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This paper considers the varietal hypercube network 𝑉𝑄
𝑛
with mixed faults and shows that 𝑉𝑄

𝑛
contains a fault-free Hamilton

cycle provided faults do not exceed 𝑛 − 2 for 𝑛 ⩾ 2 and contains a fault-free Hamilton path between any pair of vertices provided
faults do not exceed 𝑛 − 3 for 𝑛 ⩾ 3. The proof is based on an inductive construction.

1. Introduction

As a topology of interconnection networks, the hypercube
𝑄
𝑛
is the most simple and popular since it has many nice

properties. The varietal hypercube 𝑉𝑄
𝑛
is a variant of 𝑄

𝑛

and proposed by Cheng and Chuang [1] in 1994 and has
many properties similar or superior to 𝑄

𝑛
. For example, they

have the same numbers of vertices and edges and the same
connectivity and restricted connectivity (see Wang and Xu
[2]), while all the diameter and the average distances, fault-
diameter, and wide-diameter of 𝑉𝑄

𝑛
are smaller than those

of the hypercube 𝑄
𝑛
(see Cheng and Chuang [1], Jiang et al.

[3]). Recently, Xiao et al. [4] have shown that 𝑉𝑄
𝑛
is vertex-

transitive.
Embedding paths and cycles in various well-known

networks, such as the hypercube and some well-known vari-
ations of the hypercube, have been extensively investigated
in the literature (see, e.g., Tsai [5] for the hypercubes, Fu
[6] for the folded hypercubes, Huang et al. [7] and Yang et
al. [8] for the crossed cubes, Yang et al. [9] for the twisted
cubes, Hsieh and Chang [10] for the Möbius cubes, Li et al.
[11] for the star graphs and Xu and Ma [12] for a survey on
this topic). Recently, Cao et al. [13] have shown that every
edge of 𝑉𝑄

𝑛
is contained in cycles of every length from 4

to 2
𝑛 except 5, and every pair of vertices with distance 𝑑 is

connected by paths of every length from 𝑑 to 2
𝑛

− 1 except
2 and 4 if 𝑑 = 1, from which 𝑉𝑄

𝑛
contains a Hamilton cycle

for 𝑛 ⩾ 2 and a Hamilton path between any pair of vertices
for 𝑛 ⩾ 3. Huang and Xu [14] have improved this result
by considering edge-faults and showing that 𝑉𝑄

𝑛
contains a

fault-free Hamilton cycle provided faulty edges do not exceed
𝑛 − 2 for 𝑛 ⩾ 3 and a fault-free Hamilton path between any
pair of vertices provided faulty edges do not exceed 𝑛 − 3 for
𝑛 ⩾ 3. In this paper, we will further improve these results by
considering mixed faults of vertices and edges and proving
that 𝑉𝑄

𝑛
contains a fault-free Hamilton cycle provided the

number of mixed faults does not exceed 𝑛 − 2 for 𝑛 ⩾ 2

and contains a fault-free Hamilton path between any pair of
vertices provided the number of mixed faults does not exceed
𝑛 − 3 for 𝑛 ⩾ 3.

The proofs of these results are in Section 3.The definition
and some basic structural properties of 𝑉𝑄

𝑛
are given in

Section 2.

2. Definitions and Structural Properties

We follow [15] for graph-theoretical terminology and nota-
tion not defined here. A graph 𝐺 = (𝑉, 𝐸) always means a
simple and connected graph, where 𝑉 = 𝑉(𝐺) is the vertex-
set and 𝐸 = 𝐸(𝐺) is the edge-set of 𝐺. For 𝑥𝑦 ∈ 𝐸(𝐺), we call
𝑥 (resp., 𝑦) a neighbor of 𝑦 (resp., 𝑥).

Let 𝐺
𝑘

be a labeled graph with vertex set 𝑉
𝑘

=

{𝑥
𝑘
⋅ ⋅ ⋅ 𝑥
2
𝑥
1

: 𝑥
𝑖

∈ {0, 1}, 1 ⩽ 𝑖 ⩽ 𝑘}. For 𝑗 ⩾ 1, let
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Figure 1: The varietal hypercubes 𝑉𝑄
1
, 𝑉𝑄
2
, 𝑉𝑄
3
, and 𝑉𝑄

4
.

𝛼
𝑗

= 𝑦
𝑗
⋅ ⋅ ⋅ 𝑦
1
, where 𝑦

𝑖
∈ {0, 1} for each 𝑖 = 1, . . . , 𝑗. Use

𝐺
𝛼𝑗

𝑘
to denote a labeled graph obtained from 𝐺

𝑘
by inserting

the string 𝛼
𝑗
in front of each vertex-labeling in 𝐺

𝑘
. Clearly,

𝐺
𝛼𝑗

𝑘
≅ 𝐺
𝑘
.

Definition 1. The 𝑛-dimensional varietal hypercube 𝑉𝑄
𝑛
is

the labeled graph defined recursively as follows. 𝑉𝑄
1
is

the complete graph of two vertices labeled with 0 and 1,
respectively. Assume that 𝑉𝑄

𝑛−1
has been constructed. For

𝑛 > 1, 𝑉𝑄
𝑛

= 𝑉𝑄
0

𝑛−1
⊙ 𝑉𝑄

1

𝑛−1
is obtained from 𝑉𝑄

0

𝑛−1
and

𝑉𝑄
1

𝑛−1
by joining vertices between them, according to the

rule: a vertex 𝑥 = 0𝑥
𝑛−1

𝑥
𝑛−2

𝑥
𝑛−3

⋅ ⋅ ⋅ 𝑥
2
𝑥
1
in 𝑉𝑄

0

𝑛−1
and a

vertex 𝑦 = 1𝑦
𝑛−1

𝑦
𝑛−2

𝑦
𝑛−3

⋅ ⋅ ⋅ 𝑦
2
𝑦
1
in 𝑉𝑄

1

𝑛−1
are adjacent in

𝑉𝑄
𝑛
if and only if

(1) 𝑥
𝑛−1

𝑥
𝑛−2

𝑥
𝑛−3

⋅ ⋅ ⋅ 𝑥
2
𝑥
1

= 𝑦
𝑛−1

𝑦
𝑛−2

𝑦
𝑛−3

⋅ ⋅ ⋅ 𝑦
2
𝑦
1
if 𝑛 ̸=

3𝑘, or

(2) 𝑥
𝑛−3

⋅ ⋅ ⋅ 𝑥
2
𝑥
1

= 𝑦
𝑛−3

⋅ ⋅ ⋅ 𝑦
2
𝑦
1

and (𝑥
𝑛−1

𝑥
𝑛−2

,

𝑦
𝑛−1

𝑦
𝑛−2

) ∈ 𝐼 if 𝑛 = 3𝑘, where 𝐼 = {(00, 00), (01, 01),

(10, 11), (11, 10)}.

Figure 1 shows the examples of varietal hypercubes 𝑉𝑄
𝑛

for 𝑛 = 1, 2, 3, and 4, respectively.
For convenience, we write𝑉𝑄

𝑛
= 𝐿⊙𝑅, where 𝐿 = 𝑉𝑄

0

𝑛−1

and 𝑅 = 𝑉𝑄
1

𝑛−1
. Clearly, the set 𝑀 of edges between 𝐿 and 𝑅

is a perfect matching of size 2
𝑛−1 in 𝑉𝑄

𝑛
. Use 𝑥

𝐿
𝑥
𝑅
to denote

an edge in 𝑀 joining 𝑥
𝐿

∈ 𝐿 and 𝑥
𝑅

∈ 𝑅. By the recursive
definition of 𝑉𝑄

𝑛
, 𝑉𝑄
0

𝑛−1
= 𝑉𝑄

00

𝑛−2
⊙ 𝑉𝑄

01

𝑛−2
and 𝑉𝑄

1

𝑛−1
=

𝑉𝑄
10

𝑛−2
⊙𝑉𝑄
11

𝑛−2
.Thus,𝑉𝑄

𝑛
is of the recursive structure shown

as in Figure 2.
Use𝑈 and𝑊 to denote two subgraphs of𝑉𝑄

𝑛
induced by

𝑉(𝑉𝑄
00

𝑛−2
)∪𝑉(𝑉𝑄

10

𝑛−2
) and𝑉(𝑉𝑄

01

𝑛−2
)∪𝑉(𝑉𝑄

11

𝑛−2
), respectively.

It should be noted that 𝑈 and 𝑊 are not always isomorphic
to 𝑉𝑄

𝑛−1
, although 𝐿 and 𝑅 are isomorphic to 𝑉𝑄

𝑛−1
.

Definition 2. The graph 𝐺
𝑛

= 𝐺
0

𝑛−1
⊕
𝑀

𝐺
1

𝑛−1
is the labeled

graph defined recursively as follows.𝐺
1
is the complete graph

of two vertices labeled with 0 and 1, respectively. 𝐺
2

=

𝐺
0

1
⊕ 𝐺
1

1
is obtained from 𝐺

0

1
and 𝐺

1

1
plus two edges joining

00 and 10, 01, and 11. For 𝑛 ⩾ 3, 𝐺
𝑛

= 𝐺
0

𝑛−1
⊕
𝑀

𝐺
1

𝑛−1
is

obtained from 𝐺
0

𝑛−1
and 𝐺

1

𝑛−1
by adding a perfect matching

𝑀 between𝐺
0

𝑛−1
and𝐺

1

𝑛−1
, according to the following rule:𝑀

consists of two perfect matchings 𝑀
1
and 𝑀

2
, where 𝑀

1
is a

perfect matching between 𝐺
00

𝑛−2
and 𝐺

10

𝑛−2
and 𝑀

2
is a perfect

matching between 𝐺
01

𝑛−2
and 𝐺

11

𝑛−2
.

Clearly, by Definition 1, in 𝑉𝑄
𝑖
, the set 𝑀 of edges

between𝑉𝑄
0

𝑖−1
and𝑉𝑄

1

𝑖−1
is a perfectmatching between them

satisfying the rule in Definition 2. Thus, 𝑉𝑄
𝑛
is a special

example of 𝐺
𝑛
. We state this fact as a simple observation.

Observation 1. For each 𝑖 = 2, . . . , 𝑛, 𝑉𝑄
𝑖
≅ 𝑉𝑄

0

𝑖−1
⊕
𝑀

𝑉𝑄
1

𝑖−1

for the perfectmatching𝑀 defined by the rule inDefinition 1.
Moreover, 𝐺

3
≅ 𝑄
3
or 𝑉𝑄

3
, where 𝑄

3
is a 3-dimensional

cube.

3. Main Results

Let 𝐺 be a graph, and let 𝑥 and 𝑦 be two distinct vertices in
𝐺. A subgraph 𝑃 of 𝐺 is called an 𝑥𝑦-path, if its vertex-set
can be expressed as a sequence of adjacent vertices, written
as 𝑃 = (𝑥

0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
), in which 𝑥 = 𝑥

0
, 𝑦 = 𝑥

𝑚
, and all

the vertices 𝑥
0
, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
are different from each other.

For a path 𝑃 = (𝑥
0
, . . . , 𝑥

𝑖
, 𝑥
𝑖+1

, . . . , 𝑥
𝑚
), we can write 𝑃 =

𝑃(𝑥
0
, 𝑥
𝑖
) + 𝑥
𝑖
𝑥
𝑖+1

+ 𝑃(𝑥
𝑖+1

, 𝑥
𝑚
), and the notation 𝑃 − 𝑥

𝑖
𝑥
𝑖+1

denotes the subgraph obtained from 𝑃 by deleting the edge
𝑥
𝑖
𝑥
𝑖+1

. If 𝑃 is an 𝑥𝑦-path and 𝑥𝑦 ∈ 𝐸(𝐺), then 𝑃+𝑥𝑦 is called
a cycle in 𝐺. A cycle is called a Hamilton cycle if it contains
all vertices in 𝐺. An 𝑥𝑦-path 𝑃 is called an 𝑥𝑦-Hamilton path
if it contains all vertices in 𝐺. A graph 𝐺 is Hamiltonian if it
contains a Hamilton cycle and is called Hamilton-connected
if it contains an 𝑥𝑦-Hamilton path for any two vertices 𝑥 and
𝑦 in𝐺. Clearly, if𝐺 has at least three vertices and is Hamilton-
connected, then it certainly is Hamiltonian; moreover, every
edge is contained in a Hamilton cycle.

Lemma 3 (Cao et al. [13]). 𝑉𝑄
𝑛
is Hamilton-connected for 𝑛 ⩾

3, and so every edge of𝑉𝑄
𝑛
is contained in a Hamilton cycle for

𝑛 ⩾ 2.

Let 𝐹 be a subset of 𝑉(𝐺) ∪ 𝐸(𝐺). A subgraph 𝐻 of 𝐺

is called fault-free if 𝐻 contains no elements in 𝐹. A graph
𝐺 is called 𝑡-edge-fault-tolerant Hamiltonian (resp., 𝑡-edge-
fault-free Hamilton-connected) if 𝐺 − 𝐹 contains a Hamilton
cycle (resp., is Hamilton-connected) for any 𝐹 ⊂ 𝐸(𝐺) with
|𝐹| ⩽ 𝑡.𝐺 is called 𝑡-fault-tolerant Hamiltonian (resp., 𝑡-fault-
free Hamilton-connected) if 𝐺 − 𝐹 contains a Hamilton cycle
(resp., is Hamilton-connected) for any 𝐹 ⊂ 𝐸(𝐺) ∪𝑉(𝐺) with
|𝐹| ⩽ 𝑡.

Lemma 4 (Huang and Xu [14]). 𝑉𝑄
𝑛
is (𝑛 − 2)-edge-fault-

tolerant Hamiltonian for 𝑛 ⩾ 2 and (𝑛 − 3)-edge-fault-tolerant
Hamilton-connected for 𝑛 ⩾ 3.
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Figure 2: The recursive structure of 𝑉𝑄
𝑛
.

In this paper, we will generalize this result by proving that
𝑉𝑄
𝑛
is (𝑛−2)-fault-tolerantHamiltonian for 𝑛 ⩾ 2 and (𝑛−3)-

fault-tolerant Hamilton-connected for 𝑛 ⩾ 3.
To prove our main results, we first prove the following

result on the graph 𝐺
𝑛
.

Theorem 5. For 𝑛 ⩾ 3, 𝐺
𝑛

= 𝐺
0

𝑛−1
⊕
𝑀

𝐺
1

𝑛−1
is (𝑛 − 3)-

fault-tolerant Hamilton-connected for any perfect matching𝑀

between 𝐺
0

𝑛−1
and 𝐺

1

𝑛−1
defined by the rule in Definition 2.

Proof. We proceed by induction on 𝑛 ⩾ 3.
Since 𝐺

3
≅ 𝑄
3
or 𝑉𝑄

3
, which is vertex-transitive, it is

easy to check the conclusion is true for 𝑛 = 3. Suppose now
that 𝑛 ⩾ 4 and the result holds for any integer less than 𝑛.
Let 𝐹 ⊂ 𝐸(𝐺

𝑛
) ∪ 𝑉(𝐺

𝑛
) with |𝐹| ⩽ 𝑛 − 3, and let 𝑥 and 𝑦 be

two distinct vertices in 𝐺
𝑛
− 𝐹. We need to prove that 𝐺

𝑛
− 𝐹

contains an 𝑥𝑦-Hamilton path. Without loss of generality, we
can assume 𝐹 ⊂ 𝑉(𝐺

𝑛
). Let 𝐺

𝑛
= 𝐿⊕
𝑀

𝑅, where

𝐿 = 𝐺
00

𝑛−2
⊕
𝑀1

𝐺
01

𝑛−2
, 𝑅 = 𝐺

10

𝑛−2
⊕
𝑀2

𝐺
11

𝑛−2
, (1)

and let

𝐹
𝐿

= 𝐹 ∩ 𝐿, 𝐹
𝑅

= 𝐹 ∩ 𝑅. (2)

By symmetry of structure of 𝐺
𝑛
, we may assume |𝐹

𝐿
| ⩾ |𝐹
𝑅
|.

Case 1 (|𝐹
𝐿
| ⩽ 𝑛 − 4). In this case, by the hypothesis, we have

|𝐹
𝑅
| ⩽ |𝐹
𝐿
| ⩽ 𝑛 − 4.

Subcase 1.1 (𝑥, 𝑦 ∈ 𝐿 or 𝑥, 𝑦 ∈ 𝑅). Without loss of generality,
assume 𝑥, 𝑦 ∈ 𝑅.

Since 𝑅 = 𝐺
𝑛−1

and |𝐹
𝑅
| ⩽ 𝑛 − 4 = (𝑛 − 1) − 3, by the

induction hypothesis 𝑅 − 𝐹
𝑅
contains an 𝑥𝑦-Hamilton path,

say𝑃
𝑅
. Since |𝑉(𝑃

𝑅
)| = 2
𝑛−1

−|𝐹
𝑅
| ⩾ 2
𝑛−1

−(𝑛−4) > 2(𝑛−3) ⩾

2|𝐹|, there is an edge 𝑢
𝑅
V
𝑅
in 𝑃
𝑅
such that the neighbors 𝑢

𝐿

and V
𝐿
of𝑢
𝑅
and V
𝑅
in𝐿 are not in𝐹. Since𝐿 = 𝐺

𝑛−1
and |𝐹

𝐿
| ⩽

𝑛−4 = (𝑛−1)−3, by the induction hypothesis𝐿−𝐹
𝐿
contains a

𝑢
𝐿
V
𝐿
-Hamilton path, say𝑃

𝐿
.Thus,𝑃

𝑅
−𝑢
𝑅
V
𝑅
+𝑢
𝑅
𝑢
𝐿
+V
𝑅
V
𝐿
+𝑃
𝐿

is an 𝑥𝑦-Hamilton path in 𝐺
𝑛
− 𝐹 (see Figure 3(a)).

Subcase 1.2 (𝑥 ∈ 𝐿 and 𝑦 ∈ 𝑅). Since |𝑀| = 2
𝑛−1 and 2

𝑛−1

−2 >

2(𝑛−3) ⩾ 2|𝐹|, there is an edge 𝑢
𝐿
𝑢
𝑅

∈ 𝑀 such that 𝑢
𝐿
and 𝑢
𝑅

are not in 𝐹∪ {𝑥, 𝑦}. By the induction hypothesis, let 𝑃
𝐿
be an

𝑥𝑢
𝐿
-Hamilton path in 𝐿 − 𝐹

𝐿
, and let 𝑃

𝑅
be a 𝑦𝑢

𝑅
-Hamilton

path in 𝑅 − 𝐹
𝑅
. Then 𝑃

𝐿
+ 𝑢
𝐿
𝑢
𝑅

+ 𝑃
𝑅
is an 𝑥𝑦-Hamilton path

in 𝐺
𝑛
− 𝐹 (see Figure 3(b)).

Case 2 (|𝐹
𝐿
| = 𝑛 − 3). In this case, |𝐹

𝑅
| = 0.

Subcase 2.1 (𝑥, 𝑦 ∈ 𝐿). Arbitrarily take a vertex 𝑢 ∈ 𝐹
𝐿
. Since

|𝐹
𝐿

− 𝑢| = 𝑛 − 4 = (𝑛 − 1) − 3, by the induction hypothesis
𝐿 − (𝐹

𝐿
− 𝑢) contains an 𝑥𝑦-Hamilton path, say 𝑃

𝐿
. Without

loss of generality, assume 𝑢 ∈ 𝑉(𝑃
𝐿
). Let 𝑢

𝐿
and V

𝐿
be two

neighbors of𝑢 in𝑃
𝐿
, and let𝑢

𝐿
𝑢
𝑅
, V
𝐿
V
𝑅

∈ 𝑀. By the induction
hypothesis, 𝑅 contains a 𝑢

𝑅
V
𝑅
-Hamilton path, say 𝑃

𝑅
. Then

𝑃
𝐿
− 𝑢 + 𝑢

𝐿
𝑢
𝑅

+ V
𝐿
V
𝑅

+ 𝑃
𝑅
is an 𝑥𝑦-Hamilton path in 𝐺

𝑛
− 𝐹.

Subcase 2.2 (𝑥 ∈ 𝐿 and 𝑦 ∈ 𝑅). If 𝑛 = 4, then 𝐿 ≅ 𝑅 ≅ 𝑄
3
or

𝑉𝑄
3
. Since |𝐹

𝐿
| = 1 and 𝐿 is vertex-transitive, we can assume

𝐹
𝐿

= {𝑢} = {000} unless 𝑥 = 000. It is easy to check that 𝐿 − 𝑢

contains a Hamilton cycle, say 𝐶
𝐿
. Choose a neighbor 𝑢

𝐿
of 𝑥

in𝐶
𝐿
such that its neighbor 𝑢

𝑅
in 𝑅 is not 𝑦. By the induction

basis, 𝑅 contains a 𝑦𝑢
𝑅
-Hamilton path, say 𝑃

𝑅
. Then, 𝐶

𝐿
−

𝑥𝑢
𝐿
+ 𝑢
𝐿
𝑢
𝑅

+ 𝑃
𝑅
is an 𝑥𝑦-Hamilton path in 𝐺

4
− 𝐹.

Assume now 𝑛 ⩾ 5; that is, 𝑛 − 2 ⩾ 3. Let 𝐹
00

= 𝐹
𝐿

∩

𝑉(𝐺
00

𝑛−2
), 𝐹
01

= 𝐹
𝐿

∩ 𝑉(𝐺
01

𝑛−2
). Without loss of generality, we

can assume 𝐹
00

̸= 0.

(a) 𝑦 ∈ 𝐺
11

𝑛−2
(See Figure 4(a)). Arbitrarily take 𝑧

11
∈ 𝐺
11

𝑛−2

with 𝑧
11

̸= 𝑦, and let 𝑧
01

𝑧
11

∈ 𝑀. Since 𝑛 − 2 ⩾ 3, by the
induction hypothesis 𝐺

11

𝑛−2
contains a 𝑧

11
𝑦-Hamilton path,

say 𝑃
11
. Arbitrarily take a vertex 𝑢 ∈ 𝐹

00
. Since 𝑛 ⩾ 5, by the

induction hypothesis 𝐿− (𝐹
𝐿
−𝑢) contains an 𝑥𝑧

01
-Hamilton

path, say𝑃
𝐿
. If 𝑢 is in𝑃

𝐿
, then let 𝑢

00
and𝑤

00
be two neighbors

of 𝑢 in 𝑃
𝐿
; if 𝑢 is not in 𝑃

𝐿
, then let 𝑢

00
V
00

be an edge in 𝑃
𝐿
.

Let 𝑢
00

𝑢
10

, V
00
V
10

∈ 𝑀. By the induction hypothesis, 𝐺
10

𝑛−2

contains a 𝑢
10
V
10
-Hamilton path, say 𝑃

10
. Let 𝑃

󸀠

𝐿
= 𝑃
𝐿

− 𝑢

if 𝑢 is in 𝑃
𝐿
and 𝑃

󸀠

𝐿
= 𝑃
𝐿

− 𝑢
00
V
00

if 𝑢 is not in 𝑃
𝐿
. Then

𝑃
10

+ 𝑢
00

𝑢
10

+ V
00
V
10

+ 𝑃
󸀠

𝐿
+ 𝑧
01

𝑧
11

+ 𝑃
11

is an 𝑥𝑦-Hamilton
path in 𝐺

𝑛
− 𝐹 (see Figure 4(a)).

(b) 𝑦 ∈ 𝐺
10

𝑛−2
(See Figure 4(b)). Arbitrarily take a vertex 𝑧

01

in 𝐺
01

𝑛−2
− 𝐹
𝐿
with 𝑧

01
̸= 𝑥. Let 𝑧

11
be the neighbor of 𝑧

01
in

𝐺
11

𝑛−2
. Arbitrarily take a vertex 𝑢 ∈ 𝐹

00
. Since 𝑛 ⩾ 5, by the

induction hypothesis 𝐿− (𝐹
𝐿
−𝑢) contains an 𝑥𝑧

01
-Hamilton
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(b) 𝑥 ∈ 𝐿 and 𝑦 ∈ 𝑅

Figure 3: Illustrations of Case 1 in the proof of Theorem 5.
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(b) 𝑥 ∈ 𝐿 and 𝑦 ∈ 𝐺10
𝑛−2

Figure 4: Illustrations of Subcase 2.2 in the proof of Theorem 5.

path, say𝑃
𝐿
. If 𝑢 is in𝑃

𝐿
, then let 𝑢

00
and𝑤

00
be two neighbors

of 𝑢 in 𝑃
𝐿
; if 𝑢 is not in 𝑃

𝐿
, then let 𝑢

00
V
00

be an edge in 𝑃
𝐿
.

Let 𝑢
00

𝑢
10

, V
00
V
10

∈ 𝑀. By the induction hypothesis, 𝐺
10

𝑛−2

contains a 𝑢
10
V
10
-Hamilton path, say 𝑃

10
. Since 𝑦 ∈ 𝑃

10
, we

can write 𝑃
10

= 𝑃
10

(V
10

, 𝑦) + 𝑦𝑤
10

+ 𝑃
10

(𝑤
10

, 𝑢
10

). Let 𝑤
11

be the neighbor of 𝑤
10
in 𝐺
11

𝑛−2
. By the induction hypothesis,

𝐺
11

𝑛−2
contains a 𝑧

11
𝑤
11
-Hamilton path, say𝑃

11
. Let𝑃󸀠

𝐿
= 𝑃L−𝑢

if 𝑢 is in 𝑃
𝐿
and 𝑃

󸀠

𝐿
= 𝑃
𝐿

− 𝑢
00
V
00

if 𝑢 is not in 𝑃
𝐿
. Then

𝑃
󸀠

𝐿
+ 𝑢
00

𝑢
10

+ V
00
V
10

+ 𝑃
10

− 𝑦𝑤
10

+ 𝑤
10

𝑤
11

+ 𝑃
11

+ 𝑧
01

𝑧
11

is an 𝑥𝑦-Hamilton path in 𝐺
𝑛
− 𝐹 (see Figure 4(b)).

Subcase 2.3 (𝑥, 𝑦 ∈ 𝑅). If 𝑛 = 4, then 𝐿 ≅ 𝑅 ≅ 𝐺
3
. By

the induction basis, 𝑅 contains an 𝑥𝑦-Hamilton path, say 𝑃
𝑅
.

Since 𝐺
3
is vertex-transitive and |𝐹

𝐿
| = 1, it is easy to check

that𝐿−𝐹
𝐿
contains aHamilton cycle, say𝐶

𝐿
. Since𝐿 and𝑅 are

3-regular and isomorphic, there is an edge 𝑢
𝑅
V
𝑅
in 𝑃
𝑅
which

is not incident with 𝑥 and 𝑦 such that the corresponding edge
𝑒
𝐿
in 𝐿 is contained in 𝐶

𝐿
. By Definition 2 𝑒

𝐿
= 𝑢
𝐿
V
𝐿
, where

𝑢
𝐿
and V
𝐿
are neighbors of 𝑢

𝑅
and V
𝑅
in 𝐿, respectively. Thus,

𝑃
𝑅
− 𝑢
𝑅
V
𝑅
+ 𝑢
𝐿
𝑢
𝑅
+ V
𝐿
V
𝑅
+ 𝐶
𝐿
− 𝑒
𝐿
is an 𝑥𝑦-Hamilton path in

𝐺
4
− 𝐹 (as a reference, see Figure 3(a)).
Assume 𝑛 ⩾ 5 below; that is, 𝑛 − 2 ⩾ 3.

(a) 𝑥, 𝑦 ∈ 𝐺
11

𝑛−1
(See Figure 5(a)). By the induction hypothesis,

𝐺
11

𝑛−2
contains an 𝑥𝑦-Hamilton path, say 𝑃

11
. Take 𝑢

11
V
11

∈

𝐸(𝑃
11

), and let 𝑢
01

and V
01

be neighbors of 𝑢
11

and V
11

in
𝐺
01

𝑛−2
, respectively. Take a vertex 𝑢 in 𝐹

00
. By the induction

hypothesis, 𝐿 − (𝐹
𝐿
− 𝑢) contains a 𝑢

01
V
01
-Hamilton path, say

𝑃
𝐿
. If 𝑢 is in 𝑃

𝐿
, then let 𝑤

00
and 𝑧
00
be two neighbors of 𝑢 in

𝑃
𝐿
; if 𝑢 is not in 𝑃

𝐿
, then let 𝑤

00
𝑧
00
be an edge in 𝑃

𝐿
. Let 𝑤

10

and 𝑧
10
be neighbors of 𝑤

00
and 𝑧
00
in 𝐺
10

𝑛−2
, respectively. By

the induction hypothesis, 𝐺10
𝑛−2

contains a 𝑤
10

𝑧
10
-Hamilton

path, say 𝑃
10
. Let 𝑃󸀠

𝐿
= 𝑃
𝐿
−𝑢 if 𝑢 is in 𝑃

𝐿
and 𝑃

󸀠

𝐿
= 𝑃
𝐿
−𝑤
00

𝑧
00

if 𝑢 is not in 𝑃
𝐿
. Thus, 𝑃

10
+ 𝑤
00

𝑤
10

+ 𝑧
00

𝑧
10

+ 𝑃
󸀠

𝐿
+ 𝑃
11

−

𝑢
11
V
11

+𝑢
01

𝑢
11

+ V
01
V
11
is an 𝑥𝑦-Hamilton path in𝐺

𝑛
−𝐹 (see

Figure 5(a)).

(b) 𝑥 ∈ 𝐺
11

𝑛−1
and 𝑦 ∈ 𝐺

10

𝑛−2
(See Figure 5(b)). Arbitrarily take

a vertex 𝑢 in 𝐹
00
and an edge 𝑢

00
V
00
in 𝐺
00

𝑛−2
. By the induction

hypothesis, 𝐿 − (𝐹
𝐿
− 𝑢) contains a 𝑢

00
V
00
-Hamilton path, say

𝑃
𝐿
. If 𝑢 is in 𝑃

𝐿
, then let 𝑃󸀠 = 𝑃

𝐿
− 𝑢 + 𝑢

00
V
00
; if 𝑢 is not in 𝑃

𝐿
,

then let 𝑃
󸀠

= 𝑃
𝐿
. Without loss of generality, assume that 𝑢 is

in 𝑃
𝐿
and let 𝑢

00
and V
00
be two neighbors of 𝑢 in 𝑃

𝐿
.

Let 𝑢
10

and V
10

be neighbors of 𝑢
00

and V
00

in 𝐺
10

𝑛−2
,

respectively. By the induction hypothesis, 𝐺
10

𝑛−2
contains a

𝑢
10
V
10
-Hamilton path, say 𝑃

10
. Since 𝑦 is in 𝑃

10
, we can write

𝑃
10

= 𝑃
10

(V
10

, 𝑦) + 𝑦𝑤
10

+ 𝑃
10

(𝑤
10

, 𝑢
10

) (see Figure 5(b)).
Let 𝑤

11
be the neighbor of 𝑤

10
in 𝐺
11

𝑛−2
. By the induction

hypothesis, 𝐺
11

𝑛−2
contains an 𝑥𝑤

11
-Hamilton path, say 𝑃

11
.
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(b) 𝑥 ∈ 𝐺11
𝑛−2

and 𝑦 ∈ 𝐺10
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Figure 5: Illustrations of Subcase 2.3 in the proof of Theorem 5.
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Figure 6: Illustrations of Subcase 2.3(c) in the proof of Theorem 5.

Then 𝑃
󸀠

𝐿
+ 𝑃
10

− 𝑦𝑤
10

+ 𝑤
10

𝑤
11

+ 𝑃
11
is an 𝑥𝑦-Hamilton path

in 𝐺
𝑛
− 𝐹 (see Figure 5(b)).

(c) 𝑥, 𝑦 ∈ 𝐺
10

𝑛−2
(See Figure 6)

(c1) |𝐹
01

| ̸= 0. By the induction hypothesis, 𝐺10
𝑛−2

contains an
𝑥𝑦-Hamilton path, say 𝑃

10
. Take 𝑤

10
𝑧
10

∈ 𝐸(𝑃
10

), and let 𝑤
00

and 𝑧
00
be neighbors of𝑤

10
and 𝑧
10
in𝐺
00

𝑛−2
, respectively. Take

a vertex 𝑢 in 𝐹
01
. By the induction hypothesis, 𝐿 − (𝐹

𝐿
− 𝑢)

contains a 𝑤
00

𝑧
00
-Hamilton path, say 𝑃

𝐿
. If 𝑢 is in 𝑃

𝐿
, let 𝑢

00

and V
00
be two neighbors of 𝑢 in 𝑃

𝐿
; if 𝑢 is not in 𝑃

𝐿
, let 𝑢
00
V
00

be an edge in 𝑃
𝐿
. Let 𝑃

󸀠

𝐿
= 𝑃
𝐿

− 𝑢 if 𝑢 is in 𝑃
𝐿
and 𝑃

󸀠

𝐿
= 𝑃
𝐿

−

𝑢
00
V
00
if 𝑢 is not in 𝑃

𝐿
.

Let 𝑢
11

and V
11

be neighbors of 𝑢
01

and V
01

in 𝐺
11

𝑛−2
,

respectively. By the induction hypothesis, 𝐺
11

𝑛−2
contains a

𝑢
11
V
11
-Hamilton path, say 𝑃

11
. Thus, 𝑃

10
− 𝑤
10

𝑧
10

+ 𝑤
00

𝑤
10

+

𝑧
00

𝑧
10

+ 𝑃
󸀠

𝐿
+ 𝑢
01

𝑢
11

+ V
01
V
11

+ 𝑃
11
is an 𝑥𝑦-Hamilton path in

𝐺
𝑛
− 𝐹 (see Figure 6(a)).

(c2) |𝐹
01

| = 0. In this case, |𝐹
00

| = |𝐹| = 𝑛 − 3 ⩾ 2

since 𝑛 ⩾ 5. Consider the subgraph 𝐻 of 𝐺
𝑛
induced by

𝑉(𝐺
00

𝑛−2
) ∪ 𝑉(𝐺

10

𝑛−2
). By Definition 2, it is easy to check that

𝐻 = 𝐺
00

𝑛−2
⊕
𝑀

𝐺
10

𝑛−2
. Let 𝑢 ∈ 𝐹. By the induction hypothesis,

𝐻 − (𝐹 − 𝑢) contains an 𝑥𝑦-Hamilton path, say 𝑃
𝐻
. Without

loss of generality, assume that 𝑢 is in 𝑃
𝐻
. Let 𝑢

00
and V
00

be
two neighbors of 𝑢 in𝑃

𝐻
, and let 𝑢

01
and V
01
be two neighbors

of 𝑢
00
and V
00
in𝐺
01

𝑛−2
.Then there is a 𝑢

01
V
01
-Hamilton path in

𝐺
01

𝑛−2
, say 𝑃

01
. Take an edge 𝑤

01
𝑧
01
in 𝑃
01
, and let 𝑤

11
and 𝑧
11

be neighbors of 𝑤
01

and 𝑧
01

in 𝐺
11

𝑛−2
. Then there is a 𝑤

11
𝑧
11
-

Hamilton path in𝐺
11

𝑛−2
, say𝑃

11
.Thus,𝑃

𝐻
−𝑢+𝑃

01
−𝑤
01

𝑧
01

+𝑃
11

is an 𝑥𝑦-Hamilton path in 𝐺
𝑛
− 𝐹 (see Figure 6(b)).

The theorem follows.

By Observation 1 and Theorem 5, we have the following
results immediately.

Corollary 6. 𝑉𝑄
𝑛
is (𝑛−3)-fault-tolerantHamilton-connected

for 𝑛 ⩾ 3.

Corollary 7. Every fault-free edge of 𝑉𝑄
𝑛
is contained in a

fault-free Hamilton cycle if the number of faults does not exceed
𝑛 − 2 and 𝑛 ⩾ 2.

Proof. If 𝑛 = 2, then the conclusion holds clearly. Assume
now 𝑛 ⩾ 3. Let 𝑥𝑦 be a fault-free edge in 𝑉𝑄

𝑛
. Let 𝐹 be a set

of faults in𝑉𝑄
𝑛
with |𝐹| ⩽ 𝑛−2 and containing the edge𝑥𝑦. By

Corollary 6, there is an 𝑥𝑦-Hamilton path𝑃 in𝑉𝑄
𝑛
−(𝐹−𝑥𝑦).

Then 𝑃 + 𝑥𝑦 is a required cycle.
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