Vol. 45, No. 6 Jun. 2015

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2015)06-0436-07

Hamilton paths and cycles in fault-tolerant varietal hypercubes

HUANG Yanyun^{1,2}, XU Junming^{1,2}

(1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China; 2. Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, He fei 230026, China)

Abstract: The varietal hypercube VQ_n , a variant of the hypercube Q_n , was studied. It was proved that VQ_n contains a fault-free Hamilton cycle provided faulty edges do not exceed n-2, and that for two distinct vertices, x and y, there is a fault-free xy-Hamilton path in VQ_n provided faulty edges do not exceed n-3 for $n \ge 3$. The proof is based on an inductive construction.

Key words: graphs; Hamilton path; Hamilton cycle; varietal hypercube; fault-tolerant networks **CLC number**: O157. 5; TP302. 1 Document code: A doi:10.3969/j. issn. 0253-2778.2015.06.002 **2010 Mathematics Subject Classification:** Primary 05C38; Secondary 90B10

Citation: Huang Yanyun, Xu Junming. Hamilton paths and cycles in fault-tolerant varietal hypercubes [J]. Journal of University of Science and Technology of China, 2015, 45(6): 436-442.

容错变形超立方体的圈和路

黄燕云1,2,徐俊明1,2

(1. 中国科学技术大学数学科学学院,安徽合肥 230026; 2. 中国科学技术大学中国科学院吴文俊数学重点实验室,安徽合肥 230026)

摘要:考虑包含故障边的 n(n≥3)维变形超立方体 VQ_n ,证明了:如果故障边数不超过 n-2,那么 VQ_n 包含 非故障边的 Hamilton 圈;如果故障边数不超过 n-3,那么对任何两个不同顶点 x 和 y, VQ_n 包含非故障边 的 xy-Hamilton 路. 该证明方法采用归纳法.

关键词:图论; Hamilton 圈; Hamilton 路; 变形超立方体; 容错网络

Introduction 0

As a topology of interconnection networks, the hypercube Q_n is the simplest and most popular since it has many superior properties. The varietal hypercube, VQ_n , which is a variant of Q_n and was proposed in Ref. [1], has many properties similar or superior to Q_n . For example, the connectivity and restricted connectivity of VQ_n and Q_n are the same^[2], while, all the diameter and the average distance, fault-diameter and wide-diameter of VQ_n are smaller than that of the hypercube [1,3]. Recently, Ref. [4] has shown that VQ_n is vertex-transitive.

Embedding paths and cycles in various well-

Received: 2014-08-28; Revised: 2015-04-08

Foundation item: Supported by NNSF of China (61272008).

Biography: HUANG Yanyun, female, born in 1984, master. Research field; graph theory. E-mail; hwaiwai@mail. ustc. edu. cn

Corresponding author: XU Junming, Prof. E-mail: xujm@ustc. edu. cn

known networks, such as Q_n , have been extensively investigated in Ref. [5]. Recently, Cao et al. [6] have shown that every edge of VQ_n is contained in cycles of every length from 4 to 2^n except 5, and every pair of vertices with distance d is connected by paths of every length from d to 2^n-1 except 2 and 4 if d=1. In this paper, we consider fault-tolerant varietal hypercubes and show that VQ_n contains a fault-free Hamilton cycle provided faulty edges do not exceed n-2 for $n \ge 3$ and for two distinct vertices, x and y, there is a fault-free xy-Hamilton path in VQ_n provided faulty edges do not exceed n-3 for $n \ge 3$.

The proofs of these results are in Section 2. The definition and some basic properties of VQ_n are given in Section 1.

1 Definitions and lemmas

We follow Ref. [7] for graph-theoretical terminology and notation not defined here. A graph G = (V, E) always means a simple and connected graph, where V = V(G) is the vertex-set and E = E(G) is the edge-set of G. For $xy \in E(G)$, we call x (resp. y) a neighbor of y (resp. x).

The n-dimensional varietal hypercube VQ_n is the labeled graph defined recursively as follows. VQ_1 is the complete graph of two vertices labeled 0 and 1, respectively. Assume that VQ_{n-1} has been constructed. Let $VQ_{n-1}^0(\text{resp. }VQ_{n-1}^1)$ be a labeled graph obtained from VQ_{n-1} by inserting a zero (resp. 1) in front of each vertex-labeling in VQ_{n-1} . For n>1, VQ_n is obtained by joining vertices in VQ_{n-1}^0 and VQ_{n-1}^1 , according to the rule: a vertex $x=0x_{n-1}x_{n-2}x_{n-3}\cdots x_2x_1$ in VQ_{n-1}^0 and a vertex $y=1y_{n-1}y_{n-2}y_{n-3}\cdots y_2y_1$ in VQ_{n-1}^1 are adjacent in VQ_n if and only if

① $x_{n-1}x_{n-2}x_{n-3}\cdots x_2x_1 = y_{n-1}y_{n-2}y_{n-3}\cdots y_2y_1$ if $n \neq 3k$, or

② $x_{n-3} \cdots x_2 x_1 = y_{n-3} \cdots y_2 y_1$ and $(x_{n-1} x_{n-2}, y_{n-1} y_{n-2}) \in I$ if n = 3k, where $I = \{(00, 00), (01, 01), (10, 11), (11, 10)\}.$

Fig. 1 shows the examples of varietal hypercubes VQ_n for n=1, 2, 3 and 4.

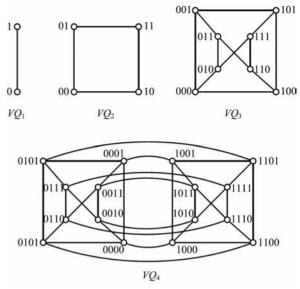


Fig. 1 The varietal hypercubes VQ_1 , VQ_2 , VQ_3 and VQ_4

An edge xy in VQ_n , where $x = x_n x_{n-1} \cdots x_2 x_1$ and $y = y_n y_{n-1} \cdots y_2 y_1$, is called the i-transversal edge if $x_n \cdots x_{i-1} = y_n \cdots y_{i-1}$ and $x_i \neq y_i$. For convenience, we express VQ_n as $VQ_n^0 \odot VQ_n^1$, where $VQ_n^0 \cong VQ_n^1 \cong VQ_{n-1}$. Then edges between VQ_n^0 and VQ_n^1 are n-transversal edges. The edges of Type ② are referred to as crossing edges when

 $(x_{n-1}x_{n-2}, y_{n-1}y_{n-2}) \in \{(10,11),(11,10)\}.$ All the other edges are referred to as normal edges.

Let $VQ_n = L \odot R$, where $L = VQ_{n-1}^0$ and $R = VQ_{n-1}^1$, and denote by x_Lx_R the *n*-transversal edge joining $x_L \in L$ and $x_R \in R$. The recursive structure of VQ_n gives the following simple properties.

Lemma 1. 1 Let $VQ_n = L \odot R$ with $n \geqslant 1$. Then VQ_n contains no triangles and every vertex $x_L \in L$ has exactly one neighbor x_R in R. Moreover, $x_L y_L \in E(L)$ if and only if $x_R y_R \in E(R)$ for $n \neq 3k$, where x_R and y_R are the neighbors of x_L and y_L in R.

Lemma 1.2 Let $VQ_n = L \odot R$ and xy be an n-transversal edge in VQ_n with $x \in L$ and $y \in R$. For $n \geqslant 3$, let $x = 0ab\beta$, where $\beta = x_{n-3} \cdots x_1$. Then $y = 1a'b'\beta$, where ab = a'b' if xy is a normal edge, and $(ab, a'b') = (1b, 1\bar{b})$ if xy is a crossing edge, where $\bar{b} = \{0, 1\} \setminus b$.

Let VQ_{n-2}^{ab} be a labeled graph obtained from VQ_{n-2} by inserting ab in front of each vertex-

labeling in VQ_{n-2} , where $a, b \in \{0, 1\}$. Clearly, $VQ_{n-2}^{ab} \cong VQ_{n-2}$. By definition, $VQ_{n-1}^{0} = VQ_{n-2}^{00} \odot VQ_{n-2}^{01}$ and $VQ_{n-1}^{1} = VQ_{n-2}^{10} \odot VQ_{n-2}^{11}$. By Lemma 1.2, it is easy to see that when VQ_n is expressed as $(VQ_{n-2}^{00} \odot VQ_{n-2}^{01}) \odot (VQ_{n-2}^{10} \odot VQ_{n-2}^{11})$, VQ_n is of the recursive structure shown as Fig. 2.

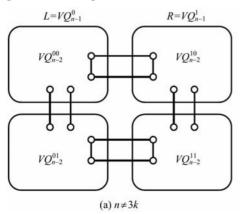
Let x and y be two distinct vertices in a graph G. An xy-path is a sequence of adjacent vertices, written as $(x_0, x_1, x_2, \dots, x_m)$, in which $x = x_0$, $y = x_m$ and all the vertices $x_0, x_1, x_2, \dots, x_m$ are different from each other. For a path

$$P = (x_0, \dots, x_i, x_{i+1}, \dots, x_m),$$
 we can write $P = P(x_0, x_i) + x_i x_{i+1} + P(x_{i+1}, x_m),$ and the notation $P - x_i x_{i+1}$ denotes the subgraph obtained from P by deleting the edge $x_i x_{i+1}$. An xy -path P is called a cycle if $x = y$; a cycle is called a Hamilton cycle if it contains all vertices in G . An xy -path P is called an xy -Hamilton path if it contains all vertices in G . A graph G is Hamiltonian if it contains a Hamilton cycle, and is called Hamilton-connected if it contains an xy -Hamilton path for any two vertices x and y in G . Clearly, if G is Hamilton-connected, then it

Lemma 1. 3^[6] For $n \ge 2$, every edge of VQ_n is contained in a Hamilton cycle. For $n \ge 3$, VQ_n is Hamilton-connected.

certainly is Hamiltonian.

Faults of some processors and/or communication lines in a large-scale system are inevitable. However, the presence of faults gives rise to a large number of problems that have to be



considered for some applications. Ref. [2] showed that VQ_n is n-connected. This fact implies that for any set of faults $F \subset E(VQ_n)$ with |F| < n, the remainder network $VQ_n - F$ is still connected. However, one does not know whether $VQ_n - F$ still remains Hamilton-connected or not.

第 45 卷

Let $F \subset E(G)$ be a set of edge-faults of G. A subgraph H of G is called fault-free if H contains no edges in F, and G is called t-edge-fault-tolerant Hamiltonian (resp. t-edge-fault-free Hamilton-connected) if G - F contains a Hamilton cycle (resp. is Hamilton-connected) for any $F \subset E(G)$ with $|F| \leq t$.

The *n*-dimensional crossed cube CQ_n is such a graph: its vertex-set is the same as VQ_n , two vertices $x=x_n\cdots x_2x_1$ and $y=y_n\cdots y_2y_1$ are linked by an edge if and only if there exists some j $(1\leqslant j\leqslant n)$ such that ① $x_n\cdots x_{j+1}=y_n\cdots y_{j+1}$, ② $x_j\neq y_j$, ③ $x_{j-1}=y_{j-1}$ if j is even, and ④ $(x_{2i}x_{2i-1}, y_{2i}y_{2i-1})\in I$ for each $i=1,2,\cdots$, $\left\lceil \frac{1}{2}j\right\rceil -1$, where

$$I = \{(00,00),(01,01),(10,11),(11,10)\}.$$

By definition, $VQ_n \cong CQ_n$ for each n=1,2,3. The following results on CQ_n are used in the proofs of our main results for n=3.

Lemma 1.4^[8-9] CQ_n is (n-2)-edge-fault-tolerant Hamiltonian for $n \ge 3$.

Lemma 1.5^[10] If each vertex is incident to at least two fault-free edges, then CQ_n is (2n-5)-edge-fault-tolerant Hamiltonian.

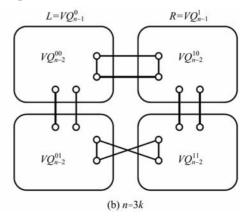


Fig. 2 The recursive structure of VQ_n

2 Main results

Theorem 2.1 VQ_n is (n-3)-edge-faulty-tolerant Hamilton-connected for $n \ge 3$.

Proof We proceed by induction on $n \ge 3$.

By Lemma 1.3, the conclusion is true for n=3. Suppose now that $n\geqslant 4$ and the result holds for any integer less than n. Let $F \subseteq E(VQ_n)$ with $|F| \leqslant n-3$, x and y be two distinct vertices in VQ_n . We need to prove that $VQ_n - F$ contains an xy-Hamilton path. By Lemma 1.3, we can assume $|F| \geqslant 1$. Let $VQ_n = L \odot R$, and let

$$egin{align} L = VQ^{00}_{n-2} \odot VQ^{01}_{n-2}\,, \ R = VQ^{10}_{n-2} \odot \ VQ^{11}_{n-2}\,, \ F_L = F \cap E(L)\,, \ F_R = F \cap E(R)\,, \ F_n = F ackslash (F_L \ ackslash F_R)\,. \end{align}$$

By symmetry of structure of VQ_n , we can assume $|F_L| \geqslant |F_R|$.

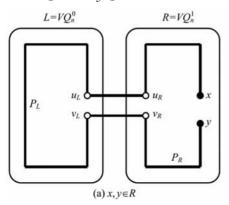
Case 1 $|F_L| \le n-4$.

By the assumption, $|F_R| \le n-4$ and $n \ge 5$.

Subcase 1.1 $x, y \in L$ or $x, y \in R$. Without loss of generality, assume $x, y \in R$.

Since $|F_R| \leq n-4 = (n-1)-3$, by the induction hypothesis $R-F_R$ contains an xy-Hamilton path, say P_R . Since $\varepsilon(P_R) = 2^{n-1}-1 > 2(n-3) \geqslant 2|F|$, there is an edge u_Rv_R in P_R such that the edges u_Ru_L and v_Rv_L are not in F, where u_L and v_L are neighbors of u_R and v_R in L. Since $|F_L| \leq n-4 = (n-1)-3$, by the induction hypothesis $L-F_L$ contains a u_Lv_L -Hamilton path, say P_L . Thus, $P_R-u_Rv_R+u_Ru_L+v_Rv_L+P_L$ is an xy-Hamilton path in VQ_n-F (see Fig. 3(a)).

Subcase 1.2 $x \in L$ and $y \in R$.



Since there are 2^{n-1} edges between L and R and $2^{n-1}-2>n-3\geqslant |F|$, there is an edge $u_Lu_R\notin F_n$ such that $u_L\neq qx$ and $u_R\neq qy$. By the induction hypothesis, let P_L be an xu_L -Hamilton path in $L-F_L$, and P_R be a yu_R -Hamilton path in $R-F_R$. Then $P_L+u_Lu_R+P_R$ is an xy-Hamilton path in VQ_n-F (see Fig. 3a(b)).

Case 2 $|F_L| = n - 3$.

In this case, $|F_R| = |F_n| = 0$. Let

 $F_{00}=F_L \ \bigcap \ E(VQ_{n-2}^{00})$, $F_{01}=F_L \ \bigcap \ E(VQ_{n-2}^{01})$.

Without loss of generality, we can assume $F_{00} \neq \emptyset$.

Subcase 2.1 $x, y \in L$.

Arbitrarily take $e=u_Lv_L\in F_L$. Since $|F_L-e|=n-4=(n-1)-3$, by the induction hypothesis $L-(F_L-e)$ contains an xy-Hamilton path, say P_L . Without loss of generality, assume $e\in E(P_L)$. Let u_R and v_R be neighbors of u_L and v_L in R, respectively. By Lemma 1.3, R contains a u_Rv_R -Hamilton path, say P_R . Then $P_L-u_Lv_L+u_Lu_R+v_Lv_R+P_R$ is an xy-Hamilton path in VQ_n-F .

Subcase 2.2 $x \in L$ and $y \in R$.

If n=4, then $L \cong R \cong VQ_3 \cong CQ_3$. Since $|F_L|=1$, by Lemma 1.5 $L-F_L$ contains a Hamilton cycle, say C_L . Choose a neighbor u_L of x in C_L such that its neighbor u_R in R is not y. By Lemma 1.3, R contains a yu_R -Hamilton path, say P_R . Then, $C_L-xu_L+u_Lu_R+P_R$ is an xy-Hamilton path in VQ_4-F .

Assume now $n \ge 5$, that is, $n-2 \ge 3$.

(a) $y \in VQ_{n-2}^{11}$ (see Fig. 4(a)).

Arbitrarily take $z_{11} \in VQ_{n-2}^{11}$ with $z_{11} \neq qy$, and let z_{01} be the neighbor of z_{11} in L. By Lemma 1.3,

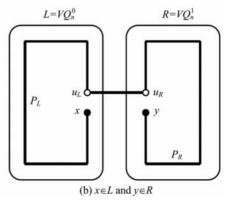


Fig. 3 Illustrations of Case 1 in the proof of Theorem 2. 1

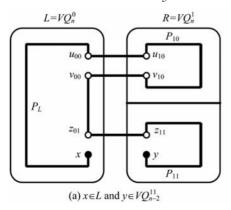
 VQ_{n-2}^{11} contains a $z_{11}y$ -Hamilton path, say P_{11} . Arbitrarily take $e \in F_{00}$. Since $n \ge 5$, by the induction hypothesis $L-(F_L-e)$ contains an xz_{01} -Hamilton path, say P_L . Without loss of generality, assume $e=u_{00}v_{00}$ in P_L . Let u_{10} and v_{10} be neighbors of u_{00} and v_{00} in VQ_{n-2}^{10} , respectively. By Lemma 1.3, VQ_{n-2}^{10} contains a $u_{10} v_{10}$ -Hamilton path, say P_{10} . Then $P_{10} + u_{00} u_{10} + v_{00} v_{10} + P_L - v_{00} v_{10} + v_{0$ $u_{00}v_{00}+z_{01}z_{11}+P_{11}$ is an xy-Hamilton path in $VQ_n - F$ (see Fig. 4(a)).

(b) $y \in VQ_{n-2}^{10}$ (see Fig. 4(b)).

Arbitrarily take a vertex z_{01} in VQ_{n-2}^{01} with $z_{01}\neq x$. Let z_{11} be the neighbor of z_{01} in VQ_{n-2}^{11} , $e=u_{00}v_{00}\in F_{00}$ such that their neighbors u_{10} and v_{10} in VQ_{n-2}^{10} do not contain y. Since $n \ge 5$, by the induction hypothesis $L - (F_L - e)$ contains an xz_{01} -Hamilton path, say P_L . Without loss of generality, assume that e is in P_L . By Lemma 1. 3, VQ_{n-2}^{10} contains a $u_{10}v_{10}$ -Hamilton path, say P_{10} . Since $y \in P_{10}$, we can write $P_{10} = P_{10} (v_{10}, y) +$ $yw_{10} + P_{10}(w_{10}, u_{10})$. Let w_{11} be the neighbor of w_{10} in VQ_{n-2}^{11} . By Lemma 1.3, VQ_{n-2}^{11} contains a $z_{11}w_{11}$ -Hamilton path, say P_{11} . Then $P_L - u_{00}v_{00} +$ $u_{00}u_{10}+v_{00}v_{10}+P_{10}-yw_{10}+w_{10}w_{11}+P_{11}+z_{01}z_{11}$ is an xy-Hamilton path in $VQ_n - F$ (see Fig. 4(b)).

Subcase 2.3 $x, y \in R$.

If n=4, then $L\cong R\cong VQ_3\cong CQ_3$. By Lemma 1.3, R contains an xy-Hamilton path, say P_R . Since $L\cong CQ_3$ and $|F_L|=1$, by Lemma 1.5 $L-F_L$ contains a Hamilton cycle, say C_L . Since L and Rare 3-regular and isomorphic, there is an edge $u_R v_R$ in P_R which is not incident with x and y such that



the corresponding edge e_L in L is contained in C_L . Since n=4, by Lemma 1.1 $e=u_Lv_L$, where u_L and v_L be neighbors of u_R and v_R in L, respectively. Thus, $P_R - u_R v_R + u_L u_R + v_L v_R + C_L$ is an xy-Hamilton path in $VQ_4 - F$ (as a reference, see Fig. 3(a)).

Assume $n \ge 5$ below, that is, $n-2 \ge 3$.

(a)
$$x, y \in VQ_{n-1}^{11}$$
 (see Fig. 5(a)).

By Lemma 1.3, VQ_{n-2}^{11} contains an xy-Hamilton path, say P_{11} . Take $u_{11}v_{11} \in E(P_{11})$, and let u_{01} and v_{01} be neighbors of u_{11} and v_{11} in VQ_{n-2}^{01} , respectively. Take $e=\omega_{00}z_{00}\in F_{00}$. By the induction hypothesis, $L - (F_L - e)$ contains a $u_{01}v_{01}$ -Hamilton path, say P_L . Without loss of generality, assume that e is in P_L , and let w_{10} and z_{10} be neighbors of w_{00} and z_{00} in VQ_{n-2}^{10} , respectively. By Lemma 1.3, VQ_{n-2}^{10} contains a $w_{10}z_{10}$ -Hamilton path, say P_{10} . Thus, P_{10} + $w_{00}w_{10} + z_{00}z_{10} + P_L - w_{00}z_{00} + P_{11} - u_{11}v_{11} + u_{01}u_{11} +$ $v_{01} v_{11}$ is an xy-Hamilton path in $VQ_n = F$ (see Fig. 5(a)).

(b)
$$x \in VQ_{n-1}^{11}$$
 and $y \in VQ_{n-2}^{10}$ (see Fig. 5(b)).

Choose $e = u_{00}v_{00} \in F_{00}$ such that their neighbors u_{10} and v_{10} in VQ_{n-2}^{10} do not contain y. By the induction hypothesis, $L - (F_L - e)$ contains a $u_{00}v_{00}$ -Hamilton path, say P_L . Without loss of generality, assume e in P_L . By Lemma 1.3, VQ_{n-2}^{10} contains a $u_{10}v_{10}$ -Hamilton path, say P_{10} . Since $y \in P_{10}$, we can write

 $P_{10} = P_{10}(v_{10}, y) + yw_{10} + P_{10}(w_{10}, u_{10}).$ Let w_{11} be the neighbor of w_{10} in VQ_{n-2}^{11} . By Lemma 1.3, VQ_{n-2}^{11} contains an xw_{11} -Hamilton

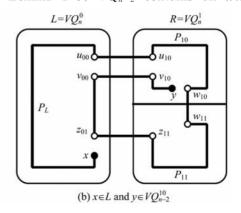


Fig. 4 Illustrations of Subcase 2. 2 in the proof of Theorem 2. 1

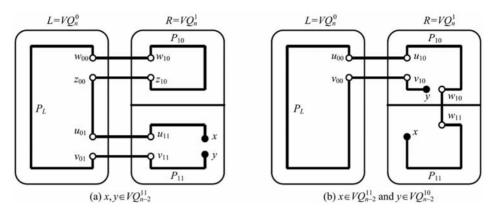


Fig. 5 Illustrations of Subcase 2. 3 in the proof of Theorem 2. 1

path, say P_{11} . Then $P_L - u_{00} v_{00} + u_{00} u_{10} + v_{00} v_{10} + P_{10} - y w_{10} + w_{10} w_{11} + P_{11}$ is an xy-Hamilton path in $VQ_n - F$ (see Fig. 5(b)).

(c) $x, y \in VQ_{n-2}^{10}$ (see Fig. 6(a)).

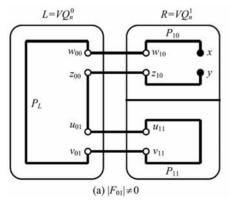
By Lemma 1.3, VQ_{n-2}^{10} contains an xy-Hamilton path, say P_{10} .

(c1) $|F_{01}| \neq 0$.

Take $w_{10}z_{10} \in E(P_{10})$, and let w_{00} and z_{00} be neighbors of w_{10} and z_{10} in VQ_{n-2}^{00} , respectively. Take $e=u_{01}v_{01} \in F_{01}$. By the induction hypothesis, $L-(F_L-e)$ contains a $w_{00}z_{00}$ -Hamilton path, say P_L . Without loss of generality, assume that e is in P_L , and let u_{11} and v_{11} be neighbors of u_{01} and v_{01} in VQ_{n-2}^{11} , respectively. By Lemma 1.3, VQ_{n-2}^{11} contains a $u_{11}v_{11}$ -Hamilton path, say P_{11} . Thus, $P_{10}-w_{10}z_{10}+w_{00}w_{10}+z_{00}z_{10}+P_L-u_{01}v_{01}+u_{01}u_{11}+v_{01}v_{11}+P_{11}$ is an xy-Hamilton path in VQ_n-F (see Fig. 6(a)).

(c2) $|F_{01}| = 0$. Then $|F_{00}| = n - 3 \ge 2$ since $n \ge 5$.

Let P'_{00} be an x_{00} y_{00} -Hamilton path in VQ_{n-2}^{00}



that corresponds to P_{10} obtained from P_{10} by changing the left-most coordinate 1 of every vertex into 0, where x_{00} (resp. y_{00}) is a vertex corresponding to x (resp. y). Arbitrarily take an edge $u_{00}v_{00}$ in P'_{00} . Let u_{10} and v_{10} be neighbors of u_{00} and v_{00} in VQ_{n-2}^{10} , respectively. Then $u_{10}v_{10}$ is an edge in P_{10} , $u_{00}u_{10}$ and $v_{00}v_{10}$ are edges in VQ_n (see Fig. 2).

If ${P'}_{00}$ contains at most one edge in F_{00} . Without loss of generality, take $e_1=u_{00}\,v_{00}\in F_{00}$, and let $P_{00}=P'_{00}$.

If P'_{00} contains exactly two edges e_1 and e_2 in F_{00} and n=5. Let $e_1=u_{00}$ v_{00} . By Lemma 1.3, there is a Hamilton cycle C_L in VQ_3^{00} containing the edge e_1 . Without loss of generality, assume that $e_2=x_{00}$ y_{00} is in C_R , and let $P_{00}=C_L-e_2$.

If P'_{00} contains at least three edges in F_{00} . Then $n-3=|F|=|F_{00}|\geqslant 3$, that is, $n-2\geqslant 4$. Let $e_1=u_{00}v_{00}$ and $e_2=x_{00}y_{00}$ be two edges in F_{00} . Since $|F_{00}-e_1-e_2|=(n-2)-3$, by the induction hypothesis $VQ_{n-2}^{00}-(F_{00}-e_1-e_2)$ contains an

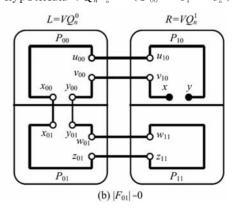


Fig. 6 Other illustrations of Subcase 2, 3 in the proof of Theorem 2. 1

 $x_{00}y_{00}$ -Hamilton path, say P_{00} . Without loss of generality, assume that e_1 is in P_{00} .

Let x_{01} and y_{01} be neighbors of x_{00} and y_{00} in VQ_{n-2}^{01} , respectively. By Lemma 1.3, VQ_{n-2}^{01} contains an $x_{01}y_{01}$ -Hamilton path, say P_{01} . Arbitrarily take an edge $w_{01}z_{01}$ in P_{01} . Let w_{11} and z_{11} be neighbors of w_{01} and z_{01} in VQ_{n-2}^{11} , respectively. By Lemma 1.3, VQ_{n-2}^{11} contains a $w_{11}z_{11}$ -Hamilton path, say P_{11} . Then $P_{10}-u_{10}v_{10}+u_{00}u_{10}+v_{00}v_{10}+P_{00}-u_{00}v_{00}+x_{00}x_{01}+y_{00}y_{01}+P_{01}-w_{01}z_{01}+w_{01}w_{11}+z_{01}z_{11}+P_{11}$ is an xy-Hamilton path in $VQ_{n}-F$ (see Fig. 6(b)).

The theorem follows.

Theorem 2.2 VQ_n is (n-2)-edge-fault-tolerant Hamiltonian for $n \ge 3$.

Proof We proceed by induction on $n \ge 3$.

Since $VQ_3 \cong CQ_3$, by Lemma 1.4, the conclusion is true for n=3. Assume the induction hypothesis for n-1 with $n\geqslant 4$. Let $F\subset E(VQ_n)$ with $|F|\geqslant 1$, $VQ_n=L\odot R$, and let

 $F_L = F \cap L, F_R = F \cap R, F_n = F \setminus (F_L \cup F_R).$ Without loss of generality, assume $|F_L| \ge |F_R|$.

If $|F_L| = n-2$, then $|F_R| = |F_n| = 0$. For any $e \in F_L$, $|F_L - e| = n-3$. By the induction hypothesis, $L - (F_L - e)$ contains a Hamilton cycle, say C_L . Without loss of generality, assume that $e = u_L v_L$ is in C_L . Let u_R and v_R be neighbors of u_L and v_L in R, respectively. Then $u_R v_R \in E(L)$. By Theorem 2.1, R contains a $u_R v_R$ -Hamilton path, say P_R . Then, $C_L - u_L v_L + u_L u_R + v_L v_R + P_R$ is a Hamilton cycle in $VQ_n - F$.

We now assume $|F_L| \leq n-3$. If n=4, then $|F_R| + |F_n| \leq 1$. Since $L \cong R \cong CQ_3$, by Lemma 1.4 both L and R contain fault-free Hamilton cycles, say C_L and C_R , respectively. Since CQ_3 is 3-regular, any two Hamilton cycles have at least one edge in common. Thus, assume $u_L v_L \in E(C_L)$ and $u_R v_R \in E(C_R)$. Then $C_L \cup C_R - u_L v_L - u_R v_R + u_L u_R + v_L v_R$ is a Hamilton cycle in $VQ_4 - F$.

We now assume $n \geqslant 5$. Since $|F_L| \leqslant n-3$, $|F_R| \leqslant n-4$, otherwise $n-2 \geqslant |F| \geqslant |F_L| + |F_R| \geqslant 2n-6$, which contradicts the hypothesis of $n \geqslant 5$. By the induction hypothesis, $L - F_L$ contains a

Hamilton cycle, say C_L . Choose $e=u_Lv_L\in C_L$ such that it is not incident with any edge in F_n if $F_n\neq\emptyset$. Let u_R and v_R be the neighbors of u_L and v_L in R. By Theorem 2.1, R contains a u_Rv_R -Hamilton path, say P_R . Then, $C_L-u_Lv_L+u_Lu_R+v_Lv_R+P_R$ is a Hamilton cycle in VQ_n-F .

The theorem follows.

References

- [1] Cheng S Y, Chuang J H. Varietal hypercube: A new interconnection networks topology for large scale multicomputer [C]// Proceedings of International Conference on Parallel and Distributed Systems. IEEE, 1994: 703-708.
- [2] Wang J W, Xu J M. Reliability analysis of varietal hypercube networks [J]. Journal of University of Science and Technology of China, 2009, 39 (12): 1 248-1 252.
- [3] Jiang M, Hu X Y, Li Q L. Fault-tolerant diameter and width diameter of varietal hypercubes [J]. Applied Mathematics: Journal of Chinese University, Ser A, 2010, 25(3): 372-378 (in Chinese).
- [4] Xiao L, Cao J, Xu J M. Transitivity of varietal hypercube networks [J]. Frontiers of Mathematics in China, 2014, 9(6): 1 401-1 410.
- [5] Xu J M, Ma M J. A survey on cycle and path embedding in some networks [J]. Frontiers of Mathematics in China, 2009, 4(2): 217-252.
- [6] Cao J, Xiao L, Xu J M. Cycles and paths embedded in varietal hypercubes [J]. Journal of University of Science and Technology of China, 2014, 44 (9): 732-737.
- [7] Xu J M. Theory and Application of Graphs [M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003.
- [8] Chen Y C, Tsai C H, Hsu L H, et al. On some super fault-tolerant Hamiltonian graphs [J]. Applied Mathematics and Computation, 2004, 148 (3): 729-741.
- [9] Huang W T, Chuang Y C, Tan J J M, et al. On the fault-tolerant Hamiltonicity of faulty crosses cubes[J]. IEICE Trans on Fundamentals, 2002, E85-A(6): 1359-1370.
- [10] Hsieh S Y, Lee C W. Conditional edge-fault Hamiltonicity of matching composition networks [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(4): 581-592.