Vol. 45, No. 3 Mar. 2015

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2015)03-0186-07

Optimal t-pebbling on paths and cycles

XIA Zhengjiang, PAN Yongliang, XU Junming

(School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China)

Abstract: A pebbling move removes two pebbles from a vertex and places one pebble on one of its neighbours. For $t \ge 1$, the optimal t-pebbling number of a graph G, $f'_t(G)$, is the minimum number of pebbles necessary so that from some initial distribution of them it is possible to move t pebbles to any target vertex by a sequence of pebbling moves. $f'(G) = f'_1(G)$ be the optimal pebbling number of G. Here the optimal t-pebbling numbers of the path P_n and the cycle C_5 were given, respectively. In the final section, it was obtained that $f'_{gt}(P_2 \times P_3) = 20t$, $f'_{gt+1}(P_2 \times P_3) = 20t+3$, and $20t+2r+1 \le f'_{gt+r}(P_2 \times P_3) \le 20t+2r+2$, for $2 \le r \le 8$, the last equality holds for r=5,6,7,8.

Key words: optimal t-pebbling number; path; cycle; Cartesian product

CLC number: O157. 5 **Document code**: A doi:10.3969/j.issn.0253-2778.2015.03.002

2010 Mathematics Subject Classification: 05C99;05C72;05C85

Citation: Xia Zhengjiang, Pan Yongliang, Xu Junming. Optimal *t*-pebbling on paths and cycles[J]. Journal of University of Science and Technology of China, 2015,45(3):186-192.

路与圈的优化 t-pebbling 数

夏正江,潘永亮,徐俊明

(中国科学技术大学数学科学学院,安徽合肥 230026)

摘要:图上的一个 pebbling 移动,是从图的一个顶点同时移除 2 个 pebbles,并且在其某个邻点上放置 1 个 pebble. 图的优化 t-pebbling 数,记为 $f_i'(G)$,是指图 G 中所需要的 pebbled 的最小数目,使得存在该 $f_i'(G)$ 个 pebbles 在图上的一种分布,可以在经过一系列 pebbling 移动后,t 个 pebbles 可以移动到任意一个给定的目标顶点上。 $f'(G)=f_1'(G)$ 称为图 G 的优化 pebbling 数。这里给出了路 P_n 和圈 C_5 的优化 t-pebbling 数,证明了 $f_{9t}'(P_2\times P_3)=20t$; $f_{9t+1}'(P_2\times P_3)=20t+3$; 当 $2 \le r \le 8$ 时, $20t+2r+1 \le f_{9t+r}'(P_2\times P_3) \le 20t+2r+2$,其中,当 $5 \le r \le 8$ 时,最后一个不等式取到等号。

关键词:优化 t-pebbling 数;路;圈;笛卡尔乘积

Received: 2014-11-14; **Revised:** 2015-03-10

Foundation item: Supported by the Fundamental Research Funds for the Central Universities and the NNSF of China (61272008, 11271348, 10871189).

Biography: XIA Zhengjiang, male, born in 1987, PhD candidate. Research field: combinatorics and graph theory. E-mail: xzj@mail. ustc. edu. cn

Corresponding author: PAN Yongliang, PhD/associate Prof. E-mail: ylpan@ustc.edu.cn

0 Introduction

Throughout this paper, G = (V, E) denotes a simple, connected graph with n vertices. Let P_n = $u_1 u_2 \cdots u_n$ and $C_n = u_1 u_2 \cdots u_n u_1$ be the path and the cycle with n vertices, respectively. A function D: $V \rightarrow N \cup \{0\}$ is called a distribution on the vertices of G. Let D(v) be the number of pebbles on the vertex $v \in V(G)$ $(D_i = D(u_i))$, |D| be the total number of pebbles on V(G) under D. A pebbling move consists of the removal of two pebbles from a vertex and placing one pebble at an adjacent vertex. The optimal t-pebbling number of G, denoted by $f'_{\iota}(G)$, is the least p such that, for some distribution of p pebbles on the vertices of G, a pebble can be moved to any vertex by a sequence of pebbling moves. Moreover, $f'(G) = f'_1(G)$ is called the optimal pebbling number of G.

Let W(D, v) be the maximal number of pebbles on v by some (possibly empty) pebbling moves on G from the original distribution D. Then we call v t-reachable under D for some positive integer t if $W(D, v) \geqslant t$. A distribution D is called t-fold solvable if every vertex is t-reachable under D.

The known results about the optimal *t*-pebbling number of paths, cycles and the product of paths are given as follows.

Theorem 0. $\mathbf{1}^{[1,3]}$ $f'(P_n) = f'(C_n) = \lceil 2n/3 \rceil$.

Theorem 0. 2^[1] $f_2'(P_n) = n+1$.

Theorem 0.3^[4] $f'_{3t+r}(P_2) = 4t + 2r \text{ if } r < 2,$ $f'_{3t+2}(P_2) = 4t + 3.$

The Cartesian product $G \times H$ is defined to be the graph with vertex set $V(G \times H)$ and edge set: the union of $\{((a, v), (b, v)) \mid (a, b) \in E(G), v \in E(H)\}$ and $\{((u, x), (u, y)) \mid u \in V(G), (x, y) \in E(H)\}$.

Theorem 0. 4^[1,4] $f'(P_m \times P_2) = f'(C_m \times P_2) = m$ for $m \ge 2$, except that $f'(P_2 \times P_2) = 3$ and $f'(P_5 \times P_2) = 6$. If t = 6q + r,

$$f'_{\iota}(\,\mathrm{K_2} imes \mathrm{K_3}) = egin{cases} 12\,q & ext{if } r=0\,, \\ 12\,q+2\,r+1 & ext{otherwise.} \end{cases}$$

In this paper, we will give the optimal t-

pebbling numbers of the path P_n and the cycle C_5 . First, we give some lemmas.

Lemma 0. 5^[4]
$$f'_{s+t}(G) \leq f'_{s}(G) + f'_{t}(G)$$
.

For a given distribution D on V(G), assume d(v) = 2 and $D(v) \ge 3$. A smoothing move from v changes D by removing two pebbles from v, and add one pebble on each neighbour of v.

Lemma 0.6^[1] Let D be a distribution on a graph G with distinct vertices u and v, where d(v)=2, $D(v)\geqslant 3$, and u is t-reachable under D, then u is t-reachable under the distribution D' obtained by making a smoothing move from v.

For more background and related topics of this article, we refer to [1-8].

1 The optimal t-pebbling number of path

First, we give an upper bound of $f'_t(P_n)$.

Theorem 1.1 $f'_{3t}(P_n) \leq t(n+2)$, $f'_{3t+1}(P_n) \leq t(n+2) + \lfloor n/2 \rfloor + 1$, $f'_{3t+2}(P_n) \leq t(n+2) + (n+1)$ for $t \geq 1$.

Proof From Lemma 0.5, we have that $f_{3t}'(P_n) \leq t f_3'(P_n)$, $f_{3t+1}'(P_n) \leq (t-1) f_3'(P_n) + f_4'(P_n)$ and $f_{3t+2}'(P_n) \leq t f_3'(P_n) + f_2'(P_n)$, for $t \geq 1$.

Clearly, it is sufficient to show that $f_3'(P_n) \le n+2$, $f_4'(P_n) \le n+\lfloor n/2 \rfloor +3$.

Let $D_1 = D_n = 2$, and $D_i = 1$ for $2 \le i \le n - 1$. Then it is a 3-fold solvable distribution on P_n with |D| = n + 2. Thus $f_3'(P_n) \le n + 2$.

For t=4, we use induction on n to prove that there exists a 4-fold solvable distribution D on P_n with $D_n \ge 2$ and |D| = n+|n/2| + 3.

If n=1, $D_1=4$; n=2, $D_1=D_2=3$. So it holds for n=1,2.

Assume that it holds for n-2, let D' be a 4-fold solvable distribution on P_{n-2} , so that $D'_{n-2} \ge 2$ and $|D'| = n-2 + \lfloor (n-2)/2 \rfloor + 3$.

Let D be a distribution on P_n such that $D_i = D_i'$ for i < n-2, $D_{n-2} = D_{n-2}' - 2$, $D_{n-1} = 3$, $D_n = 2$. It is clear that D is a 4-fold solvable distribution on P_n , $D_n \ge 2$, and

$$|D| = |D'| + 3 = n - 2 + |(n - 2)/2| + 3 + 3 =$$

$$n+| n/2 | + 3$$

this completes the proof.

Lemma 0.6 shows that a smoothing move on any vertex v with degree 2 keeps a t-reachable vertex $u \neq v$ still be t-reachable, but it does not hold for v itself. The following lemma shows that v may still be t'-reachable for some $t \leq t$.

Lemma 1. 2 Let D be a distribution on P_3 with $W(D, u_i) \geqslant 3t + r$ for $1 \leqslant i \leqslant 3$, $D_2 \geqslant t + r + 2 - \lfloor r/2 \rfloor$. If we make a smoothing move on u_2 , then u_2 is at least (3t+r)-reachable.

Proof We only prove the cases r=0,1. The case r=2 can be proved similarly.

Let $a = D_1$, $b = D_2$, $c = D_3$. The distribution, after a smoothing move on u_2 , is denoted by D'. Without loss of generality, we assume that $a \ge c$.

If a > c+2, then we remove two pebbles from u_1 and add them onto u_3 to get D^* . Clearly, we have that $W(D^*, u_i) \ge 3t+r$, and $W(D^{*'}, u_i) = W(D', u_i)$ ($D^{*'}$ is the distribution after a smoothing move on u_i from D^*).

So we only need to deal with $c \le a \le c + 2$.

Case 1 a = c.

If a is odd, then

$$W(D', u_2) \geqslant D_2 - 2 + 2 \lfloor (a+1)/2 \rfloor = D_2 + 2 \lfloor a/2 \rfloor = W(D, u_2) \geqslant 3t + r.$$

If a is even, then $W(D, u_3) = \lfloor (a/2+b)/2 \rfloor + a \geqslant 3t+r$. Note that $\min\{a+b\}$ can be achieved while b is at its minimum $\min b = t+r+2$, then $a \geqslant 2t$. Thus

$$W(D', u_2) = \lfloor a/2 \rfloor + \lfloor a/2 \rfloor + b - 2 = a + b - 2 \geqslant 3t + r.$$

Case 2 a=c+1. W(D, u_3) = $\lfloor (a/2+b)/2 \rfloor + a-1 \geqslant 3t+r$. Then min $\{a+b\}$ can be achieved while $b=\min b=t+r+2$, then $a\geqslant 2t$.

$$W(D', u_2) = \lfloor (a+1)/2 \rfloor + \lfloor a/2 \rfloor + b - 2 = a + b - 2 \geqslant 3t + r.$$

Case 3 a=c+2. If a is odd, then we are done. If a is even,

W(D, u_3) = $\lfloor (a/2 + b)/2 \rfloor + a - 2 \geqslant 3t + r$. Then min $\{a + b\}$ can be achieved if $b = \min b = t + r + 2$, then $a \geqslant 2t + 1$. Moreover,

$$W(D', u_2) = |(a-2)/2| + |a/2| + b - 2 =$$

$$a+b-3 \ge 3t+r$$
.

Corollary 1.3 There exists a (3t+r)-fold solvable distribution with $f'_{3t+r}(P_n)$ pebbles on P_n so that $D_1 \ge 2t + \lfloor r/2 \rfloor$, $D_n \ge 2t + \lfloor r/2 \rfloor$, $D_i \le t + r+1 - \lfloor r/2 \rfloor$ for $1 \le i \le n$.

Proof We only prove the cases r=0,1. The case r=2 can be similarly proved.

By Lemma 1. 2, we can make a smoothing move on vertex u_i if $D_i \ge t + r + 2$ for 1 < i < n, and the smoothing moves must be finished. Hence we can make sure that $D_i \le t + r + 1$. Then if we can move at least t + r + 1 pebbles from $P_n \setminus u_n$ to u_n , then there are at least t + r + 1 pebbles that can be moved from $P_n \setminus \{u_{n-1}, u_n\}$ to u_{n-1} , and so on. Then the number of pebbles on P_n is at least

$$2t+2r+2+(n-2)(t+r+1)+2t-1 = nt+nr+n+2t-1,$$

which is incompatible with Theorem 1.1. Thus there are at most t+r pebbles that can be moved from $P_n \setminus u_n$ to u_n , but $W(D, u_n) \geqslant 3t+r$, so $D_n \geqslant 2t$, and similarly $D_1 \geqslant 2t$.

Lemma 1.4 $f'_{3t+r}(P_n) \leq f'_{3t+r}(P_{n-2}) + 2t + r$ for $t \geq 1$.

Proof Let D' be a (3t+r)-fold solvable distribution with $f'_{3t+r}(P_{n-2})$ pebbles on P_{n-2} so that $D'_{n-2} \ge 2t+|r/2|$.

If $2t + \lfloor r/2 \rfloor \ge t + r$, then let $D_{n-2} = D'_{n-2} - t - r$, $D_{n-1} = t + 2r$, $D_n = 2t$, and $D_i = D'_i$ for $i \le n - 2$.

If $2t+\lfloor r/2\rfloor \le t+r$, we must have that t=1, r=2. Then let $D_i=D_i'$ for $i\le n-2$,

$$D_{r-2} = D'_{r-2} - 2$$
, $D_{r-1} = 3$, $D_r = 3$.

It is easy to see that the new distribution D is (3t+r)-fold solvable on P_n with $|D| \le |D'| + 2t + r$. Therefore this lemma holds.

Lemma 1.5 $f'_{3t+r}(P_n) \geqslant f'_{3t+r}(P_{n-2}) + 2t + r$ for $t \geqslant 1$ and r = 0, 1.

Proof Assume that D is a (3t+r)-fold solvable distribution with $f'_{3t+r}(P_n)$ pebbles on P_n which was provided by Corollary 1. 3. Then we let D' be a new distribution such that $D'_i = D_i$ for i < n-2 and $D'_{n-2} = D_{n-2} + D_{n-1} + D_n - 2t - r$.

First we note that

$$D_{r-1} + D_n \geqslant 2t + r \tag{1}$$

Second we show that

$$W(D', u_{n-2}) \geqslant W(D, u_{n-2})$$
 (2)

It is sufficient to show that

$$D_{n-1} + D_n - 2t - r \geqslant \lfloor (D_{n-1} + \lfloor D_n/2 \rfloor)/2 \rfloor (3)$$

Let $a=D_n$, $b=D_{n-1}$. From Corollary 1. 3 and its proof, it follows that $a \ge 2t$ and there are at most t+r pebbles that can be moved from $P_n \setminus \{u_{n-1}, u_n\}$ to u_{n-1} , and $W(D, u_{n-1}) \ge 3t+r$, $W(D, u_n) \ge 3t+r$, we have

$$\begin{cases} b + \lfloor a/2 \rfloor + t + r \geqslant 3t + r \\ \Rightarrow b + a/2 \geqslant 2t, \\ \lfloor (b + t + r)/2 \rfloor + a \geqslant 3t + r \\ \Rightarrow b/2 + a \geqslant 5t/2 + r/2. \end{cases}$$

Let $g = a + b - 2t - r - \lfloor (b + \lfloor a/2 \rfloor)/2 \rfloor$ (similarly let $g_i = a_i + b_i - 2t - r - \lfloor (b_i + \lfloor a_i/2 \rfloor)/2 \rfloor$). Then $g = 3a/4 + b/2 - 2t - r + \delta$ for some $\delta \in \{0,1/4,1/2,3/4\}$ and min g can be reached in a small neighbourhood of

$$\{(a,b) \mid b+a/2=2t, b/2+a=5t/2+r/2\} = (2t+2r/3,t-r/3).$$

If a=2t, b=t+r, then $g \ge 0$.

If a > 2t, then min g can be reached along the line b+a/2=2t. Note that if $a_1=a_2+2$, $b_1=b_2-1$, then $g_1 > g_2$. So we only need to consider a=2t+1, b=t and a=2t+2, b=t-1. In both cases, $g \ge 0$.

Therefore, D' is (3t+r)-fold solvable on P_{n-2} .

Similarly, we have the following lemma.

Lemma 1.6 $f'_{3t+2}(P_n) \geqslant f'_{3t+2}(P_{n-2}) + 2t + 2$ for $t \geqslant 1$.

Proof Assume that D is a (3t+2)-fold solvable distribution with $f'_{3t+2}(P_n)$ pebbles on P_n .

Let $D'_i = D_i$ for i < n-2 and $D'_{n-2} = D_{n-2} + D_{n-1} + D_n - 2t - 2$.

First we show that $D_{n-1} + D_n \ge 2t + 2$, we know that $D_n \ge 2t + 1$, if $D_n \ge 2t + 2$, then we are done; if $D_n = 2t + 1$, then, similar to the proof in Corollary 1.3, at most t+1 pebbles that can be moved from $P_n \setminus \{u_{n-1}, u_n\}$ to u_{n-1} . But $W(D, u_{n-1}) \ge 3t + 2$, so $D_{n-1} \ge t + 1$.

Second we show that $W(D', u_{n-2}) \geqslant W(D, u_{n-2})$,

we only need to show

$$D_{n-1} + D_n - 2t - 2 \ge |(D_{n-1} + |D_n/2)|/2|$$
.

Let $a=D_n$, $b=D_{n-1}$, from Corollary 1.3, assume that $a \geqslant 2t+1$. For at most t+1 pebbles that can be moved from $P_n \setminus \{u_{n-1}, u_n\}$ to u_{n-1} , and $W(D, u_{n-1}) \geqslant 3t+2$, $W(D, u_n) \geqslant 3t+2$, they imply that

$$\begin{cases} b + \lfloor a/2 \rfloor + t + 1 \geqslant 3t + 2 \\ \Rightarrow b + a/2 \geqslant 2t + 1, \\ \lfloor (b+t+1)/2 \rfloor + a \geqslant 3t + 2 \\ \Rightarrow b/2 + a \geqslant 5t/2 + 3/2. \end{cases}$$

Let $g = a + b - 2t - 2 - \lfloor (b + \lfloor a/2 \rfloor)/2 \rfloor$ (similarly let $g_i = a_i + b_i - 2t - 2 - \lfloor (b_i + \lfloor a_i/2 \rfloor)/2 \rfloor$). Then we should prove that $g \ge 0$.

Let $g = 3a/4 + b/2 - 2t - 2 + \delta$ for some $\delta \in \{0, 1/4, 1/2, 3/4\}$. It is not hard to see that min g can be reached in a small neighbourhood of

$$\{(a,b) \mid b+a/2=2t+1, b/2+a=5t/2+3/2\} = (2t+4/3,t+1/3).$$

If
$$a=2t+1$$
, $b=t+1$, then $g \ge 0$.

If a>2t+1, then min g can be reached along the line b+a/2=2t+1. Note that if $a_1=a_2+2$, $b_1=b_2-1$, then $g_1>g_2$. So we only need to consider a=2t+2, b=t and a=2t+3, b=t. In both cases, $g\geqslant 0$.

So D' is (3t+2)-fold solvable on P_{n-2} , and we are done.

By Lemmas 1. $4 \sim 1$. 6, we can get the following theorem immediately.

Theorem 1.7 $f'_{3t+r}(P_n) = f'_{3t+r}(P_{n-2}) + 2t + r$, for $t \ge 1$.

From Theorems 1. 7 and 0. 3, also note that $f'_{3t+r}(P_1)=3t+r$, we can get the following theorem.

Theorem 1.8
$$f'_{3t}(P_n) = t(n+2)$$
,
 $f'_{3t+1}(P_n) = t(n+2) + \lfloor n/2 \rfloor + 1$,
 $f'_{3t+2}(P_n) = t(n+2) + (n+1)$,

for $t \ge 1$.

2 The optimal t-pebbling number of cycle

The optimal t-pebbling numbers of C_3 and C_4 were obtained in Ref. [4]. In this section, we will

give the optimal t-pebbling number of C_5 .

A distribution D is smooth if it has at most two pebbles on every vertex of degree 2.

Theorem 2.1 $f'_2(C_n) = n \text{ for } n > 3, \ f'_3(C_n) = n + 2.$

Proof If $f_2'(C_n) \leq n-1$, then it is not hard to see that $f'(C_n \times K_2) \leq n-1$, a contradiction to Theorem 6.6 in Ref. [1], so $f_2'(C_n) \geq n$.

Let D be a distribution on C_n such that $D_i = 2$ if i is odd and $D_i = 0$ if i is even, except for $D_n = 1$ if n is odd. Then D is 2-fold solvable and |D| = n, so $f'_2(C_n) \leq n$.

Let D be a distribution on C_n so that $D_1 = D_2 = 2$ and $D_i = 1$ otherwise. Then D is 3-fold solvable and |D| = n+2, so $f'_3(C_n) \leq n+2$.

Let D' be a distribution on C_n with $f'_3(C_n)$ pebbles such that it has at most two pebbles on every vertex. If all the vertices of C_n are occupied and there exists one vertex u_i with $D_i \geqslant 3$, then from the upper bound n+2 it follows that $D_j=1$ for every $j\neq i$, and $D_i=3$. It is easy to see that it is not a 3-fold solvable distribution. If $D_i=0$ for some i, then from Lemma 4. 4 in Ref. [1] it follows that at most two pebbles can be moved to u_i , a contradiction. Thus $D_i \geqslant 1$ for $1 \leqslant i \leqslant n$, but no distribution with n+1 pebbles can be 3-fold solvable and hence $f'_3(C_n) \geqslant n+2$.

Definition 2. 2 Assume u is the target vertex, a pebbling move from v to w is greedy if $d(w,u) \le d(v,u)$.

Theorem 2. 3 $f'_{t}(C_{2n}) \geqslant \frac{2^{n+1} nt}{3 \cdot 2^{n} - 3}$, the equality holds if and only if $(3 \cdot 2^{n} - 3) \mid t$; $f'_{t}(C_{2n+1}) \geqslant \frac{2^{n-1} (2n+1) t}{3 \cdot 2^{n-1} - 1}$, the equality holds if and only if $(3 \cdot 2^{n} - 2) \mid t$.

Proof We only prove that for even cycle, the case for the odd cycle can be similarly proved.

Let D be a t-fold solvable distribution with $f_i'(C_{2n})$ pebbles on $C_{2n} = u_1 u_2 \cdots u_{2n} u_1$. For simplicity, let $a_i = D_i$ for $1 \le i \le 2n$ ($a_{2n+i} = a_i$), $\tilde{a_i}$ be the number of pebbles on u_i after some pebbling moves.

Then we have

$$t \leq W(D, u_i) \leq a_i + (a_{i+1}/2 + a_{i-1}/2) + (a_{i+2}/4 + a_{i-2}/4) + \cdots + (a_{i+n-1}/2^{n-1} + a_{i-n+1}/2^{n-1}) + a_{i+n}/2^n.$$

Adding these 2n inequalities, we can get the inequality.

If $t = (3 \cdot 2^n - 3) m$ for some integer m, then we put $2^n m$ pebbles on each vertex, which is a t-fold solvable distribution, so the equality holds.

Conversely, if the equality holds, then for $1 \le i \le 2n$,

$$W(D, u_i) = a_i + (a_{i+1}/2 + a_{i-1}/2) + (a_{i+2}/4 + a_{i-2}/4) + \cdots + (a_{i+n-1}/2^{n-1} + a_{i-n+1}/2^{n-1}) + a_{i+n}/2^n = t.$$

This means:

- ① The pebbling moves must be greedy.
- ② In the sequence of pebbling moves, we can not lose any one pebble. In other words, if t pebbles have been moved to u_i , then the number of pebbles left on any other vertex must be 0.

First we prove that a_i is a constant for all $1 \le i \le 2n$.

Let $d = \min\{ a_j \mid 1 \le j \le 2n \}$. Without loss of generality, we assume that $a_1 = d$. Let $\alpha = a_2 + a_3/2 + \dots + a_n/2^{n-2}$ and $\beta = a_{2n} + a_{2n-1}/2 + \dots + a_{n+2}/2^{n-2}$. Then from W(D, u_{2n}) = W(D, u_2), W(D, u_{2n}) = W(D, u_1), we can get

$$\begin{split} \alpha + \beta/4 + a_{n+1}/2^{n-1} + d/2 &= \\ \beta + \alpha/4 + a_{n+1}/2^{n-1} + d/2 \,, \\ d + \beta/2 + \alpha/2 + a_{n+1}/2^n &= \\ \beta + \alpha/4 + a_{n+1}/2^{n-1} + d/2 \,. \end{split}$$

So
$$\alpha = \beta = 2 d - a_{n+1}/2^{n-2} \le 2 d - \frac{1}{2^{n-2}} d$$
. From $\alpha = a_2 + a_3/2 + \dots + a_n/2^{n-2}$,

it follows that

$$\alpha \geqslant d + \left[1 - \frac{1}{2^{n-2}}\right]d = 2d - \frac{1}{2^{n-2}}d,$$

where equality holds if and only if $a_2 = a_3 = \cdots = a_n = d$. Again from

$$2d - \frac{1}{2^{n-2}}d \leqslant \alpha = 2d - a_{n+1}/2^{n-2} \leqslant 2d - \frac{1}{2^{n-2}}d$$

it follows that $a_{n+1} = d$. In the same way, we know that $a_{n+2} = a_{n+3} = \cdots = a_{2n-1} = a_{2n} = d$.

Now we prove that $2^n \mid d$.

If $a_i = d$ is odd and u_{i+n+1} is the target vertex, there is at least one pebble on u_i which can not be moved, so $2 \mid n$.

If $a_i = d = 4k + 2$ and u_{i+n+1} is the target vertex, after all the pebbles are removed from u_i , one of \tilde{a}_{i+1} , \tilde{a}_{i-1} must be odd. So $4 \mid d$.

If $2^{j} \mid d$ for some j < n, but then $2^{j+1} \not\mid d$, namely, there is some integer k such that $a_i = 2^{j+1} k + 2^{j}$. Let the target vertex be u_{i+n+1} , then when we move all pebbles off u_s for i-j < s < i+j, then one of \tilde{a}_{i+j} , \tilde{a}_{i-j} must be odd, a contradiction. So $2^{j+1} \mid d$.

From the above argument, it follows that $2^n \mid d$. Assume that $d = 2^n m$ for some integer m, then $t = (3 \cdot 2^n - 3) m$, and hence $(3 \cdot 2^n - 3) \mid t$. \square

Now, we give the optimal t-pebbling number of C_5 .

From Theorem 2.3, we have the following corollary.

Corollary 2. 4 $f'_{t}(C_{5}) \ge 2t + 1$ if 10 $\ \ t$, $f'_{t}(C_{5}) = 2t$ if $10 \mid t$.

Let $C_5 = u_1 u_2 u_3 u_4 u_5$, $a_i = D(u_i)$. First we give the optimal *t*-pebbling numbers of C_5 for $2 \le t \le 11$, which were obtained by the direct calculation.

Lemma 2.5 For $2 \le t \le 11$, the optimal t-pebbling number of C_0 is given in Tab. 1.

Theorem 2.6 The optimal *t*-pebbling number of C_5 is

$$f'_t(\mathsf{C}_5) = egin{cases} 4, & ext{if } t=1; \ 2t, & ext{if } 10 \mid t; \ 2t+1, & ext{otherwise} \end{cases}$$

Proof For $t \le 10$, it follows from Tab. 1.

For t > 10, assume that t = 10 n + r, where $0 \le r \le 9$.

If r=0, it follows from Corollary 2.4.

If r=1, then from Lemma 0.5 and Corollary

2.4, we have

$$2t+1 \leqslant f'_{t}(C_{5}) \leqslant (n-1)f'_{10}(C_{5}) + f'_{11}(C_{5}) = 20(n-1) + 23 = 2t+1.$$

So $f'_t(C_5) = 2t + 1$ if t = 10n + 1, where $n \ge 1$.

If $r\neq 1$, then from Lemma 0.5 and Corollary 2.4,

$$2t+1 \leqslant f'_{t}(C_{5}) \leqslant nf'_{10}(C_{5}) + f'_{r}(C_{5}) = 20n+2r+1 = 2t+1.$$

So $f'_t(C_5) = 2t+1$ if t=10n+r, where $r\neq 0,1$. \square

3 Optimal pebbling on product of paths

In this section, we give the optimal t-pebbling number of $P_2 \times P_3$. Let $D = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix}$ be a t-

fold solvable distribution on

$$P_2 imes P_3=egin{bmatrix} u_1 & u_2 & u_3 \ u_4 & u_5 & u_6 \end{bmatrix}$$
.

First we give a lower bound of $f'_t(P_2 \times P_3)$.

Lemma 3.1 $f'_t(P_2 \times P_3) \geqslant \lceil 20t/9 \rceil$, equality holds if $t=0 \pmod{9}$.

Proof Let $D = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix}$ be a distribution on $P_2 \times P_3$ with $f_t'(P_2 \times P_3)$ pebbles. Then we can get $W(1) \doteq a_1 + a_2/2 + a_3/4 + a_4/2 + a_5/4 + a_6/8 \geqslant t$. For the other 5 vertices, we can get similar inequalities according to pebbling moves.

Since W(1)+W(3)+W(4)+W(6)
$$\geqslant 4t$$
,

$$\frac{15}{8}(a_1 + a_3 + a_4 + a_6) + \frac{3}{2}(a_2 + a_5) \geqslant 4t (4)$$

Since W(2) + W(5) $\ge 2t$,

$$\frac{3}{4}(a_1 + a_3 + a_4 + a_6) + \frac{3}{2}(a_2 + a_5) \geqslant 2t (5)$$

 $(4)\times 2+(5)$, we can get

$$a_1 + a_2 + a_3 + a_4 + a_5 + a_6 \geqslant 20 t/9$$
,

Tab. 1	$f'_t(C_5)$	for $2 \leqslant$	$t \leq 11$
--------	-------------	-------------------	-------------

t	2	3	4	5	6	7	8	9	10	11
$f'_t(C_5)$	5	7	9	11	13	15	17	19	20	23
a_1 , a_2 , a_3	2,0,2	2,2,1	1,3,1	2,2,2	3,3,2	3,3,3	3,4,3	4,4,4	4,4,4	5,4,5
a_4 , a_5	0,1	1,1	2,2	2,3	3,2	3,3	3,4	4,3	4,4	4,5

			Tab. 2	$f'_{t}(P_{2})$	(P_3) for	$1 \leqslant t \leqslant 9$)			
•	t	1	2	3	4	5	6	7	8	9
	20 t/9	3	5	7	9	12	14	16	18	20
j	$E_t'(P_2 \times P_3)$	3	6	8	10	12	14	16	18	20
	a_1, a_2, a_3	0,2,0	1,2,1	1,2,1	2,2,2	2,2,2	2,3,2	3,2,3	3,2,3	4,2,4
	a_4 , a_5 , a_6	0,1,0	0,2,0	1,2,1	1,2,1	2,2,2	2,3,2	3,2,3	4,2,4	4,2,4

so $f'_t(P_2 \times P_3) \ge 20 t/9$.

If $t\equiv 0 \pmod{9}$, then assume t=9m for some integer m. Let $a_1=a_3=a_4=a_6=4m$, $a_2=a_4=2m$, which is a t-fold solvable distribution with 20m pebbles, so the equality holds.

From direct computation, we can get

Lemma 3.2
$$f'_t(P_2 \times P_3) = 2t + 2 \text{ for } 2 \le t \le 9.$$

Proof We use Tab. 2, where the last row is a *t*-fold solvable distribution D with $f'_t(P_2 \times P_3)$ pebbles on $P_2 \times P_3$.

Theorem 3.3
$$f'_{9t}(P_2 \times P_3) = 20t$$
,
 $f'_{9t+1}(P_2 \times P_3) = 20t + 3$,

and

$$20t + 2r + 1 \leqslant f'_{9t+r}(P_2 \times P_3) \leqslant$$
$$20t + 2r + 2, \text{ for } 2 \leqslant r \leqslant 8,$$

the last equality holds for r=5,6,7,8.

Proof From Lemma 3.1, we have $f'_{9t+r}(P_2 \times P_3) \ge 20t + \lceil 20r/9 \rceil$.

By Lemma 0.5, we know that $f'_{9t+r}(P_2\times P_3)\leqslant tf'_9(P_2\times P_3)+f'_r(P_2\times P_3)=\\20t+f'_r(P_2\times P_3).$

By Tab. 2, we are done.

References

- [1] Bunde DP, Chambers EW, Cranston D. Pebbling and optimal pebbling in graphs[J]. J Graph Theory, 2008, 57: 215-238.
- [2] Chung F R K. Pebbling in hypercubes[J]. SIAM J Discrete Math, 1989, 2(4): 467-472.
- [3] Friedman T, Wyels C. Optimal pebbling of paths and cycles[DB/OL]. arXiv, 2003; arXiv: math/0506076.
- [4] Hersovici D, Hester B D, Hurlbert G H. Optimal pebbling in products of graphs [J]. Australasian Journal of Combinatorics, 2011, 50; 3-24.
- [5] Hersovici D, Hester B D, Hurlbert G H. *t*-pebbling and extentions[J]. Graphs and Combinatorics, 2013, 29: 955-975.
- [6] Hoffmann M, Matousek J, Okamoto Y. The t-pebbling number is eventually linear in t[J]. The Electronic Journal of Combinatorics, 2011, 18: 153-156.
- [7] Moews D. Pebbling graphs[J]. J Combin Theory, Ser B, 1992, 55: 244-252.
- [8] Pachter L, Snevily H S, Voxman B. On pebbling graphs[J]. Congr Numer, 1995, 107: 65-80.