JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2014)09-0732-06

Cycles and paths embedded in varietal hypercubes

CAO Jin, XIAO Li, XU Junming

(School of Mathematical Sciences, University of Science and Technology of China; Wu Wentsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, Hefei 230026, China)

Abstract: The varietal hypercube VQ_n is a variant of the hypercube Q_n and has better properties than Q_n with the same number of edges and vertices. It was proved that every edge of VQ_n is contained in cycles of every length from 4 to 2^n except 5, and that every pair of vertices with distance d is connected by paths of every length from d to 2^n-1 except 2 and 4 if d=1.

Key words: graphs; cycle; path; varietal hypercube; pancyclicity; panconnectivity

CLC number: O157. 5; TP302. 1 Document code: A doi:10.3969/j.issn. 0253-2778. 2014. 09. 004

AMS Subject Classification (2000): Primary 05C38; Secondary 90B10

Citation: Cao Jin, Xiao Li, Xu Junming. Cycles and paths embedded in varietal hypercubes [J]. Journal of University of Science and Technology of China, 2014,44(9):732-737,741.

变形超立方体的圈和路嵌入

曹 瑾,肖 力,徐俊明

(中国科学技术大学数学科学学院;中国科学院吴文俊数学重点实验室,安徽合肥 230026)

摘要:作为超立方体网络 Q_n 的变形,n 维变形超立方体 VQ_n 具有许多优于超立方体所具有的性质. 这里证明了对任何整数 $\ell \in [4,2^n]$, VQ_n 中每条边被包含在长度为 ℓ 的圈中除非 $\ell = 5$;对任何顶点对(x,y) 和整数 $\ell \in [d,2^n-1]$,其中,d 为这两点之间的距离, VQ_n 中存在长度为 ℓ 的 xy 路除非当 d=1 时 $\ell=2,4$. **关键词**:图论:圈:路:变形超立方体:泛圈性:泛连通性

0 Introduction

The hypercube network Q_n has proved to be one of the most popular interconnection networks since it has a simple structure and has many nice properties. As a variant of Q_n , the varietal hypercube VQ_n , proposed in Ref. [1], has many properties similar or superior to Q_n . For example, the connectivity and restricted connectivity of VQ_n

and Q_n are the same^[2], while all the diameter and the average distance, fault-diameter and wide-diameter of VQ_n are smaller than those of the hypercube^[1,3].

Several topological structures of multicomputer systems are commonly used in various applications such as image processing and scientific computing. Among them, the most common structures are paths and cycles.

 $\textbf{Received:}\ 2013\text{-}05\text{-}03\textbf{;}\ \textbf{Revised:}\ 2013\text{-}09\text{-}10$

Foundation item: Supported by NNSF of China (61272008).

Biography: CAO Jin, female, born in 1989, master. Research field: combinatorics and graph theory. E-mail: cjy1229@mail. ustc. edu. cn Corresponding author: XU Junming, Prof. E-mail: xujm@ustc. edu. cn

Embedding these structures in various well-known networks, such as Q_n , has been extensively investigated in the literatures (see, for example, Ref. [4]). However, no study has yet been conducted on embedding them in VQ_n . In this paper, we show that VQ_n should be capable of embedding these structures. The main results are stated as follows:

Every edge of VQ_n is contained in cycles of every length from 4 to 2^n except 5, and every pair of vertices with distance d is connected by paths of every length from d to $2^n - 1$ except 2 and 4 if d=1.

Some definitions and basic properties of VQ_n are given in Section 1. The proofs of the results are given in Section 2.

1 Definitions and lemmas

We follow Ref. [5] for graph-theoretical terminology and notation not defined here. A graph G = (V, E) always means a simple and connected graph, where V = V(G) is the vertex-set and E = E(G) is the edge-set of G. For $uv \in E(G)$, we call u (resp. v) is a neighbor of v (resp. u). A uv-path is a sequence of adjacent vertices, written as $(v_0, v_1, v_2, \dots, v_m)$, in which $u = v_0$, $v = v_m$ and all the vertices $v_0, v_1, v_2, \dots, v_m$ are different from each other, u and v are called the end-vertices of v. If v is then a v in v denoted by v is the number of edges in v. The length of the shortest v in v denoted by v is called the distance between v and v in v denoted by v in v

$$P = (v_0, v_1, \cdots, v_i, v_{i+1}, \cdots, v_m),$$

we can write

$$P=P(v_0$$
 , $v_i)+v_iv_{i+1}+P(v_{i+1}$, $v_m)$, and the notation $P=v_iv_{i+1}$ denotes the subgraph

obtained from P by deleting the edge $v_i v_{i+1}$.

The *n*-dimensional varietal hypercube VQ_n is the labeled graph defined recursively as follows. VQ_1 is the complete graph of two vertices labeled 0 and 1, respectively. Assume that VQ_{n-1} has been constructed. Let VQ_{n-1}^0 (resp. VQ_{n-1}^1) be a labeled

graph obtained from VQ_{n-1} by inserting a zero (resp. 1) in front of each vertex-labeling in VQ_{n-1} . For n > 1, VQ_n is obtained by joining vertices in VQ_{n-1}^0 and VQ_{n-1}^1 , according to the following rule: a vertex

$$x = 0 x_{n-1} x_{n-2} x_{n-3} \cdots x_2 x_1$$

in VQ_{n-1}^0 and a vertex

$$y = 1 y_{n-1} y_{n-2} y_{n-3} \cdots y_2 y_1$$

in VQ_{n-1}^1 are adjacent in VQ_n if and only if ①

$$x_{n-1} x_{n-2} x_{n-3} \cdots x_2 x_1 = y_{n-1} y_{n-2} y_{n-3} \cdots y_2 y_1$$
 if $n \neq 3 k$, or ②

$$x_{n-3}\cdots x_2 x_1 = y_{n-3}\cdots y_2 y_1$$

and
$$(x_{n-1} x_{n-2}, y_{n-1} y_{n-2}) \in I$$
 if $n=3k$, where

$$I = \{(00,00),(01,01),(10,11),(11,10)\}.$$

Fig. 1 shows the examples of varietal hypercubes VQ_n for n = 1, 2, 3 and 4, respectively.

Fig. 1 The varietal hypercubes VQ_1 , VQ_2 , VQ_3 and VQ_4

The edges of Type ② are referred to as crossing edges when

$$(x_{n-1}x_{n-2}, y_{n-1}y_{n-2}) \in \{(10,11),(11,10)\}.$$

All the other edges are referred to as normal edges.

The varietal hypercube VQ_n is proposed in Ref. [1] as an attractive alternative to the n-dimensional hypercube Q_n when they are used to model the topological structure of a large-scale parallel processing system. Like Q_n , VQ_n is an n-regular graph with 2^n vertices and $2^{n-1}n$ edges.

For convenience, we express VQ_n as $VQ_n = L \odot R$, where $L = VQ_{n-1}^0$ and $R = VQ_{n-1}^1$, and denote by $x_L x_R$ the *n*-transversal edge joining $x_L \in L$ and $x_R \in R$. The recursive structure of VQ_n gives the following simple properties.

Lemma 1.1 Let $VQ_n = L \odot R$ with $n \ge 1$. Then VQ_n contains no triangles and every vertex $x_L \in L$ has exactly one neighbor x_R in R joined by the n-transversal edge $x_L x_R$.

Lemma 1.2 Let $VQ_n = L \odot R$ and xy be an n-transversal edge in VQ_n with $x \in L$ and $y \in R$. For $n \ge 3$, let x = 0 $abx_{n-3} \cdots x_1$ and $\beta = x_{n-3} \cdots x_1$. Then y = 1 $a'b'\beta$, where ab = a'b' if xy is a normal edge, and $(ab, a'b') = (1b, 1 \ \overline{b})$ if xy is a crossing edge, where $\overline{b} = \{0, 1\} \setminus b$.

Lemma 1.3 Any edge in VQ_n ($n \ge 2$) is contained in a cycle of length 4.

Proof Clearly, the conclusion is true for n=2. Assume $n \ge 3$ and let xy be any edge in VQ_n . Then by definition of VQ_n there is some m with $2 \le m \le n$ such that xy is an m-transversal edge. Let $VQ_m = L \odot R$, $x \in L$ and $y \in R$.

If xy is a normal edge, let u_L be a neighbor of x in L and u_R be the neighbor of u_L in R, then y and u_R are adjacent and so (x, u_L, u_R, y) is a cycle of length 4.

If xy is a crossing edge, let $x=01b\beta$, then $y=11\overline{b}\beta$. Choose $u_L=01\overline{b}\beta$. Then $u_R=11b\beta$ by Lemma 1. 2, and so (x, u_L, u_R, y) is a cycle of length 4. \square

Lemma 1.4 Any n-transversal edge must be contained in some cycle of length 5 unless $n \neq 3k$ for $k \geqslant 1$.

Proof Let $VQ_n = L \odot R$ and xy be an n-transversal edge in VQ_n , where $x \in L$ and $y \in R$. We first prove that xy is not contained in any cycle of length 5 if $n \neq 3k$ for $k \geqslant 1$. The conclusion is true for n=1 or 2 clearly. Assume $n \geqslant 3$ below.

Suppose that there is a cycle C = (x, u, z, v, y) of length 5 containing the edge xy. Then C contains two n-transversal edges. Since $n \neq 3k$, xy is a normal edge. Let x = 0 $ab\beta$, where $\beta = x_{n-3} \cdots x_1$. Then y = 1 $ab\beta$. Since every vertex in L has exactly one neighbor in R by Lemma 1. 1, $u \in L$ and $v \in R$.

Without loss of generality, assume $z \in L$. Then x and z differ in exactly two positions. Without loss of generality, let $z = 0\bar{a} \bar{b} \beta$. Since zv is an n-transversal edge and $n \neq 3k$, $v = 1\bar{a} \bar{b} \beta$. Thus, y and v differ in exactly two positions, which implies that y and v are not adjacent, a contradiction.

We now show that the *n*-transversal edge xy must be contained in some cycle of length 5 if n=3k for $k\geqslant 1$ by constructing such a cycle. Let x=0 $ab\beta\in L$ and y=1 $a'b'\beta\in R$, where $(ab,a'b')\in I$. A required cycle C=(x,u,z,v,y) can be constructed as follows.

If xy is a normal edge, then ab = a'b' = 0b. Let $u=00 \ \overline{b}\beta$, $z=01 \ \overline{b}\beta$ and $v=11b\beta$ (where zv is a crossing edge).

If xy is a crossing edge, then

$$(ab, a'b') = (1b, 1\overline{b}).$$

Let $u=01\ \overline{b}\beta$, $z=00\ \overline{b}\beta$ and $v=10\ \overline{b}\beta$ (where zv is a normal edge).

The lemma follows.

Lemma 1.5 Any *n*-transversal edge in VQ_n is contained in cycles of lengths 6 and 7 for $n \ge 3$.

Proof Let $VQ_n = L \odot R$ and xy be an n-transversal edge in VQ_n , where $x \in L$ and $y \in R$.

We first show that xy is contained in a cycle of length 6. By Lemma 1.3, there is a cycle C of length 4. Let C = (x, u, v, y), where $u \in L$ and $v \in R$. Also by Lemma 1.3, there is a cycle C' of length 4 containing the xu in L. Clearly, $C \cap C' = \{xu\}$. Thus, $C \cup C' = xu$ is a cycle of length 6 containing the edge xy.

We now show that xy is contained in a cycle of length 7. If n=3k for $k\geqslant 1$ then, by Lemma 1.4, there is a cycle C of length 5 containing the edge xy. Let C=(x,u,z,v,y), where $x,u,z\in L$ and $v\in R$, without loss of generality. By Lemma 1.3, there is a cycle C' of length 4 containing the edge yv in R. Clearly, $C\cap C'=\{yv\}$. Thus $C\cup C'-yv$ is a cycle of length 7 containing the edge xy.

Assume $n \neq 3k$ for $k \geqslant 1$ below. In this case, all *n*-transversal edges are normal edges. We can choose a cycle C = (x, u, v, y) such that the edge

xu lies on some subgraph H that is isomorphic to VQ_3 . By Lemma 1.4, there is a cycle C' of length 5 containing the edge xu in $H \subseteq L$. Then $C \cup C' = xu$ is a cycle of length 7 containing the edge xy.

The lemma follows.
$$\Box$$

The *n*-dimensional crossed cube CQ_n is such a graph, whose vertex-set is the same as VQ_n , with its two vertices $x = x_n \cdots x_2 x_1$ and $y = y_n \cdots y_2 y_1$ are linked by an edge if and only if there exists some j $(1 \le j \le n)$ such that

- (a) $x_n \cdots x_{j+1} = y_n \cdots y_{j+1}$,
- (b) $x_i \neq y_i$,
- (c) $x_{j-1} = y_{j-1}$ if j is even,
- (d) $(x_{2i}x_{2i-1}, y_{2i}y_{2i-1}) \in I$ for each $i = 1, 2, \dots, \lceil \frac{1}{2}j \rceil 1.$

By definition, $VQ_n \cong CQ_n$ for each n=1,2,3. The following results on CQ_n are used in the proofs of our main results for n=3.

Lemma 1.6^[6-8] For any two vertices x and y with distance d in CQ_n with $n \ge 2$, CQ_n contains xy-paths of every length from d to 2^n-1 except 2 when d=1.

Lemma 1.7 For $n \ge 3$ and any integer ℓ with $2^n - 2 \le \ell \le 2^n - 1$, there exists an xy-path of length ℓ between any pair of vertices x and y in VQ_n .

Proof We proceed by induction on $n \ge 3$. By Lemma 1.6, the conclusion is true for n = 3 since $VQ_3 \cong CQ_3$. Assume the induction hypothesis for n-1 with $n \ge 4$. Let $VQ_n = L \odot R$, x and y be two distinct vertices in VQ_n .

If $x, y \in L$ (or R), then, by the induction hypothesis, there exists an xy-path P_L of length ℓ_0 in L, where $\ell_0 \in \{2^{n-1}-2,2^{n-1}-1\}$. Let u be the neighbor of y in P_L , u_R and y_R be the neighbors of u and y in R, respectively. By the induction hypothesis, there exists a $u_R y_R$ -path P_R of length $2^{n-1}-1$ in R. Then $P_L-uy+uu_R+P_R+y_R y$ is an xy-path of length ℓ_0+2^{n-1} in VQ_n .

If $x \in L$ and $y \in R$, let u be a vertex in L rather than x such that its neighbor u_R in R is different from y, then, by the induction hypothesis, there exist an xu-path P_L of length ℓ'_0

in L and a u_Ry -path P_R of length $2^{n-1}-1$ in R, where $\ell_0' \in \{2^{n-1}-2, 2^{n-1}-1\}$. Then $P_L + uu_R + P_R$ is an xy-path of length $\ell_0' + 2^{n-1}$ in VQ_n .

The lemma follows.

Lemma 1.8 Let $VQ_n = L \odot R$, x_L and y_L be two vertices in L. Then

$$d_{L}(x_{L}, y_{L}) = d_{R}(x_{R}, y_{R})$$

if $n \neq 3k$ and

$$| d_{L}(x_{L}, y_{L}) - d_{R}(x_{R}, y_{R}) | \leq 2$$

if n=3k for $k \ge 1$.

Proof Without loss of generality, assume $d_L(x_L, y_L) \leq d_R(x_R, y_R)$. Let P_L be the shortest $x_L y_L$ -path in L and P_R a path in R obtained from P_L by replacing the first position 0 by 1 in every vertices. Clearly, $\varepsilon(P_R) = \varepsilon(P_L)$.

Note that for an edge $u_L v_L$ in P_L , if $u_L v_R$ is a crossing edge, then $v_L u_R$ is also a crossing edge. For convenience, we call the edge $u_L v_L$ an induced crossing edge, u_L and v_L induced crossing vertices.

If both x_L and y_L are not induced crossing vertices, then P_R is an $x_R y_R$ -path in R, and so

$$d_{R}(x_{R}, y_{R}) \leqslant \varepsilon(P_{R}) = d_{L}(x_{L}, y_{L}),$$

and so

$$d_{R}(x_{R}, y_{R}) = d_{L}(x_{L}, y_{L}).$$

Assume below that $\{x_L, y_L\}$ contains induced crossing vertices. Then n=3k.

Let x_L be an induced crossing vertex, $x_L u_L$ an induced crossing edge. Then, x_R is not an end-vertex of P_R , while u_R is an end-vertex of P_R . Similarly, if y_L is an induced crossing vertex, $y_L v_L$ an induced crossing edge, then y_R is not an end-vertex of P_R , while v_R is an end-vertex of P_R . Thus, an $x_R y_R$ -path $P_R' \subseteq P_R$ has length

$$\varepsilon(P'_R) =$$

$$\varepsilon(P_L) = \begin{cases} 0 \text{ if neither } x_L \text{ and } y_L \\ & \text{are induced crossing vertices;} \\ 1 \text{ if either } x_L \text{ or } y_L \\ & \text{is an induced crossing vertex;} \\ 2 \text{ if both } x_L \text{ and } y_L \\ & \text{are induced crossing vertices,} \end{cases}$$

and $d_R(x_R, y_R) \leq \varepsilon(P'_R)$. If

$$d_{\rm R}(x_{\rm R}, y_{\rm R}) \leqslant d_{\rm L}(x_{\rm L}, y_{\rm L}) - 3$$

then, using the above method, we can prove that

there is an $x_L y_L$ -path P'_L with length

$$\varepsilon(P'_L) \leqslant d_R(x_R, y_R) + 2,$$

from which we have

$$d_{L}(x_{L}, y_{L}) \leqslant \varepsilon(P'_{L}) \leqslant$$

$$d_{R}(x_{R}, y_{R}) + 2 \leqslant d_{L}(x_{L}, y_{L}) - 1,$$

a contradiction. Thus,

$$d_{R}(x_{R}, y_{R}) \geqslant d_{L}(x_{L}, y_{L}) - 2.$$

And so

$$| d_{L}(x_{L}, y_{L}) - d_{R}(x_{R}, y_{R}) | \leq 2.$$

The lemma follows.

Corollary 1.9 Let $VQ_n = L \odot R$, x and y be two vertices in H, where $H \in \{L, R\}$. Then

$$d_{\rm H}(x,y) = d_{{\rm VQ}_x}(x,y).$$

Proof Let x and y be in L and P the shortest xy-path in VQ_n . If $P \cap R \neq \emptyset$, then $P \cap L$ consists of several sections of P. Without loss of generality, assume that $P \cap L$ consists of two sections, P_{xu_L} and $P_{v_L,y}$. Then u_Rv_R -section $P_{u_Rv_R}$ of P from u_R to v_R is in P. By Lemma 1.8,

$$d_{\rm L}(u_{\rm L},v_{\rm L})\leqslant d_{\rm R}(u_{\rm R},v_{\rm R})+2=\epsilon(P_{u_{\rm R}v_{\rm R}})+2.$$
 Since P is the shortest xy -path in VQ_n , we have that

$$\begin{aligned} d_{VQ_n}(x, y) &\leqslant d_L(x, y) = \\ &\epsilon(P_{xu_L}) + d_L(u_L, v_L) + \epsilon(P_{v_L y}) &\leqslant \\ &\epsilon(P_{xu_L}) + \epsilon(P_{u_R v_R}) + 2 + \epsilon(P_{v_L y}) = \\ &\epsilon(P) = d_{VQ_n}(x, y), \end{aligned}$$

which implies $d_L(x, y) = d_{VQ_n}(x, y)$. The corollary follows.

Corollary 1.10 Let $VQ_n = L \odot R$, $x \in L$ and $y \in R$. Then there is an *n*-transversal edge $u_L u_R$ such that

$$d_{VQ_{u}}(x, y) = d_{L}(x, u_{L}) + 1 + d_{R}(u_{R}, y).$$

2 Main results

A graph G of order n is said to be ℓ -pancyclic (resp. ℓ -vertex-pancyclic, ℓ -edge-pancyclic) if it contains (resp. each of its vertices, edges is contained in) cycles of every length from ℓ to n. Clearly, an ℓ -edge-pancyclic graph must be ℓ -vertex-pancyclic and ℓ -pancyclic.

We consider edge-pancyclity of VQ_n . Since VQ_n contains no triangles, no edge is contained in a

cycle of length 3. Lemma 1.3 shows that any edge in $VQ_n(n \ge 2)$ is contained in a cycle of length 4. Lemma 1.4 shows that no *n*-transversal edge is contained in a cycle of length 5 if $n \ne 3k$ for $k \ge 1$. In general, we have the following result.

Theorem 2.1 For $n \ge 2$, every edge of VQ_n is contained in cycles of every length from 4 to 2^n except 5 and, hence, VQ_n is 6-edge-pancyclic for $n \ge 3$.

Proof By Lemma 1.3, we only need to show that every edge of VQ_n is contained in cycles of every length from 6 to 2^n for $n \ge 3$. Let ℓ be an integer with $6 \le \ell \le 2^n$ and xy be an edge in VQ_n . In order to prove the theorem, we only need to show that xy lies on a cycle of length ℓ . We proceed by induction on $n \ge 3$.

Since $VQ_3 \cong CQ_5$, by Lemma 1.6, the conclusion is true for n=3. Assume the induction hypothesis for n-1 with $n \ge 4$. Let $VQ_n = L \odot R$. There are two cases.

Case 1 $x, y \in L$ or $x, y \in R$. Without loss of generality, let $x, y \in L$.

By the induction hypothesis, we only need to consider ℓ with $2^{n-1}+1 \le \ell \le 2^n$.

If $\ell=2^{n-1}+1$, then let x_R and y_R be the neighbors of x and y in R, respectively. By Lemma 1.7, there exists an $x_R y_R$ -path $P_{x_R y_R}$ of length $2^{n-1}-2$ in R. Then $xx_R+P_{x_R y_R}+y_R y+xy$ is a cycle of length $2^{n-1}+1$.

If $2^{n-1}+2 \le \ell \le 2^n$, let $\ell_0 = \ell-2^{n-1}-1$, then $1 \le \ell_0 \le 2^{n-1}-1$. By Lemma 1.7, there exists a cycle C of length 2^{n-1} containing the edge xy in L. We choose an xz-path P_x of length ℓ_0 in C that contains xy. Let x_R and z_R be the neighbors of x and z in R, respectively. By Lemma 1.7, there exists an $x_R z_R$ -path $P_{x_R z_R}$ of length $2^{n-1}-1$ in R. Then $xx_R + P_{x_R z_R} + z_R z + P_x$ is a cycle of length ℓ containing the edge xy in VQ_n .

Case 2 $x \in L$ and $y \in R$.

In this case, xy is an n-transversal edge. By Lemma 1.5, the conclusion is true for each $\ell = 6$, 7. Assume $\ell \geqslant 8$ below.

If
$$\ell \leq 2^{n-1} + 2$$
, let $\ell_0 = \ell - 2$, then $6 \leq \ell_0 \leq 2^{n-1}$.

By Lemma 1.3, there exists a 4-cycle $C = (x, u_L, u_R, y)$. By the induction hypothesis, there exists a cycle C_L of length ℓ_0 that contains xu_L in L. Then, $C \cap C_L = \{xu_L\}$, and so $C \cap C_L = \{xu_L\}$ is a cycle of length ℓ containing xy.

If $2^{n-1}+3 \le \ell \le 2^n$, let $\ell_0 = \ell-2^{n-1}-1$, then $2 \le \ell_0 \le 2^{n-1}-1$. Choose a vertex u in L rather than x, By Lemma 1.7, there exists an xu-path P_{xu} of length $2^{n-1}-1$ in L, from which we can choose an xz-path P_{xx} of length ℓ_0 . Let z_R be the neighbor of z in R. By Lemma 1.7, there exists a $z_R y$ -path $P_{z_R y}$ of length $2^{n-1}-1$. Thus, $P_{xz}+zz_R+P_{z_R y}+xy$ is a cycle of length ℓ containing xy in VQ_n .

The theorem follows.

A graph G of order n is said to be panconnected if for any two distinct vertices x and y with distance d in G there are xy-paths of every length from d to n-1.

We now consider panconnectivity of VQ_n . Since VQ_n contains no triangles, there exist no xy-paths of length 2 if x and y are adjacent. Lemma 1.4 shows that there exist no xy-paths of length 4 if xy is an n-transversal edge in VQ_n if $n\neq 3k$ for $k \geq 1$. In general, we have the following result.

Theorem 2.2 For $n \ge 3$, any two vertices x and y in VQ_n with distance d, there exist xy-paths of every length from d to 2^n-1 except 2,4 if d=1.

Proof Let x and y be any two vertices in VQ_n with distance d. First, we note that if d=1 then the theorem is true by Theorem 2.1. In the following discussion, we assume $d \ge 2$. We only need to prove that there exist xy-paths of every length from d+1 to 2^n-1 .

We proceed by induction on $n \ge 3$. Since $VQ_3 \cong CQ_3$, by Lemmal. 6, the conclusion is true for n = 3. Assume the induction hypothesis for n-1 with $n \ge 4$. Let $VQ_n = L \odot R$.

Case 1 $x, y \in L$ or $x, y \in R$. Without loss of generality, let $x, y \in L$.

By Corollary 1.9, $d_L(x,y) = d$. By the induction hypothesis, we only need to consider ℓ with $2^{n-1} \le \ell \le 2^n - 1$.

If
$$2^{n-1} \le \ell \le 2^{n-1} + 1$$
, then
$$2^{n-1} - 2 \le \ell - 2 \le 2^{n-1} - 1$$
.

Let x_R and y_R be the neighbors of x and y in R, respectively. By Lemma 1.7, there exists an $x_R y_R$ -path P_R of length $\ell-2$ in R. Then $x_R y_R + P_R + y_{y_R}$ is an x_Y -path of length ℓ in VQ_n .

If $2^{n-1}+2 \leqslant \ell \leqslant 2^n-1$, let $\ell_0 = \ell-2^{n-1}-1$. then $1 \leqslant \ell_0 \leqslant 2^{n-1}-2$. By Lemma 1.7, there exists an xy-path P_{xy} of length $2^{n-1}-1$ in L. We choose an xz-path P_{xz} of length ℓ_0 in P_{xy} . Clearly, $z \notin \{x,y\}$. Let z_R and y_R be the neighbors of z and y in R, respectively. By Lemma 1.7, there exists a $z_R y_R$ -path P_R of length $2^{n-1}-1$ in R. Then $P_{xz}+zz_R+P_R+yy_R$ is an xy-path of length ℓ in VQ_n .

Case 2 $x \in L$ and $y \in R$.

By Corollary 1.10, there is the shortest xy-path P_{xy} in VQ_n such that

$$P_{xy} = P_{xu_1} + u_L u_R + P u_R y,$$

where $u_L \in L$ and $u_R \in R$, $\varepsilon(P_{xu_L}) = d_L(x, u_L)$ and $\varepsilon(P_{u_R y}) = d_R(u_R, y)$. Thus,

$$d = \varepsilon(P_{xu_L}) + 1 + \varepsilon(P_{u_R y}) =$$

 $d_L(x, u_L) + 1 + d_R(u_R, y).$

Since $d \ge 2$, without loss of generality, assume $d_L(x, u_L) \ge d_R(u_R, y)$.

If $d+1 \le \ell \le 2^{n-1}$, let $\ell_0 = \ell - d_R(u_R, y) - 1$, then $d_L(x, u_L) + 1 \le \ell_0 \le 2^{n-1} - 1$. By the induction hypothesis, there exists an xu_L -path P' of length ℓ_0 in L. Then $P' + u_L u_R + P_{u_R y}$ is an xy-path of length ℓ in VQ_n .

If $2^{n-1}+1 \leqslant \ell \leqslant 2^n-1$, let $\ell_0 = \ell-2^{n-1}$, then $1 \leqslant \ell_0 \leqslant 2^{n-1}-1$. Let y_L be the neighbor of y in L. Then $y_L \neq x$ since x and y are not adjacent. By Lemma 1.7, there exists an xy_L -path P_{xy_L} of length $2^{n-1}-1$ in L. We choose an xz-path P_{xx} of length ℓ_0 in P_{xy_L} . Let z_R be the neighbor of z in R. By Lemma 1.7, there exists a z_Ry -path P_{z_Ry} of length $2^{n-1}-1$ in R. Then $P_{xx}+zz_R+P_{z_Ry}$ is an xy-path of length ℓ in VQ_n .

The theorem follows. □

(下转第 741 页)

$$K = -\frac{\mathrm{d}\omega_{i}^{j} - \sum_{k} \omega_{i}^{k} \wedge \omega_{k}^{j}}{\varepsilon_{i}\omega^{i} \wedge \omega^{j}} = -1 \qquad (19)$$

Notice that

$$K = -1 < 0$$
,

according to Ref. [5, Theorem 3.3], the normal bundle $\vartheta(M_1^n)$ is flat, i.e. $\Omega_a^g = 0$. Furthermore, similarly we could get

$$\mathrm{d}\widetilde{f} = \mathrm{d}f - \mathrm{d}e_n = \omega^n e_n - \sum_a \omega_n^a e_a,$$

$$\langle \mathrm{d}\widetilde{f}, \mathrm{d}\widetilde{f} \rangle = (\omega^n)^2 + \sum_{a=n+1}^{2n-1} (\omega_n^a)^2$$

and \widetilde{M} is a space-like submanifold in $\mathbb{R}^{2^{n-1}}$ of the constant sectional curvature -1.

4 Conclusion

In this paper, we have derived three kinds of Bianchi transformations in $\mathbb{R}^{2^{n-1}}$. In comparison with Bäcklund transformation in $\mathbb{R}^{2^{n-1}}$ in Ref. [5], we know that only the Bianchi transformation in Case (\parallel) could be regarded as a special Bäcklund transformation. Further more, we expect to

generalize the Bianchi transformation to \mathbb{R}^{2n-1}_k where $k \ge 1$.

Acknowledgments The author is grateful to associate Prof. Zuo Dafeng for his valuable suggestions.

References

- [1] Bianchi L. Ricerche sulle superficie a curvatura costante esulle elicoidi[J]. Ann Sci Norm Sup Pisa (1), 1879, 2: 285-340.
- [2] Aminov Y. Bianchi transform for the domain of multidimensional Lobachevsky space[J]. Ukrain Geom Sb, 1978, 21: 3-5 (in Russian).
- [3] Aminov Y, Sym A. On Bianchi and Bäcklund transformations of two dimensional surfaces in E⁴[J]. Math Physics, Analysis, Geometry, 2000, 3: 75-89.
- [4] Gorkavyy V, Nevmerzhytska O. Pseudo-spherical submanifolds with degenerate Bianchi transformation [J]. Results Math, 2011, 60:103-116.
- [5] Chen Q, Zuo D, Cheng Y. Isometric immersions of pseudo-Riemannian space forms [J]. Journal of Geometry and Physics, 2004, 52; 241-262.

(上接第737页)

References

- [1] Cheng S Y, Chuang J H. Varietal hypercube: A new interconnection networks topology for large scale multicomputer [C]// Proceedings of International Conference on Parallel and Distributed Systems. IEEE, 1994: 703-708.
- [2] Wang J W, Xu J M. Reliability analysis of varietal hypercube networks [J]. Journal of University of Science and Technology of China, 2009, 39 (12): 1248-1252.
- [3] Jiang M, Hu X Y, Li Q L. Fault-tolerant diameter and width diameter of varietal hypercubes [J]. Applied Mathematics: Journal of Chinese University, Ser A, 2010, 25 (3): 372-378 (in Chinese).
- [4] Xu J M, Ma M J. A survey on cycle and path

- embedding in some networks [J]. Frontiers of Mathematics in China, 2009, 4 (2): 217-252.
- [5] Xu J M. Theory and Application of Graphs [M].
 Dordrecht/Boston/London: Kluwer Academic
 Publishers, 2003.
- [6] Fan J, Jia X, Lin X. Complete path embeddings in crossed cubes [J]. Information Sciences, 2006, 176(22): 3 332-3 346.
- [7] Xu J M, Ma M J, Lü M. Paths in Möbius cubes and crossed cubes [J]. Information Processing Letters, 2006, 97(3): 94-97.
- [8] Yang X F, Evans D J, Megson G M, et al. On the path-connectivity ertex-pancyclicity and edge-pancyclicity of crossed cubes[J]. Neural, Parallel and Scientific Computations, 2005, 13(1): 107-118.