Hindawi Publishing Corporation International Journal of Combinatorics Volume 2015, Article ID 513073, 6 pages http://dx.doi.org/10.1155/2015/513073

Research Article

Hamilton Paths and Cycles in Varietal Hypercube Networks with Mixed Faults

Jian-Guang Zhou and Jun-Ming Xu

Department of Mathematics, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei, Anhui 230026, China

Correspondence should be addressed to Jun-Ming Xu; xujm@ustc.edu.cn

Received 16 September 2014; Accepted 5 January 2015

Academic Editor: Chris A. Rodger

Copyright © 2015 J.-G. Zhou and J.-M. Xu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers the varietal hypercube network VQ_n with mixed faults and shows that VQ_n contains a fault-free Hamilton cycle provided faults do not exceed n-2 for $n \ge 2$ and contains a fault-free Hamilton path between any pair of vertices provided faults do not exceed n-3 for $n \ge 3$. The proof is based on an inductive construction.

1. Introduction

As a topology of interconnection networks, the hypercube Q_n is the most simple and popular since it has many nice properties. The varietal hypercube VQ_n is a variant of Q_n and proposed by Cheng and Chuang [1] in 1994 and has many properties similar or superior to Q_n . For example, they have the same numbers of vertices and edges and the same connectivity and restricted connectivity (see Wang and Xu [2]), while all the diameter and the average distances, fault-diameter, and wide-diameter of VQ_n are smaller than those of the hypercube Q_n (see Cheng and Chuang [1], Jiang et al. [3]). Recently, Xiao et al. [4] have shown that VQ_n is vertextransitive.

Embedding paths and cycles in various well-known networks, such as the hypercube and some well-known variations of the hypercube, have been extensively investigated in the literature (see, e.g., Tsai [5] for the hypercubes, Fu [6] for the folded hypercubes, Huang et al. [7] and Yang et al. [8] for the crossed cubes, Yang et al. [9] for the twisted cubes, Hsieh and Chang [10] for the Möbius cubes, Li et al. [11] for the star graphs and Xu and Ma [12] for a survey on this topic). Recently, Cao et al. [13] have shown that every edge of VQ_n is contained in cycles of every length from 4 to 2^n except 5, and every pair of vertices with distance d is connected by paths of every length from d to d to d and d if d = 1, from which d contains a Hamilton cycle

for $n \ge 2$ and a Hamilton path between any pair of vertices for $n \ge 3$. Huang and Xu [14] have improved this result by considering edge-faults and showing that VQ_n contains a fault-free Hamilton cycle provided faulty edges do not exceed n-2 for $n \ge 3$ and a fault-free Hamilton path between any pair of vertices provided faulty edges do not exceed n-3 for $n \ge 3$. In this paper, we will further improve these results by considering mixed faults of vertices and edges and proving that VQ_n contains a fault-free Hamilton cycle provided the number of mixed faults does not exceed n-2 for $n \ge 2$ and contains a fault-free Hamilton path between any pair of vertices provided the number of mixed faults does not exceed n-3 for $n \ge 3$.

The proofs of these results are in Section 3. The definition and some basic structural properties of VQ_n are given in Section 2.

2. Definitions and Structural Properties

We follow [15] for graph-theoretical terminology and notation not defined here. A graph G = (V, E) always means a simple and connected graph, where V = V(G) is the vertexset and E = E(G) is the edge-set of G. For $xy \in E(G)$, we call x (resp., y) a neighbor of y (resp., x).

Let G_k be a labeled graph with vertex set $V_k=\{x_k\cdots x_2x_1:x_i\in\{0,1\},1\leqslant i\leqslant k\}.$ For $j\geqslant 1$, let

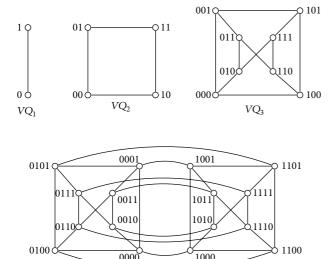


FIGURE 1: The varietal hypercubes VQ_1 , VQ_2 , VQ_3 , and VQ_4 .

 $\alpha_j = y_j \cdots y_1$, where $y_i \in \{0,1\}$ for each $i = 1, \ldots, j$. Use $G_k^{\alpha_j}$ to denote a labeled graph obtained from G_k by inserting the string α_j in front of each vertex-labeling in G_k . Clearly, $G_k^{\alpha_j} \cong G_k$.

Definition 1. The n-dimensional varietal hypercube VQ_n is the labeled graph defined recursively as follows. VQ_1 is the complete graph of two vertices labeled with 0 and 1, respectively. Assume that VQ_{n-1} has been constructed. For n>1, $VQ_n=VQ_{n-1}^0\odot VQ_{n-1}^1$ is obtained from VQ_{n-1}^0 and VQ_{n-1}^1 by joining vertices between them, according to the rule: a vertex $x=0x_{n-1}x_{n-2}x_{n-3}\cdots x_2x_1$ in VQ_{n-1}^0 and a vertex $y=1y_{n-1}y_{n-2}y_{n-3}\cdots y_2y_1$ in VQ_{n-1}^1 are adjacent in VQ_n if and only if

- (1) $x_{n-1}x_{n-2}x_{n-3}\cdots x_2x_1 = y_{n-1}y_{n-2}y_{n-3}\cdots y_2y_1$ if $n \neq 3k$, or
- (2) $x_{n-3} \cdots x_2 x_1 = y_{n-3} \cdots y_2 y_1$ and $(x_{n-1} x_{n-2}, y_{n-1} y_{n-2}) \in I$ if n = 3k, where $I = \{(00, 00), (01, 01), (10, 11), (11, 10)\}.$

Figure 1 shows the examples of varietal hypercubes VQ_n for n = 1, 2, 3, and 4, respectively.

For convenience, we write $VQ_n = L \odot R$, where $L = VQ_{n-1}^0$ and $R = VQ_{n-1}^1$. Clearly, the set M of edges between L and R is a perfect matching of size 2^{n-1} in VQ_n . Use x_Lx_R to denote an edge in M joining $x_L \in L$ and $x_R \in R$. By the recursive definition of VQ_n , $VQ_{n-1}^0 = VQ_{n-2}^{00} \odot VQ_{n-2}^{01}$ and $VQ_{n-1}^1 = VQ_{n-2}^{10} \odot VQ_{n-2}^{11}$. Thus, VQ_n is of the recursive structure shown as in Figure 2.

Use U and W to denote two subgraphs of VQ_n induced by $V(VQ_{n-2}^{00}) \cup V(VQ_{n-2}^{10})$ and $V(VQ_{n-2}^{01}) \cup V(VQ_{n-2}^{11})$, respectively. It should be noted that U and W are not always isomorphic to VQ_{n-1} , although L and R are isomorphic to VQ_{n-1} .

Definition 2. The graph $G_n = G_{n-1}^0 \oplus_M G_{n-1}^1$ is the labeled graph defined recursively as follows. G_1 is the complete graph of two vertices labeled with 0 and 1, respectively. $G_2 = G_1^0 \oplus G_1^1$ is obtained from G_1^0 and G_1^1 plus two edges joining 00 and 10, 01, and 11. For $n \geq 3$, $G_n = G_{n-1}^0 \oplus_M G_{n-1}^1$ is obtained from G_{n-1}^0 and G_{n-1}^1 by adding a perfect matching M between G_{n-1}^0 and G_{n-1}^1 , according to the following rule: M consists of two perfect matchings M_1 and M_2 , where M_1 is a perfect matching between G_{n-2}^{00} and G_{n-2}^{10} and G_{n-2}^{10} .

Clearly, by Definition 1, in VQ_i , the set M of edges between VQ_{i-1}^0 and VQ_{i-1}^1 is a perfect matching between them satisfying the rule in Definition 2. Thus, VQ_n is a special example of G_n . We state this fact as a simple observation.

Observation 1. For each $i=2,\ldots,n, VQ_i\cong VQ_{i-1}^0\oplus_M VQ_{i-1}^1$ for the perfect matching M defined by the rule in Definition 1. Moreover, $G_3\cong Q_3$ or VQ_3 , where Q_3 is a 3-dimensional cube.

3. Main Results

Let G be a graph, and let x and y be two distinct vertices in G. A subgraph P of G is called an xy-path, if its vertex-set can be expressed as a sequence of adjacent vertices, written as $P = (x_0, x_1, x_2, ..., x_m)$, in which $x = x_0, y = x_m$, and all the vertices $x_0, x_1, x_2, \dots, x_m$ are different from each other. For a path $P = (x_0, ..., x_i, x_{i+1}, ..., x_m)$, we can write P = $P(x_0, x_i) + x_i x_{i+1} + P(x_{i+1}, x_m)$, and the notation $P - x_i x_{i+1}$ denotes the subgraph obtained from P by deleting the edge $x_i x_{i+1}$. If P is an xy-path and $xy \in E(G)$, then P + xy is called a cycle in G. A cycle is called a Hamilton cycle if it contains all vertices in *G*. An *xy*-path *P* is called an *xy*-Hamilton path if it contains all vertices in G. A graph G is Hamiltonian if it contains a Hamilton cycle and is called Hamilton-connected if it contains an xy-Hamilton path for any two vertices x and y in G. Clearly, if G has at least three vertices and is Hamiltonconnected, then it certainly is Hamiltonian; moreover, every edge is contained in a Hamilton cycle.

Lemma 3 (Cao et al. [13]). VQ_n is Hamilton-connected for $n \ge 3$, and so every edge of VQ_n is contained in a Hamilton cycle for $n \ge 2$.

Let F be a subset of $V(G) \cup E(G)$. A subgraph H of G is called fault-free if H contains no elements in F. A graph G is called t-edge-fault-tolerant Hamiltonian (resp., t-edge-fault-free Hamilton-connected) if G-F contains a Hamilton cycle (resp., is Hamilton-connected) for any $F \subset E(G)$ with $|F| \leq t$. G is called t-fault-tolerant Hamiltonian (resp., t-fault-free Hamilton-connected) if G-F contains a Hamilton cycle (resp., is Hamilton-connected) for any $F \subset E(G) \cup V(G)$ with $|F| \leq t$.

Lemma 4 (Huang and Xu [14]). VQ_n is (n-2)-edge-fault-tolerant Hamiltonian for $n \ge 2$ and (n-3)-edge-fault-tolerant Hamilton-connected for $n \ge 3$.

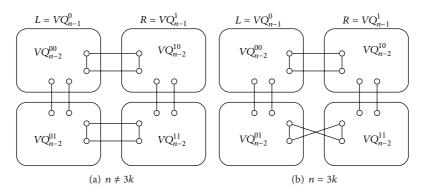


FIGURE 2: The recursive structure of VQ_n

In this paper, we will generalize this result by proving that VQ_n is (n-2)-fault-tolerant Hamiltonian for $n \ge 2$ and (n-3)-fault-tolerant Hamilton-connected for $n \ge 3$.

To prove our main results, we first prove the following result on the graph G_n .

Theorem 5. For $n \ge 3$, $G_n = G_{n-1}^0 \oplus_M G_{n-1}^1$ is (n-3)-fault-tolerant Hamilton-connected for any perfect matching M between G_{n-1}^0 and G_{n-1}^1 defined by the rule in Definition 2.

Proof. We proceed by induction on $n \ge 3$.

Since $G_3 \cong Q_3$ or VQ_3 , which is vertex-transitive, it is easy to check the conclusion is true for n=3. Suppose now that $n \geqslant 4$ and the result holds for any integer less than n. Let $F \subset E(G_n) \cup V(G_n)$ with $|F| \leqslant n-3$, and let x and y be two distinct vertices in $G_n - F$. We need to prove that $G_n - F$ contains an xy-Hamilton path. Without loss of generality, we can assume $F \subset V(G_n)$. Let $G_n = L \oplus_M R$, where

$$L = G_{n-2}^{00} \oplus_{M_1} G_{n-2}^{01}, \qquad R = G_{n-2}^{10} \oplus_{M_2} G_{n-2}^{11}, \tag{1}$$

and let

$$F_L = F \cap L, \qquad F_R = F \cap R.$$
 (2)

By symmetry of structure of G_n , we may assume $|F_L| \ge |F_R|$.

Case 1 ($|F_L| \le n-4$). In this case, by the hypothesis, we have $|F_R| \le |F_L| \le n-4$.

Subcase 1.1 $(x, y \in L \text{ or } x, y \in R)$. Without loss of generality, assume $x, y \in R$.

Since $R = G_{n-1}$ and $|F_R| \le n-4 = (n-1)-3$, by the induction hypothesis $R - F_R$ contains an xy-Hamilton path, say P_R . Since $|V(P_R)| = 2^{n-1} - |F_R| \ge 2^{n-1} - (n-4) > 2(n-3) \ge 2|F|$, there is an edge u_Rv_R in P_R such that the neighbors u_L and v_L of u_R and v_R in L are not in F. Since $L = G_{n-1}$ and $|F_L| \le n-4 = (n-1)-3$, by the induction hypothesis $L-F_L$ contains a u_Lv_L -Hamilton path, say P_L . Thus, $P_R-u_Rv_R+u_Ru_L+v_Rv_L+P_L$ is an xy-Hamilton path in G_n-F (see Figure 3(a)).

Subcase 1.2 ($x \in L$ and $y \in R$). Since $|M| = 2^{n-1}$ and $2^{n-1} - 2 > 2(n-3) \ge 2|F|$, there is an edge $u_L u_R \in M$ such that u_L and u_R

are not in $F \cup \{x, y\}$. By the induction hypothesis, let P_L be an xu_L -Hamilton path in $L - F_L$, and let P_R be a yu_R -Hamilton path in $R - F_R$. Then $P_L + u_L u_R + P_R$ is an xy-Hamilton path in $G_n - F$ (see Figure 3(b)).

Case 2 ($|F_L| = n - 3$). In this case, $|F_R| = 0$.

Subcase 2.1 $(x, y \in L)$. Arbitrarily take a vertex $u \in F_L$. Since $|F_L - u| = n - 4 = (n - 1) - 3$, by the induction hypothesis $L - (F_L - u)$ contains an xy-Hamilton path, say P_L . Without loss of generality, assume $u \in V(P_L)$. Let u_L and v_L be two neighbors of u in P_L , and let $u_L u_R$, $v_L v_R \in M$. By the induction hypothesis, R contains a $u_R v_R$ -Hamilton path, say P_R . Then $P_L - u + u_L u_R + v_L v_R + P_R$ is an xy-Hamilton path in $G_n - F$.

Subcase 2.2 ($x \in L$ and $y \in R$). If n = 4, then $L \cong R \cong Q_3$ or VQ_3 . Since $|F_L| = 1$ and L is vertex-transitive, we can assume $F_L = \{u\} = \{000\}$ unless x = 000. It is easy to check that L - u contains a Hamilton cycle, say C_L . Choose a neighbor u_L of x in C_L such that its neighbor u_R in R is not y. By the induction basis, R contains a yu_R -Hamilton path, say P_R . Then, $C_L - xu_L + u_Lu_R + P_R$ is an xy-Hamilton path in $G_4 - F$.

Assume now $n \ge 5$; that is, $n-2 \ge 3$. Let $F_{00} = F_L \cap V(G_{n-2}^{00})$, $F_{01} = F_L \cap V(G_{n-2}^{01})$. Without loss of generality, we can assume $F_{00} \ne \emptyset$.

(a) $y \in G_{n-2}^{11}$ (See Figure 4(a)). Arbitrarily take $z_{11} \in G_{n-2}^{11}$ with $z_{11} \neq y$, and let $z_{01}z_{11} \in M$. Since $n-2 \geqslant 3$, by the induction hypothesis G_{n-2}^{11} contains a $z_{11}y$ -Hamilton path, say P_{11} . Arbitrarily take a vertex $u \in F_{00}$. Since $n \geqslant 5$, by the induction hypothesis $L-(F_L-u)$ contains an xz_{01} -Hamilton path, say P_L . If u is in P_L , then let u_{00} and w_{00} be two neighbors of u in P_L ; if u is not in P_L , then let $u_{00}v_{00}$ be an edge in P_L . Let $u_{00}u_{10}, v_{00}v_{10} \in M$. By the induction hypothesis, G_{n-2}^{10} contains a $u_{10}v_{10}$ -Hamilton path, say P_{10} . Let $P_L' = P_L - u$ if u is in P_L and $P_L' = P_L - u_{00}v_{00}$ if u is not in P_L . Then $P_{10} + u_{00}u_{10} + v_{00}v_{10} + P_L' + z_{01}z_{11} + P_{11}$ is an xy-Hamilton path in $G_n - F$ (see Figure 4(a)).

(b) $y \in G_{n-2}^{10}$ (See Figure 4(b)). Arbitrarily take a vertex z_{01} in $G_{n-2}^{01} - F_L$ with $z_{01} \neq x$. Let z_{11} be the neighbor of z_{01} in G_{n-2}^{11} . Arbitrarily take a vertex $u \in F_{00}$. Since $n \geq 5$, by the induction hypothesis $L - (F_L - u)$ contains an xz_{01} -Hamilton

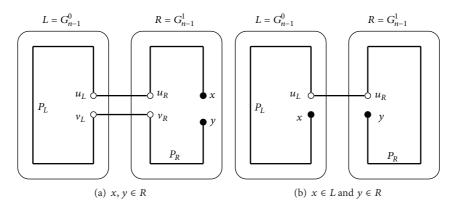


FIGURE 3: Illustrations of Case 1 in the proof of Theorem 5.

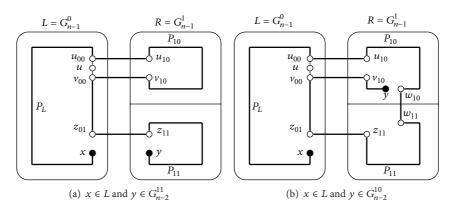


FIGURE 4: Illustrations of Subcase 2.2 in the proof of Theorem 5.

path, say P_L . If u is in P_L , then let u_{00} and w_{00} be two neighbors of u in P_L ; if u is not in P_L , then let $u_{00}v_{00}$ be an edge in P_L . Let $u_{00}u_{10}, v_{00}v_{10} \in M$. By the induction hypothesis, G_{n-2}^{10} contains a $u_{10}v_{10}$ -Hamilton path, say P_{10} . Since $y \in P_{10}$, we can write $P_{10} = P_{10}(v_{10}, y) + yw_{10} + P_{10}(w_{10}, u_{10})$. Let w_{11} be the neighbor of w_{10} in G_{n-2}^{11} . By the induction hypothesis, G_{n-2}^{11} contains a $z_{11}w_{11}$ -Hamilton path, say P_{11} . Let $P_L' = P_L - u$ if u is in P_L and $P_L' = P_L - u_{00}v_{00}$ if u is not in P_L . Then $P_L' + u_{00}u_{10} + v_{00}v_{10} + P_{10} - yw_{10} + w_{10}w_{11} + P_{11} + z_{01}z_{11}$ is an xy-Hamilton path in $G_n - F$ (see Figure 4(b)).

Subcase 2.3 $(x, y \in R)$. If n = 4, then $L \cong R \cong G_3$. By the induction basis, R contains an xy-Hamilton path, say P_R . Since G_3 is vertex-transitive and $|F_L| = 1$, it is easy to check that $L - F_L$ contains a Hamilton cycle, say C_L . Since L and R are 3-regular and isomorphic, there is an edge $u_R v_R$ in P_R which is not incident with x and y such that the corresponding edge e_L in L is contained in C_L . By Definition 2 $e_L = u_L v_L$, where u_L and v_L are neighbors of u_R and v_R in L, respectively. Thus, $P_R - u_R v_R + u_L u_R + v_L v_R + C_L - e_L$ is an xy-Hamilton path in $G_4 - F$ (as a reference, see Figure 3(a)).

Assume $n \ge 5$ below; that is, $n - 2 \ge 3$.

(a) $x, y \in G_{n-1}^{11}$ (See Figure 5(a)). By the induction hypothesis, G_{n-2}^{11} contains an xy-Hamilton path, say P_{11} . Take $u_{11}v_{11} \in$

 $E(P_{11})$, and let u_{01} and v_{01} be neighbors of u_{11} and v_{11} in G_{n-2}^{01} , respectively. Take a vertex u in F_{00} . By the induction hypothesis, $L-(F_L-u)$ contains a $u_{01}v_{01}$ -Hamilton path, say P_L . If u is in P_L , then let w_{00} and z_{00} be two neighbors of u in P_L ; if u is not in P_L , then let $w_{00}z_{00}$ be an edge in P_L . Let w_{10} and z_{10} be neighbors of w_{00} and z_{00} in G_{n-2}^{10} , respectively. By the induction hypothesis, G_{n-2}^{10} contains a $w_{10}z_{10}$ -Hamilton path, say P_{10} . Let $P_L' = P_L - u$ if u is in P_L and $P_L' = P_L - w_{00}z_{00}$ if u is not in P_L . Thus, $P_{10} + w_{00}w_{10} + z_{00}z_{10} + P_L' + P_{11} - u_{11}v_{11} + u_{01}u_{11} + v_{01}v_{11}$ is an xy-Hamilton path in $G_n - F$ (see Figure 5(a)).

(b) $x \in G_{n-1}^{11}$ and $y \in G_{n-2}^{10}$ (See Figure 5(b)). Arbitrarily take a vertex u in F_{00} and an edge $u_{00}v_{00}$ in G_{n-2}^{00} . By the induction hypothesis, $L - (F_L - u)$ contains a $u_{00}v_{00}$ -Hamilton path, say P_L . If u is in P_L , then let $P' = P_L - u + u_{00}v_{00}$; if u is not in P_L , then let $P' = P_L$. Without loss of generality, assume that u is in P_L and let u_{00} and v_{00} be two neighbors of u in P_L .

Let u_{10} and v_{10} be neighbors of u_{00} and v_{00} in G_{n-2}^{10} , respectively. By the induction hypothesis, G_{n-2}^{10} contains a $u_{10}v_{10}$ -Hamilton path, say P_{10} . Since y is in P_{10} , we can write $P_{10} = P_{10}(v_{10}, y) + yw_{10} + P_{10}(w_{10}, u_{10})$ (see Figure 5(b)). Let w_{11} be the neighbor of w_{10} in G_{n-2}^{11} . By the induction hypothesis, G_{n-2}^{11} contains an xw_{11} -Hamilton path, say P_{11} .

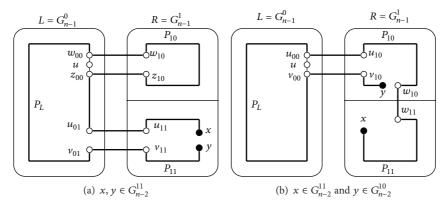


FIGURE 5: Illustrations of Subcase 2.3 in the proof of Theorem 5.

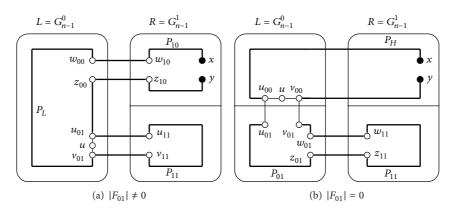


FIGURE 6: Illustrations of Subcase 2.3(c) in the proof of Theorem 5.

Then $P'_L + P_{10} - yw_{10} + w_{10}w_{11} + P_{11}$ is an *xy*-Hamilton path in $G_n - F$ (see Figure 5(b)).

(c)
$$x, y \in G_{n-2}^{10}$$
 (See Figure 6)

(c1) $|F_{01}| \neq 0$. By the induction hypothesis, G_{n-2}^{10} contains an xy-Hamilton path, say P_{10} . Take $w_{10}z_{10} \in E(P_{10})$, and let w_{00} and z_{00} be neighbors of w_{10} and z_{10} in G_{n-2}^{00} , respectively. Take a vertex u in F_{01} . By the induction hypothesis, $L - (F_L - u)$ contains a $w_{00}z_{00}$ -Hamilton path, say P_L . If u is in P_L , let u_{00} and v_{00} be two neighbors of u in P_L ; if u is not in P_L , let $u_{00}v_{00}$ be an edge in P_L . Let $P'_L = P_L - u$ if u is in P_L and $P'_L = P_L - u$ if u is not in P_L and $P'_L = P_L - u$ if u is not in P_L and $P'_L = P_L - u$ if u is not in P_L .

 $u_{00}v_{00}$ if u is not in P_L . Let u_{11} and v_{11} be neighbors of u_{01} and v_{01} in G_{n-2}^{11} , respectively. By the induction hypothesis, G_{n-2}^{11} contains a $u_{11}v_{11}$ -Hamilton path, say P_{11} . Thus, $P_{10}-w_{10}z_{10}+w_{00}w_{10}+z_{00}z_{10}+P_L'+u_{01}u_{11}+v_{01}v_{11}+P_{11}$ is an xy-Hamilton path in G_n-F (see Figure 6(a)).

(c2) $|F_{01}|=0$. In this case, $|F_{00}|=|F|=n-3\geqslant 2$ since $n\geqslant 5$. Consider the subgraph H of G_n induced by $V(G_{n-2}^{00})\cup V(G_{n-2}^{10})$. By Definition 2, it is easy to check that $H=G_{n-2}^{00}\oplus_MG_{n-2}^{10}$. Let $u\in F$. By the induction hypothesis, H-(F-u) contains an xy-Hamilton path, say P_H . Without loss of generality, assume that u is in P_H . Let u_{00} and v_{00} be two neighbors of u in P_H , and let u_{01} and v_{01} be two neighbors of u00 and v00 in G_{n-2}^{01} . Then there is a u01 v01-Hamilton path in

 G_{n-2}^{01} , say P_{01} . Take an edge $w_{01}z_{01}$ in P_{01} , and let w_{11} and z_{11} be neighbors of w_{01} and z_{01} in G_{n-2}^{11} . Then there is a $w_{11}z_{11}$ -Hamilton path in G_{n-2}^{11} , say P_{11} . Thus, $P_H - u + P_{01} - w_{01}z_{01} + P_{11}$ is an xy-Hamilton path in $G_n - F$ (see Figure 6(b)).

The theorem follows. \Box

By Observation 1 and Theorem 5, we have the following results immediately.

Corollary 6. VQ_n is (n-3)-fault-tolerant Hamilton-connected for $n \ge 3$.

Corollary 7. Every fault-free edge of VQ_n is contained in a fault-free Hamilton cycle if the number of faults does not exceed n-2 and $n \ge 2$.

Proof. If n = 2, then the conclusion holds clearly. Assume now $n \ge 3$. Let xy be a fault-free edge in VQ_n . Let F be a set of faults in VQ_n with $|F| \le n-2$ and containing the edge xy. By Corollary 6, there is an xy-Hamilton path P in $VQ_n - (F - xy)$. Then P + xy is a required cycle. □

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The work was supported by NNSF of China (no. 61272008).

References

- [1] S.-Y. Cheng and J.-H. Chuang, "Varietal hypercube—a new interconnection network topology for large scale multicomputer," in *Proceedings of the International Conference on Parallel and Distributed Systems*, pp. 703–708, December 1994.
- [2] J.-W. Wang and J.-M. Xu, "Reliability analysis of varietal hypercube networks," *Journal of University of Science and Technology* of China, vol. 39, no. 12, pp. 1248–1252, 2009.
- [3] M. Jiang, X.-Y. Hu, and Q.-L. Li, "Fault-tolerant diameter and width diameter of varietal hypercubes," *Applied Mathematics Series A*, vol. 25, no. 3, pp. 372–378, 2010 (Chinese).
- [4] L. Xiao, J. Cao, and J.-M. Xu, "Transitivity of varietal hypercube networks," *Frontiers of Mathematics in China*, vol. 9, no. 6, pp. 1401–1410, 2014.
- [5] C.-H. Tsai, "Fault-tolerant cycles embedded in hypercubes with mixed link and node failures," *Applied Mathematics Letters*, vol. 21, no. 8, pp. 855–860, 2008.
- [6] J.-S. Fu, "Fault-free cycles in folded hypercubes with more faulty elements," *Information Processing Letters*, vol. 108, no. 5, pp. 261– 263, 2008.
- [7] W.-T. Huang, Y.-C. Chuang, J. J.-M. Tan, and L.-H. Hsu, "On the fault-tolerant hamiltonicity of faulty crossed cubes," *IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences*, vol. E85-A, no. 6, pp. 1359–1370, 2002.
- [8] M.-C. Yang, T.-K. Li, J. J. Tan, and L.-H. Hsu, "Fault-tolerant cycle-embedding of crossed cubes," *Information Processing Letters*, vol. 88, no. 4, pp. 149–154, 2003.
- [9] M.-C. Yang, T.-K. Li, J. J. M. Tan, and L.-H. Hsu, "On embedding cycles into faulty twisted cubes," *Information Sciences*, vol. 176, no. 6, pp. 676–690, 2006.
- [10] S.-Y. Hsieh and N.-W. Chang, "Hamiltonian path embedding and pancyclicity on the Möbius cube with faulty nodes and faulty edges," *IEEE Transactions on Computers*, vol. 55, no. 7, pp. 854–863, 2006.
- [11] T.-K. Li, J. J. Tan, and L.-H. Hsu, "Hyper hamiltonian laceability on edge fault star graph," *Information Sciences*, vol. 165, no. 1-2, pp. 59–71, 2004.
- [12] J.-M. Xu and M. Ma, "Survey on path and cycle embedding in some networks," *Frontiers of Mathematics in China*, vol. 4, no. 2, pp. 217–252, 2009.
- [13] J. Cao, L. Xiao, and J.-M. Xu, "Cycles and paths embedded in varietal hyper-cubes," *Journal of University of Science and Technology of China*, vol. 44, no. 9, pp. 732–737, 2014.
- [14] Y.-Y. Huang and J.-M. Xu, "Hamilton paths and cycles in fault-tolerant varietal hypercubes," to appear in *Journal of University of Science and Technology of China*, 2015.
- [15] J. M. Xu, *Theory and Application of Graphs*, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.