[))11 Zyu s"‘yz yl

and (X1 Tp—s s Y1 Vu—z) € 1 if n=3k, where
I = {(00,00),(01,01),(10,11),(11,10)}.
Fig. 1
hypercubes VQ, for n = 1, 2, 3

respectively.

varietal

and 4,

shows the examples of

001Q

I OID |
0 00 10 0000

0 101

VO,

Fig. 1 The varietal hypercubes VQ; . VQ: . VQ, and VQ,

The edges of Type @ are referred to as
crossing edges when

(2 1Zn 2y Yo1ymz) € {(10,11),(11,10) ).
All the other edges are referred to as normal
edges.

The varietal hypercube VQ, is proposed in
Ref. [ 1] as an attractive alternative to the n-
dimensional hypercube Q, when they are used to
model the topological structure of a large-scale
parallel processing system. Like Q,, VQ, is an

nregular graph with 2" vertices and 2" ' n edges.
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For convenience, we express VQ, as VQ, =
LOR, where L =VQ% , and R= VQ!. ,, and
denote by xpxk the mtransversal edge joining x € L
and xx € R. The recursive structure of VQ, gives
the following simple properties.

Let VQ,=L®R with n=1.

Then VQ, contains no triangles and every vertex

Lemma 1.1

xL € L has exactly one neighbor xx in R joined by
the n-transversal edge xpxk.

Lemma 1.2 Let VQ,=L®R and xy be an n-
transversal edge in VQ, with x€ L and y&€ R. For
Then

y=1a'b'B, where ab=a'b" if xy is a normal edge,

n=3, let x=0abx,—;** 11 and = x,—3*** 1.

and Cab,a'b’)=(1b,1 b) if xyis a crossing edge,
where b=1{0,1}\b.

Lemma 1.3 Any edge in VQ, (n=2) is
contained in a cycle of length 4.

Proof Clearly, the conclusion is true for n=
2. Assume n=3 and let xy be any edge in VQ,.
Then by definition of VQ, there is some m with 2<<
m<<n such that xy is an m-transversal edge. Let
VQ,=LOR, x&€ L and yER.

If xyis a normal edge, let u; be a neighbor of
xin L and ug be the neighbor of w, in R, then y
and ug are adjacent and so (x, u.»ug,y) is a cycle
of length 4.

If xyis a crossing edge, let 2=01b8, then y=
1168. Choose u.=0168. Then ux=11b68 by Lemma
1.2, and so (xsu.»ug»y) is a cycle of length 4. []

Lemma 1.4 Any ntransversal edge must be
contained in some cycle of length 5 unless n7# 3k
for k=>1.

Proof Let VQ,= L ®R and xy be an n
transversal edge in VQ,, where 2€ L and y€ R.
We first prove that ayis not contained in any cycle
of length 5 if n#3k for k=1. The conclusion is
true for n=1 or 2 clearly. Assume n=3 below.

Suppose that there is a cycle C=(x, us 2, v, y)
Then C

contains two ntransversal edges. Since n#3k, xy

of length 5 containing the edge axy.

is a normal edge. Let x=0abB, where f=x, 5+ .
Then y=1abp. Since every vertex in L has exactly
one neighbor in R by Lemma 1. 1, u€ L and v€ R.

Without loss of generality, assume € L. Then x
and z differ in exactly two positions. Without loss
of generality, let 2= 0a BB Since zv is an n
transversal edge and n7 3k, v=1la bB. Thus, y
and v differ in exactly two positions, which implies
that y and v are not adjacent, a contradiction.

We now show that the n-transversal edge xvy
must be contained in some cycle of length 5 if n=
3k for k=1 by constructing such a cycle. Let x=
0abBE€ L and y=1a'b'BE€ R, where (ab.a'b") € 1.
A required cycle C= (ax, u, 2, v, y) can be
constructed as follows.

If xy is a normal edge, then ab= a'b" = 0b.
Let u=00 18, 2=01 b3 and v=11b8 (where zvis a
crossing edge).

If xyis a crossing edge, then

(absa'd) = (10,1 b).
Let u=01 8, z=00 iB and v=10 B3 (where zvis a
normal edge).

The lemma follows. L]

Lemma 1.5 Any n-transversal edge in VQ, is
contained in cycles of lengths 6 and 7 for n=3.

Proof Let VQ,= L O®OR and xy be an n
transversal edge in VQ,, where € L and y&E R.

We first show that xy is contained in a cycle
of length 6. By Lemma 1.3, there is a cycle C of
length 4. Let C=(x,u,v,y), where u€ L and v&
R. Also by Lemma 1.3, there is a cycle C’ of
length 4 containing the xu in L. Clearly, CNC'=
{zu}. Thus, CU C"— zu is a cycle of length 6
containing the edge xy.

We now show that xy is contained in a cycle
of length 7. If n=3k for k=1 then, by Lemma
1.4, there is a cycle C of length 5 containing the
edge xy. Let C=(x, us 2, v» y), where x, u, x€ L
and v&€ R, without loss of generality. By Lemma
1. 3, there is a cycle C" of length 4 containing the
edge yov in R. Clearly, CN C" = { yv}. Thus
CUC —yvis a cycle of length 7 containing the
edge xy.

Assume n7# 3k for k=1 below. In this case,
all n-transversal edges are normal edges. We can

choose a cycle C= (x, u, v, y) such that the edge
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xu lies on some subgraph H that is isomorphic to
VQ;. By Lemma 1. 4, there is a cycle C’ of length
5 containing the edge xu in HZ L. Then CU C' — zu
is a cycle of length 7 containing the edge xy.

The lemma follows. L]

The ndimensional crossed cube CQ, is such a
graph, whose vertex-set is the same as VQ,, with
its two vertices x= x,*** ;11 and y= y,*** y» y, are
linked by an edge if and only if there exists some j
(1<<j<<n) such that

(2) Ty X1 = Yur i1 s

(b) x; 7 y;»

(c) xj—1 = y;— if j is even,

d) (233251 yzz'yz,-fl)EI for each i=1, 2,

b
By definition, VQ,=CQ, for each n=1,2, 3.
The following results on CQ, are used in the proofs
of our main results for n=3.
Lemma 1. 67

with distance d in CQ, with n=2, CQ, contains

For any two vertices a and y

xy-paths of every length from d to 2"—1 except 2
when d=1.

Lemma 1.7 For n=3 and any integer ¢ with
2" —2<¢<.2"—1, there exists an xy-path of length
¢ between any pair of vertices x and y in VQ,.

Proof We proceed by induction on n=3. By
Lemma 1. 6, the conclusion is true for n=3 since
VQ; = CQ;. Assume the induction hypothesis for
n—1 with n=4. Let VQ,=L®R, x and y be two
distinct vertices in VQ,.

If x, y€ L (or R), then, by the induction
hypothesis, there exists an xy-path Py of length ¥,
in L, where ¢, € {2 '—2,2""—1}. Let u be the
neighbor of yin P_, ug and yr be the neighbors of
u and vy in R, respectively. By the induction
hypothesis, there exists a ugxyg-path Py of length
2" '—1in R. Then P, — uy+ uug+ Px+ yry is an
xy-path of length ¢,+2" ' in VQ,.

If x€ L and y&€ R, let u be a vertex in L
rather than x such that its neighbor ui in R is
by the
hypothesis, there exist an xwpath P, of length 4

different from vy, then, induction

in L and a ugy-path Pi of length 2" * —1 in R,
where ¢, €{2"'—2,2"'—1}. Then P_+ uux+ Px
is an xy-path of length ¢ +2"" in VQ.,.

The lemma follows. L]
Let VQ,=L®OR, x. and y. be

two vertices in L. Then

Lemma 1. 8

diCxpyy) = drCags yr)
if 73k and
| dyCapyy) — deCags yr) | << 2
if n=3k for k=1.
Proof
diCaps y)<<dp(xgsyx). Let P_ be the shortest

Without loss of generality, assume

xryi-path in L and Pg a path in R obtained from
P.. by replacing the first position 0 by 1 in every
vertices. Clearly, e(Pr)=¢e(P.).

Note that for an edge u, vy in Pp, if ugvgis a
crossing edge, then v uy is also a crossing edge.
For convenience, we call the edge u, v, an induced
crossing edge, u; and v, induced crossing vertices.

If both xy and y. are not induced crossing
vertices, then Pris an agrygr-path in R, and so

drCagsyr) << e(Pr) = dpCap,y) s
and so
drCagsyr) = dCxLsy).
Assume below that { x., y.} contains induced
crossing vertices. Then n=3k.

Let x; be an induced crossing vertex, x u; an
induced crossing edge. Then, xr is not an end-
vertex of Pr, while ugz is an end-vertex of Px.
Similarly, if y; is an induced crossing vertex, yp v
an induced crossing edge, then yi is not an end-
vertex of Py, while w; is an end-vertex of Pk.
Thus, an agyg-path PrZ Py has length
e(Py) =
0 if neither x; and yy,

are induced crossing vertices;
1 if either a; or yi.
e(Pr) —

is an induced crossing vertex;
2 if both a1 and y;,

are induced crossing vertices,
and dR( IR s yk)<€( PI,{) If

dr(ag s yk) < diCxps yL) —3

then, using the above method, we can prove that
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there is an x.y.-path P| with length
e(P'L) < diCaws ) + 2,
from which we have
di Coepay) < e(P1) <
drCarsyr) +2 < di(xpoy) — 1,
a contradiction. Thus,
drCagsyr) = dyCar,y) — 2.
And so
| diCapyy) — drCags yr) | << 2.
The lemma follows. L]
Corollary 1.9 Let VQ,=L®R, x and y be
two vertices in H, where HE {L,R}. Then
du(zsy) = dyg (x5 3.
Proof Let xand y bein L and P the shortest
xy-path in VQ,. If PN R+#0, then P() L consists
Without loss of

of several sections of P.

generality, assume that P () L consists of two
sections, P, and Py . Then ugvr-section Pog of
P from ug to vz is in R, By Lemma 1. 8,

d;‘(u;,,w)<dR(uR,vR)+2:S(P )+2.
Since P is the shortest xy-path in VQ,, we

upvp

have that
dVQ" (x, y) < d; (x, y) =
e(P. )+ diCu o)+ (P, ) <

aup, oLy
(P ) +e(Pyo) +2+e(Py ) =
e(P) = dvq, (s y) »
which implies d, (x, y) = dvq, (x5 ). The corollary
follows. U]
Corollary 1.10 Let VQ,=L®R, x€ L and
yE R. Then there is an n-transversal edge u ug
such that
dvo, (s y) = diCxsu) + 1+ deCugs y).

2 Main results

A graph G of order n is said to be ¢-pancyclic
(resp. {-vertex-pancyclic, ¢-edge-pancyclic) if it
contains (resp. each of its vertices, edges is
contained in) cycles of every length from ¢ to n.
Clearly, an (-edge-pancyclic graph must be /(-
vertex-pancyclic and ¢-pancyclic.

We consider edge-pancyclity of VQ,. Since

VQ, contains no triangles, no edge is contained in a

cycle of length 3. LLemma 1. 3 shows that any edge
in VQ,(n=2) is contained in a cycle of length 4.
Lemma 1.4 shows that no n-transversal edge is
contained in a cycle of length 5 if n7#3k for k=1,
In general, we have the following result.

Theorem 2.1 For n=2, every edge of VQ, is
contained in cycles of every length from 4 to 2"
except 5 and, hence, VQ, is 6-edge-pancyclic for
n=3.

Proof By LLemma 1.3, we only need to show
that every edge of VQ, is contained in cycles of
every length from 6 to 2" for n=3. Let ¢ be an
integer with 6<C¢<{2" and xvy be an edge in VQ,. In
order to prove the theorem, we only need to show
that xy lies on a cycle of length ¢. We proceed by
induction on n=3.

Since VQ; = CQj,
conclusion is true for n=3. Assume the induction
hypothesis for n—1 with n=4. Let VQ,=LO®R.
There are two cases.

Case 1 x, y€ L or x, y&€ R. Without loss of
generality, let =, y& L.

by Lemma 1.6, the

By the induction hypothesis, we only need to
consider ¢ with 2" ' +1<{¢<2",

If ¢=2""41, then let xx and yg be the
neighbors of x and yin R, respectively. By Lemma
1.7, there exists an agygr-path P. of length
2" '—2in R. Then xaxr+ P.
cycle of length 2" * 1.

If 271+ 2<<¢<<2", let 4,=/¢—2""—1, then
1<<¢,<<2"'—1. By Lemma 1.7, there exists a

RYR

+ yry + xy is a

‘RYR

cycle C of length 2" ! containing the edge xyin L.
We choose an xzpath P, of length ¢, in C that
contains xy. Let xg and zx be the neighbors of x
and z in R, respectively. By Lemma 1.7, there
exists an agzg-path P, . of length 2 '—11in R.
Then xagr+ P, . + 2xz+ P..is a cycle of length ¢
containing the edge xy in VQ,.
Case 2 x€ L and yER.

In this case, xvy is an n-transversal edge. By

TRER

Lemma 1.5, the conclusion is true for each /=6,
7. Assume (=8 below.
If ¢<<2"7'42, let {,=1¢—2, then 6=1¢,<2" ',
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By Lemma 1.3, there exists a 4-cycle C =
(xyup»>ugsy). By the induction hypothesis, there
exists a cycle Cp of length ¢, that contains xu; in
L. Then, CNC.={zu.}, and so CNNC.—{xu.} is
a cycle of length ¢ containing ay.

If 27 1 4-3<<v<<2", let {y=1¢—2" ' —1, then
20, <<2" ' —1. Choose a vertex uin L rather than
xs By Lemma 1.7, there exists an xu-path P, of
length 2"'—1 in L, from which we can choose an
xz-path P, of length ¢,. Let 2z be the neighbor of
zin R. By Lemma 1.7, there exists a zry-path
P, of length 2! —1. Thus, P, + zzx+ P, -+
xy is a cycle of length ¢ containing xy in VQ,.

The theorem follows. U]

A graph G of order n is said to be
panconnected if for any two distinct vertices x and
y with distance d in G there are xy-paths of every
length from d to n—1.

We now consider panconnectivity of VQ,.
Since VQ, contains no triangles, there exist no xy-
paths of length 2 if x and y are adjacent. Lemma
1. 4 shows that there exist no xy-paths of length 4
if xyis an ntransversal edge in VQ, if n7#3k for k
1. In general, we have the following result.

Theorem 2. 2
and yin VQ, with distance d, there exist ay-paths

For n=3, any two vertices x

of every length from d to 2"—1 except 2.4 if d=1.

Proof
with distance d. First, we note that if d=1 then
In the

following discussion, we assume d—=>2. We only

Let xand y be any two vertices in VQ,

the theorem is true by Theorem 2. 1.

need to prove that there exist xy-paths of every
length from d+1 to 2"—1.

We proceed by induction on n = 3. Since
VQ;=CQ,. by Lemmal. 6, the conclusion is true
for n= 3. Assume the induction hypothesis for
n—1 with n=4. Let VQ,=L®OR.

Case 1l x,y€ L or x, y&€ R. Without loss of
generality, let x, y& L.

By Corollary 1.9, di(x,y)=d. By the
induction hypothesis, we only need to consider ¢
with 27 '<C¢<<2"—1.

If 27 '<<¢<<2"'+1, then
2"t —o <l v—2<< 2"t —1.
Let ag and yr be the neighbors of x and y in R,
respectively. By Lemma 1. 7, there exists an xgyg-
path Py of length /—2 in R. Then xxyx+ Px+ yyx
is an xy-path of length ¢ in VQ,.

M2 ' H2<l¢<<2"—1, let 4y=1¢—2""'—1.
then 1<, <<2" '—2. By Lemma 1.7, there exists
an xypath P, of length 2~'—1 in L. We choose
an xzpath P, of length ¢, in P,,. Clearly, z€
{x,y}. Let 2z and yg be the neighbors of 2 and y
in R, respectively. By Lemma 1.7, there exists a
zxyr-path Py of length 2" ' —1 in R. Then P, +
zzr+ Pr+ yyr is an xy-path of length ¢ in VQ,.

Case 2 x€ L and y€ R,

By Corollary 1.10, there is the shortest
xy-path P., in VQ, such that

P., = P., + wugr+ Pugy,
where u, € L and ux € R, (P, )=d.(x,u) and
e( P, ) =dxCug,y). Thus,
d=e(Py ) +1+eP,,) =

diCxyu) + 14 drCugsy).
Since d =2, without loss of generality, assume
diCxyu ) =drCugs y).

If d+1<</<<2" ', let by=/¢—drCug,y) —1,
then dy (s u) +1<0,<<2" ' —1. By the induction
hypothesis, there exists an xu -path P’ of length
¢, in L. Then P '+ wug+ P, is an xy-path of
length 7 in VQ,.

2" '+ 1<<¢<<2"—1, let 4, =¢—2"", then
1<, <<2" '—1. Let y_ be the neighbor of yin L.
Then y;, 7 x since x and y are not adjacent. By
Lemma 1.7, there exists an xy_-path Py, of
length 2" ' —1 in L. We choose an xzpath P,. of
length 4, in P, . Let 2 be the neighbor of zin R.
By Lemma 1.7, there exists a zgzy-path P. ., of
length 2" ' —1 in R. Then P, + 2z + P
xy-path of length 7 in VQ,.

The theorem follows. L]

(F#% 741 7O

2Ry

oy Is an
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dwﬁ:*wa N i
K=— b . =—1 19

cw N o

Notice that
K=—1<0,
according to Ref. [5, Theorem 3.3, the normal
bundle 9C M) is flat, i.e. Qf=0. Furthermore,
similarly we could get
df = df —de, = e, — >, wie.s
E
df.dfy = ()2 4+ D) (w)?

|

and M is a space-like submanifold in R¥*! of the

constant sectional curvature —1. []

4 Conclusion

In this paper, we have derived three kinds of

2n 1

Bianchi transformations in Rj In comparison
with Backlund transformation in R?" ' in Ref. [5],
we know that only the Bianchi transformation in
Case (i ) could be regarded as a special Bicklund

transformation. Further more, we expect to

generalize the Bianchi transformation to Ry~

where k>1.
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