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0 Introduction

Throughout this paper, G=(V, E) denotes a
simple, connected graph with n vertices. Let P,=
u Uy *** U, and C,,Z U U *** U, U be the path and the
cycle with n vertices, respectively. A function
D: V>NU({0} is called a distribution on the
vertices of G. Let D(w) be the number of pebbles
on the vertex v€ V(G) (D;=D(w)), | D| be the
total number of pebbles on V (G) under D. A
pebbling move consists of the removal of two
pebbles from a vertex and placing one pebble at an
adjacent vertex. The optimal t-pebbling number of
G. denoted by f/(G)., is the least p such that, for
some distribution of p pebbles on the vertices of G,
a pebble can be moved to any vertex by a sequence
of pebbling moves. Moreover, [ (G)= f1(G) is
called the optimal pebbling number of G.

Let W (D, v) be the maximal number of
pebbles on v by some (possibly empty) pebbling
moves on G from the original distribution D. Then
we call v t-reachable under D for some positive
integer ¢ if W(D, v) =1 A distribution D is called
t-fold solvable if every vertex is
under D.

The known results about the optimal

t-reachable

pebbling number of paths, cycles and the product
of paths are given as follows.

Theorem 0. 1" f"(P )= f'(C) =/ 2n/3 |

Theorem 0.2 {7 (P,)=n+1.

Theorem 0.3 i (P,) =41+ 2rif r<"2,
fimo (Py) =41+3.

The Cartesian product GX H is defined to be
the graph with vertex set V(GX H) and edge set:
the union of {((a, v, (b, V)| (a, b) € E(G),
vEE(H)} and {(Cus )5 Cusy y)) [ u€ VG,
(xs WEECH)}.

Theorem 0. 41 ['(P, X P;)= ["(C, X P,)=
m for m=2, except that [ (P, X P;) =3 and
[Py X Py)=6. If i=6q+r,
12q if r=0,
129+ 2r+1

In this paper, we will give the optimal ¢

f(K; X Ky) =

otherwise.

pebbling numbers of the path P, and the cycle G;.
First, we give some lemmas.

Lemma 0.5 (L (O [{(G)+ [I(G).

For a given distribution D on V(G), assume
d(v)=2 and D(wv)=3. A smoothing move from v
changes D by removing two pebbles from v, and
add one pebble on each neighbour of w.

Lemma 0. 6
graph G with distinct vertices u and v, where
d(v)=2, D(v)=3, and uis t-reachable under D,

then u is treachable under the distribution D’

Let D be a distribution on a

obtained by making a smoothing move from w.
For more background and related topics of this

article, we refer to [ 1-8].

1 The optimal 7 -pebbling number of
path

First, we give an upper bound of f/(P,).

Theorem 1.1 {5, (P)<<t(n+2), fi (P)<<
tnt2)+H /2 1. f . (PO<t(nt2)+(nt D)
for t=1.

Proof
fa(PO<tf;(P), fi(PO<C—1 fi(P)+
fi(P,) and f%,,(P)<tf5(P,) + f,(P,), for
=1,

Clearly, it is sufficient to show that fg/( P,)<<
n+2, fi ( P,,)<11+L n/2 J+3.

Let Dy=D,=2, and D,=1 for 2<<i<<{n—1.
Then it is a 3-fold solvable distribution on P, with
| D| =n+2. Thus f5(P,)<<n+2.

For t=4, we use induction on n to prove that

From Lemma 0.5, we have that

there exists a 4-fold solvable distribution D on P,
with D,=>2 and | D| =n+| n/2 |+3.

If n=1, Di=4; n=2, Di= D, =3. So it
holds for n=1,2.

Assume that it holds for n—2, let D" be a 4-
fold solvable distribution on P, ;. so that D, ,=>=2
and |D'|=n—2+(n—2)/2 |+3.

Let D be a distribution on P, such that D;=
D/for i<<n—2, D,.=D, ,—2, D, =3, D,=2.
It is clear that D is a 4-fold solvable distribution on
P,, D,=2, and

| D|=|D[+3=n—2+4+[(n—2)/2 [ +3+3 =
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nJrL n/2J+3y
this completes the proof. L]

Lemma 0. 6 shows that a smoothing move on
any vertex v with degree 2 keeps a t-reachable
vertex u7 v still be t-reachable, but it does not
hold for wvitself. The following lemma shows that
v may still be t-reachable for some t'<Ct.

Lemma 1. 2 Let D be a distribution on P;
with W(D, u)=3t+r for 1<<i<<3, D,=t+rt2—
| /2 |. If we make a smoothing move on w s then
up is at least (314 r)-reachable.

Proof We only prove the cases r=0,1. The
case r=2 can be proved similarly.

Let a= Dy, b= Dy, c= D,.

after a smoothing move on u;, is denoted by D’.

The distribution,

Without loss of generality, we assume that a=c.
If a>c+2, then we remove two pebbles from
w, and add them onto us to get D". Clearly, we
have that W(D" , u;) =3t+ r, and W(D" ', ) =
WD, u)

smoothing move on w; from D" ).

( D" is the distribution after a

So we only need to deal with <X a< ¢+ 2.

Casel a=c

If ais odd, then

WD w) =D, —2+2[(at+1/2]=

D, +2 a/2 | = W(Dsw) = 3t+r.

If ais even, then W(D,u)=| (a/2+b)/2 |+
a=3t+ r. Note that min{a+ b} can be achieved
while b is at its minimum min b=t+ r+2, then
a=21. Thus

WD u) = a/2 |+[ a/2 |+ b—2 =
at+b—2 =31+ r

Case2 a=ct+1. W(D,u)=[(a/2+b0/2 [+
a—1=3t+ r. Then min{a-+ b} can be achieved
while b=min b=t+r+2, then a=2t

WD ) = Ca+1/2 |+ a/2 [+ b—2=

at+b—2=>=3t+r

Case 3 a=c+ 2. If ais odd, then we are
done. If ais even,

WD, u) =[(a/2+ /2 |+ a—2=31+r
Then min{a-+ b} can be achieved if b=min b=
t+r+2, then a=2t+1. Moreover,

WD w) =[(a—2)/2 [+ /2 [+ b—2=

at+b—3=3t+r []

Corollary 1.3  There exists a (3¢+ r)-fold
solvable distribution with f3,..(P,) pebbles on P,
so that D=2+ /2 |, D=2+ v/2 |, Di<<i+
r+1—| /2 | for 1<<i<n.

Proof We only prove the cases r=0,1. The
case r=2 can be similarly proved.

By Lemma 1. 2, we can make a smoothing
move on vertex w; if D;=t+ r+2 for 1<i<n, and
the smoothing moves must be finished. Hence we
can make sure that D;<Ct+ r+ 1. Then if we can
move at least ¢+ r+ 1 pebbles from P,\ u, to u,,
then there are at least t+ r+1 pebbles that can be
moved from P,\{ w1, w,} to w—1, and so on.
Then the number of pebbles on P, is at least

2t+2r+24+n—2)(t+r+1)+2t—1 =
n+nmr+nt+2t—1,
which is incompatible with Theorem 1.1. Thus
there are at most t+ r pebbles that can be moved
from P,\u, to u,, but W(D, u,)=3t+r, so D,=
2t, and similarly D, =21t L]

Lemma 1.4 i, (P)<fi, (P, ) +2t+r
for t=1.

Proof Let D' be a (3t+ r)-fold solvable
distribution with f%,_,(P, ;) pebbles on P, ; so
that D,_,=21+| /2 |.

If 2¢4+ /2 =t+7r, thenlet D, =D} ,—1—
re D1 =t+2r, D,=2t, and D,= D/ for i<<n—2.

If 2¢4+| /2 |<<t+ r, we must have that t=1,
r=2. Then let D,= D! for i<<n—2,

D,, =D ,—2, D,y =3, D, = 3.

It is easy to see that the new distribution D is
(3t+ r)-fold solvable on P, with | D|<|D'|+2t+
r. Therefore this lemma holds. L]

Lemma 1.5 f; ,(P)>=fi., (P, )+ 2t+r
for =1 and r=0,1.

Proof Assume that D is a (3¢t -+ r)-fold
solvable distribution with f3, ,(P,) pebbles on P,
which was provided by Corollary 1. 3. Then we let
D’ be a new distribution such that D'.= D, for
i<n—2and D, ,=D, ,+D, ,+D,—2t—r.

First we note that

D,y + D, =2t+r (D
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Second we show that
WD us) = W(Dsu, ) (2)
It is sufficient to show that
D, +D,—2t—r=[(D~ +[ D./2 D/2 [(3)

Let a=D,, b=D, ;. From Corollary 1. 3 and
its proof, it follows that a==21 and there are at most
(+ r pebbles that can be moved from P, \{ w, 1su,}
to u—1s and W(D, u,—)=3t+r, W(D, w,)=31+
r, we have

b+l a/2 [+ t+r=304r
= b+ a/2 = 2t,
\[UH (+P/2 J+a=3i+r

= b/24+a=51/2+ v/2.

Let g=a+b—2t—r—| (b+| &/2 D/2 |
(similarly let g =a,+b—2t—r—| (b, a/2 /2 D.
Then g=3a/4+ b/2 — 2t— r+ & for some €
{0,1/4,1/2,3/4} and min g can be reached in a
small neighbourhood of

{Cas®) | b+ a/2 =2t, b/24+ a=5t/2+ 1r/2} =

2t+2v/3,t— 1/3).

If a=2t, b=t+r, then g=0.

If a=>2t, then min g can be reached along the
line b+a/2=2t. Note that if s =a; +2, by=10, —
1, then g, > g,. So we only need to consider a=
2t+1, b=tand a=2t+2, b=t—1. In both cases,
g}O.

Therefore, D" is (3t + r)-fold solvable on
P, . L]

Similarly, we have the following lemma.

Lemma 1.6 f,,(P,)=f4,,(P,_,)+2t+2
for t=1.

Proof

solvable distribution with [ 5.,C P,)

Assume that D is a (3t + 2)-fold
pebbles
on P,.

Let D'=D, for i<<n—2 and D/, ,=D, ,+
D, +D,—2t—2.

First we show that D, ; + D,=2t+ 2, we
know that D,=>2t+1, if D,=>2t+2, then we are
done; if D,=2t+1, then, similar to the proof in
Corollary 1.3, at most t+ 1 pebbles that can be
moved from P, \{uw, 1»u.} to u, . But W(D,u, )
=3t+2, so D, \=t+1

Second we show that W(D', u,—2) =W(D, t,—5)

we only need to show
D, +D,—2t—2=[(D,,+| D./2 D/2 |.

Let a=D,, b= D, ,, from Corollary 1.3,
assume that a==2t+ 1. For at most t+ 1 pebbles
that can be moved from P,\{w, ,,u,} to u, ;» and
WD, u,—)=3t+2, W(D, u,)=3t+2, they imply
that

b+l a/2 J+1+1=30+2
J => b+ a/2=21+1,
\[L(bthJr /2 |+ a=3t+2

= b/2+a=51/2+3/2.

Let g=a+b—2t—2—| (b+| a/2 /2 |
(similarly let gi=a,+b—21—2— (b4 a/2 D/2 D.
Then we should prove that g=0.

Let g=3a/4+ b/2—2t— 2+ 3 for some €
{0,1/4,1/2,3/4}. It is not hard to see that min g
can be reached in a small neighbourhood of
{(Ca,0) | b+ a/2=2t+1, b/24+a=5t/2+3/2} =

(2t+4/3.t4+1/3).

If a=2t+1, b=1t+1, then g=0.

If «>2t+1, then min g can be reached along
the line b+ a/2=2t+ 1. Note that if ¢y =a + 2,
by=0b, —1, then g > g.. So we only need to
consider a=2t+2, b=t and a=2t+3, b=+t In
both cases, g=0.

So D" is (3t+ 2)-fold solvable on P,—,, and
we are done. L]

By Lemmas 1. 4 ~ 1. 6, we can get the
following theorem immediately.

Theorem 1.7  f%, (P, = f%, (P,_,)+2t+
r, for t=1.

From Theorems 1. 7 and 0. 3, also note that
fo (P =3t+r, we
theorem.

Theorem 1.8 £, (P,)=t(n+2),

fim (P = tn+2) +L n/2 |+ 1,
Fls2(P) = ttn+2)+ (n+ 1),
for t=1.

can get the following

2 The optimal ¢ -pebbling number of
cycle

The optimal tpebbling numbers of C; and C,

were obtained in Ref. [4]. In this section, we will
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give the optimal tpebbling number of G;.

A distribution D is smooth if it has at most
two pebbles on every vertex of degree 2.

Theorem 2.1 {5(C,)=nfor n>>3, fi(C,)=
n+2.

Proof If [;(C,)<{n—1, then it is not hard to
see that ' (C, X K;)<{n—1, a contradiction to
Theorem 6.6 in Ref. [1], so f;(C)=n.

Let D be a distribution on C, such that D;,=2
if iis odd and D,=0 if i is even, except for D,=1
if nis odd. Then D is 2-fold solvable and | D| = n,
so [ (CH<n.

Let D be a distribution on C, so that D; =
D,=2 and D; = 1 otherwise. Then D is 3-fold
solvable and | Dl =n+2, so f:(C,)<<n+2.

Let D' be a distribution on C, with f/g(C,,)
pebbles such that it has at most two pebbles on
every vertex. If all the vertices of C, are occupied
and there exists one vertex wu; with D,—=>3, then
from the upper bound n+2 it follows that D;=1
for every j7% 1, and D;=3. It is easy to see that it
is not a 3-fold solvable distribution. If D, =0 for
some i, then from Lemma 4. 4 in Ref. [1] it
follows that at most two pebbles can be moved to
u;s a contradiction. Thus D;=1 for 1<Xi<{n, but
no distribution with n+ 1 pebbles can be 3-fold
solvable and hence f4(C,)=n+2. L]

Definition 2. 2 Assume u is the target
vertex, a pebbling move from v to w is greedy if
d(w, w)<<d(uv,w.

2" e
3.2"—3°
equality holds if and only if (3 « 2" —3) |

2" '2nt 11
3e20 11

only if (3+2"—2)]¢w

Proof We only prove that for even cycle, the

Theorem 2. 3 1C,) = the

Fi(Cou) = , the equality holds if and

case for the odd cycle can be similarly proved.

Let D be a tfold solvable distribution with
f,’(C2”> pebbles on G, = wuw ** wy, u;. For
simplicity, let a;=D; for 1<Xi<<2n (@, (= a)» a;
be the number of pebbles on w; after some pebbling

moves.

Then we have

<< W(D,u) < ai+ Capy /24 a; 1 /2) +
Cais/4+ ais/4) + -+ +
Camn 1/2" "+ @i o /2" 1) + an/27.

Adding these 2n inequalities, we can get the
inequality.

If t=(3 » 2"—3) m for some integer m, then
we put 2"m pebbles on each vertex, which is a
fold solvable distribution, so the equality holds.

Conversely, if the equality holds, then for 1<
i<2n,

WD, u) = a;+ Caxs /2 + a; 1/2) +

Caia/4+ are/4) + -+
Caymt /27 a1 /27 + i 0/2" = L
This means:

@ The pebbling moves must be greedy.

@ In the sequence of pebbling moves, we can
not lose any one pebble. In other words, if t
pebbles have been moved to u;,» then the number of
pebbles left on any other vertex must be 0.

First we prove that a; is a constant for all
I<i<Zn.

Let d=min{a; | 1<<j<<2n}. Without loss of
generality, we assume that a, = d. Let a= a, +
as/2+ 4+ a,/2" % and B= a, + az,—1/2 + -+ +
ar2/2" 2. Then from W (D, w,) =W (D, w),
WD, w,)=W(D,u;), we can get

a+ B/4+ a,. /2" L4 d/2 =
B+ /44 ayi /27" +d/2,
At B2+ o/2+ avs /2" =
B+ o/4+ an, /2" P 4 d/2.
1
271*2
a=a;+ a;/2+ -+ a,/277,
it follows that

SO a:ﬁ:zdf ay 1/2"72<2d7 d. From

1
on 2

a=d+ |1 —

where equality holds if and only if @z = a3 =+ =
a,=d. Again from

1

o 2/:*2

1

2d )
2”*_

d<a=2d— a,. /2" " < 2d—

d

it follows that a,-, =d. In the same way, we know

that a, »=a, s ==, 1 =@, —d.
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Now we prove that 2" d.

If a;=d is odd and w; , is the target vertex,
there is at least one pebble on u; which can not be
moved. so 2| n.

If , =d=4k+ 2 and w+,. is the target
vertex, after all the pebbles are removed from u;,
one of ai+;» a; , must be odd. So 4/|d.

If 2/ | d for some j<n, but then 2/*' J d,
namely, there is some integer k such that a; =
277 k427, Let the target vertex be w1, then
when we move all pebbles off u, for i— j<<sli+j,
then one of ai—;, a; ; must be odd, a contradiction.
So 27! d.

From the above argument, it follows that
2"|'d. Assume that d=2"m for some integer m,
then t=(3 ¢+ 2"—3)m, and hence (3 « 2"—3) |¢. [J

Now, we give the optimal tpebbling number
of G;.

From Theorem 2. 3, we have the following
corollary.

Corollary 2. 4 [ /(CH) =21+ 1 if 10 | ¢
fl(CH=21if 10] ¢

Let CG=wwww us» a;=D(w). First we give
the optimal pebbling numbers of C; for 2<C <11,
which were obtained by the direct calculation.

Lemma 2. 5 For 2<C:<C11, the optimal
pebbling number of C; is given in Tab. 1.

Theorem 2.6 The optimal t-pebbling number
of G is

4:5 If t— 1;
£.(CH) =<2t if 10 | ¢
2t+ 1, otherwise.

Proof For =10, it follows from Tab. 1.

For t=10, assume that t=10n+r, where 0<<
r<9.

If =0, it follows from Corollary 2. 4.

If ¥=1, then from Lemma 0.5 and Corollary

2.4, we have
20+ 1< fi(C) <
(n—1) f1,(C) + [u(C) =
20(n—1) 4+ 23 = 21+ 1.
So fi(Cs)=2t+1if t=10n+1, where n=>1.
If +#1, then from Lemma 0.5 and Corollary
2.4,
20+ 1< fi(C) <
nf1,(C) + f1(G) =
20n+2r+1=2¢t+1.
So fi(Cs)=2t+1if t=10n+r, where r#0.1. []

3  Optimal pebbling on product of
paths

In this section, we give the optimal +-pebbling

a ay Ay

number of P, X Py. Let D= be a

ay ds g
fold solvable distribution on

u Uy Uz

P2><P3:

Uy Us Us
First we give a lower bound of f;(P; X P3).

fI(P, X P> 201/9 |, equality
holds if t=0(mod 9).

Lemma 3.1

ay as

2 g

Proof Let D= L be a distribution

a  as  a
on P, X Py with f;(P,;X P;) pebbles. Then we can
get WDD=aq +a/2+a/d+a/2F a/4+ a /8=
t. For the other 5 vertices, we can get similar
inequalities according to pebbling moves.

Since W(1)+W(3)+WM)+W(6)=>41,

1§5(a1 it ata) + e+ a) =4t D)
Since W(2)+W(5)=21,

S+ as+ata) + 5 (et a) =20 ()

(4) X2+(5), we can get
a+a+ as+a + as + as = 201/9,

Tab.1 f.(G) for2 << <11
¢ 2 3 4 5 6 7 8 9 10 11
F1CCH 5 7 9 11 13 15 17 19 20 23
@ sassas 2,0,2  2,2,1 1,3,1  2,2,2  3,3,2  3,3,3  3,4,3  4,4,4  4,4,4  5,4,5

aj s as 0,1 1,1 2,2 2,3

3,2 3,3 3.4 4.3 4.4 4,5
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Tab.2  f,(P, X Ps) for1 < t<C9

t 1 2 3 4 5 6 7 3 9
[201/9] 3 5 7 9 12 14 16 18 20
1Py X Py) 3 6 3 10 12 14 16 18 20
arsazsas 0,2,0 1.2,1 1.2.1 2,2,2 2.2,2 2.3,2 3.2,3 3.2,3 4,2,4
s ds s as 0,1,0 0.2,0 1,2,1 1.2,1 2,2,2 2.3,2 3,2,3 4,2,4  4,2,4

so [1(Py; X Py)=201/9.
References

If =0(mod 9), then assume (=9m for some
integer m. Let a=as=a,=as=4m, aa=a,=2m,
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Flor (P X P << tf 1(Py X Py) + fL(P, X Py) =
20t+ f',(Py X Py).
By Tab. 2, we are done. L]
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