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or superior to Q,. For example, the connectivity

0 Introduction
and restricted connectivity of VQ, and Q, are the

As a topology of interconnection networks, same'®, while, all the diameter and the average
the hypercube Q, is the simplest and most popular distance, fault-diameter and wide-diameter of VQ,
since it has many superior properties. The varietal are smaller than that of the hypercube''"*. Recently,

hypercube, VQ, , which is a variant of Q, and was Ref. [4] has shown that VQ, is vertex-transitive.

proposed in Ref. [ 1], has many properties similar Embedding paths and cycles in various well-
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known networks, such as @Q,. have been
extensively investigated in Ref. [5]. Recently, Cao
et al. ' have shown that every edge of VQ, is
contained in cycles of every length from 4 to 2"
except 5, and every pair of vertices with distance d
is connected by paths of every length from d to
2"—1 except 2 and 4 if d=1. In this paper, we
consider fault-tolerant varietal hypercubes and
show that VQ, contains a fault-free Hamilton cycle
provided faulty edges do not exceed n—2 for n==3
and for two distinct vertices, x and y, there is a
fault-free xy-Hamilton path in VQ, provided faulty
edges do not exceed n—3 for n=3.

The proofs of these results are in Section 2.
The definition and some basic properties of VQ, are

given in Section 1.

1 Definitions and lemmas

We follow Ref. [ 7] for graph-theoretical
terminology and notation not defined here. A
graph G = (V, E) always means a simple and
connected graph, where V=V((G) is the vertex-set
and E=E(G) is the edge-set of G. For xy€E E(G),
we call x (resp. y) a neighbor of y (resp. x).

The n-dimensional varietal hypercube VQ, is
the labeled graph defined recursively as follows.
VQ), is the complete graph of two vertices labeled 0
and 1, respectively. Assume that VQ,—; has been
constructed. Let VQ'—; (resp. VQ.\—1) be a labeled
graph obtained from VQ,-, by inserting a zero
(resp. 1 ) in front of each vertex-labeling in
VQ,-1. For n>1, VQ, is obtained by joining
vertices in VQU-, and VQ). 1, according to the rule:
a vertex * =02, 1 Zp—2 Tps ***x2x; in VQ'_, and a
vertex vy = 1y,—1 Y2 Va3 *** yoy1 in VQl_, are
adjacent in VQ, if and only if

@ Ty 1 Zy2 Ty L2010 = Y1 Y2 Va3 *** Yo 01 1
n7#3k, or

@ 2,5 a2 = s yeyr and (a1 Tp—s s
Voryns) € T if n= 3k, where I = {(00,00),
(01,01),(10,11),(11,10)}.

Fig. 1
hypercubes VQ, for n=1, 2, 3 and 4.

shows the examples of varietal

Fig. 1 The varietal hypercubes VQ,, VQ,. VQ; and VQ,

An edge xy in VQ, ., where x=x,2, 1,1,
and y = y,v,—1 *** y2 1, is called the i-transversal
edge if x, *** 2,y = 3, *** yi—; and z; # y,. For
convenience, we express VQ, as VQ!,®VQ), where
VQi=VQ.=VQ,—,. Then edges between VQ! and
VQ) are n-transversal edges. The edges of Type @
are referred to as crossing edges when

(X 1T 25 Yu1Ynz) € ((10,11),(11,10) 5.
All the other edges are referred to as normal
edges.

Let VQ, =L ®R, where L=VQ"’ |, and R=
VQ, -1, and denote by x x the n-transversal edge
joining x; € L and xzx € R. The recursive structure
of VQ, gives the following simple properties.

Let VQ, =L ®R with n=>1.
Then VQ, contains no triangles and every vertex
x. €L has in R.
Moreover, x;y; € E(L) if and only if 2gyr € E(R)

for n#%3k, where xx and yg are the neighbors of x

Lemma 1. 1

exactly one neighbor xp

and y; in R.

Lemma 1.2 Let VQ,=L®R and xy be an n-
transversal edge in VQ, with & L and y&ER. For
n=3, let x=0abB, where f=x, 3+-*x1. Then y=
1a’b’B. where ab=a'b" if xy is a normal edge, and
(abya'b")=(1b,1b) if 2y is a crossing edge, where
b=1{0,1}\b.

Let VQ% , be a labeled graph obtained from

VQ,—» by inserting ab in front of each vertex-
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labeling in VQ,—,., where a,b& {0,1}. Clearly,
V., = VQ, .. VQ, . =
VQ).OVQ), and VQ, 1 = VQ)’, OVQ,L.. By
Lemma 1.2, it is easy to see that when VQ, is
expressed as (VQ)2, ©OVQ)L,) ©(VQY,OVQ,L,),

VQ, is of the recursive structure shown as Fig. 2.

By definition,

Let x and y be two distinct vertices in a graph
G. An xy-path is a sequence of adjacent vertices,
written as (xgs 15 X2 ***s X ) s 1N Which =2y,
y=ux, and all the vertices xy, 21, 22, ***, x,, are
different from each other. For a path

P = (o, sxis Tit1s "5 T s

we can write P=P(xy,x;) txxip1 P (21520, »
and the notation P — x,x,+; denotes the subgraph
obtained from P by deleting the edge zx;x,+~;. An
xy-path P is called a cycle if x=y; a cycle is called
a Hamilton cycle if it contains all vertices in G. An
xy-path P is called an xy-Hamilton path if it
in G. A graph G is

Hamiltonian if it contains a Hamilton cycle, and is

contains all vertices
called Hamilton-connected if it contains an xy-
Hamilton path for any two vertices x and y in G.
Clearly, if G is Hamilton-connected, then it
certainly is Hamiltonian,

Lemma 1. 3'%

contained in a Hamilton cycle. For n==3, VQ, is

For n=2, every edge of VQ, is

Hamilton-connected.

Faults of some processors and/or
communication lines in a large-scale system are
inevitable. However, the presence of faults gives

rise to a large number of problems that have to be

L=VQY, R=VQ,
A~ =N g %
voY, i I VO
. 29 J U 929 )
( $6& Y ( 6 )
Vo i I vo,!
T A S
(a) n#3k

considered for some applications. Ref. [2] showed
that VQ, is n-connected. This fact implies that for
any set of faults FC E(VQ,) with |F|<ln, the
remainder network VQ, — F is still connected.
However, one does not know whether VQ, — F
still remains Hamilton-connected or not.

Let FCE(G) be a set of edge-faults of G. A
subgraph H of G is called fault-free if H contains
no edges in F', and G is called z-edge-fault-tolerant
Hamiltonian ( resp. ¢-edge-fault-free Hamilton-
connected) if G — F contains a Hamilton cycle
(resp. is Hamilton-connected) for any FC E(G)
with | F[<.

The n-dimensional crossed cube CQ, is such a
graph: its vertex-set is the same as VQ,, two
vertices x=x,***x,x; and y=yy, >y, y, are linked
by an edge if and only if there exists some j
(1<) such that @ x, ** x4
@Ijiij ©) Tj—1
@ (zyxsi—1 s y2yos—1)EI for each i =1, 2, -,
( %j 1*1, where

I = {(00,00),(01,01),(10,11),(11,10)}.

By definition, VQ,=CQ, for each n=1,2, 3.

The following results on CQ, are used in the proofs

= Yn Vit

= y,—1 if j is even, and

of our main results for n=3.

Lemma 1.4°°  (CQ, is (n — 2)-edge-fault-
tolerant Hamiltonian for n==3.

Lemma 1. 5%

least two fault-free edges, then CQ, is (2n—5)-

If each vertex is incident to at

edge-fault-tolerant Hamiltonian.

L=VOy, R=VO,
i ™ 7~ ~N
vor, i I VoL,

\: o 0 ) \_ o 0 )
( 58 Y ( 54 )
VQ":: i:xﬁ VQJI
1\ AN J

(b) n=3k

Fig. 2 The recursive structure of VQ,
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2  Main results

Theorem 2.1 VQ, is (n — 3)-edge-faulty-
tolerant Hamilton-connected for n=>=3.

Proof We proceed by induction on n=3.

By Lemma 1. 3, the conclusion is true for n=
3. Suppose now that n-=4 and the result holds for
any integer less than n. Let FC E(VQ,) with
|F|<n—3, x and y be two distinct vertices in
VQ,. We need to prove that VQ, — F contains an
xy-Hamilton path, By Lemma 1. 3, we can assume
|F|>=1. Let VQ,=L®R, and let

L=VQ",oVQ)., R=VQ,® VQ,.,

F,=FNEWL), Fr=FNE®R,
F, = F\(F. U Fp).
By symmetry of structure of VQ,, we can assume
|Fo| = Frl.

Casel |F,|<n—4.

By the assumption, |Fr|<<{n—4 and n=>5.

Subcase 1.1 x, y€ L or x,y&E R. Without
loss of generality, assume x,yER.

Since | Frx | <n—4=(n—1) — 3, by the
induction hypothesis R — F; contains an xy-
Hamilton path, say Pg. Since e(Pg)= 2" '—1>
2(n—3)>=2|F|, there is an edge ugvg in Py such
that the edges ugu; and wgv, are not in F, where
u;, and v, are neighbors of uz and vz in L. Since
|Fo|<<n—4=(n—1) — 3, by the induction
hypothesis L —F; contains a u;v;-Hamilton path,
say P.. Thus, Pr—urvg +ugu; +wvgv, +P; is an
xy-Hamilton path in VQ,—F (see Fig. 3(a)).

Subcase 1.2 x&€L and yER.

L=VQ) R=VQ,
& N\ 7 )
O O ox
[Jl,. Uy Ug X
Vi O O Vi o
PR
| N

(a)x,veR

Since there are 2"7!' edges between L and R
and 2" ' —2>n—3=|F]|, there is an edge u ur &
F, such that u; #qx and ug+qy. By the induction
hypothesis, let P; be an xu;-Hamilton path in L—
F,, and Py be a yug-Hamilton path in R — Fy.
Then P; + upur + Pg is an xy-Hamilton path in
VQ,—F (see Fig. 3a(b)).

Case2 |F.|=n—3.

In this case, |Fg|=1|F,|=0. Let

Foo - FL ﬂ E(Vng—z)y F01 - FL ﬂ E(VQ?LZ .
Without loss of generality, we can assume Fy, 0.

Subcase 2.1 x, y& L.

Arbitrarily take e=w; v, € Fy.. Since | F, —e| =
n—4=(n—1) —3, by the induction hypothesis
L—(F;,—e) contains an xy-Hamilton path, say
P;. Without loss of generality, assume e E(P}).
Let uz and vz be neighbors of u; and v, in R,
respectively. By Lemma 1.3, R contains a ugpvg-
Hamilton path, say Pz. Then P, —wu;v; tujug+
vpvr T Pg is an xy-Hamilton path in VQ,—F.

Subcase 2.2 x&L and yER.

If n=14, then L=R=>=VQ,; = CQ;. Since
|F =1,

Hamilton cycle, say C;. Choose a neighbor u; of x

by Lemma 1.5 L — F, contains a

in C; such that its neighbor uz in R is not y. By
Lemma 1. 3, R contains a yug-Hamilton path, say
Pr. Then, C, —xu; tuiur+ Py is an xy-Hamilton
path in VQ,—F.

Assume now n=5, that is, n—2>3.

(a) y& VQ\L, (see Fig. 4(a)).

Arbitrarily take z;, €VQ.L, with z;;7%qy, and
let 2z, be the neighbor of z;; in L. By Lemma 1. 3,

L=vQ" R=VQ,
o = %
p u, O Q g
‘ xe 9
Py
. J N~

(b) xeL and yeR

Fig. 3 Illustrations of Case 1 in the proof of Theorem 2. 1
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VQ)L; contains a z;,y-Hamilton path, say P;.
Arbitrarily take ¢ € Fy. Since n =15, by the
induction hypothesis L—(F;, —e) contains an xz, -
Hamilton path, say P,. Without loss of
generality, assume e=ugpvy in P;. Let uy and vy,
be neighbors of uy and vy in VQL.,, respectively.
By Lemma 1.3, VQ!%, contains a u;, v;,-Hamilton
path, say Py. Then Py + ugo w10 + voo v10 + P —
oo Voo T 2o 211 + P11 is an xy-Hamilton path in
VQ,—F (see Fig. 4(a)).

(b) y& VQ/%,; (see Fig. 4(b)).

Arbitrarily take a vertex z, in VQI., with
20 7. Let z;; be the neighbor of z, in VQ!',,
e=uy vy € Fy such that their neighbors u,, and vy,
in VQ!, do not contain y. Since n—=5, by the
induction hypothesis L— (F; —e) contains an xzg;-
Hamilton path, say P;. Without loss of
generality, assume that e is in P;. By Lemma 1. 3,
VQ), contains a upvio-Hamilton path, say Pj.
Since y € Py, we can write Py, = Py (vyos y) +
ywio+ Py (g s uy ). Let w;, be the neighbor of
wp in VQ!L,. By Lemma 1.3, VQ!., contains a
21wy -Hamilton path, say Py;. Then P —ugve +
oo 1o +vg0v10 T Pro — ywio Twiowi + Pr +zo1 211 is
an xy-Hamilton path in VQ,—F (see Fig. 4(b)).

Subcase 2.3 z, yER.

If n=4, then L=R=VQ;==CQ;. By Lemma
1.3, R contains an xy-Hamilton path, say Pkg.
Since L==CQ; and |F.|=1, by Lemma 1.5 L—F,
contains a Hamilton cycle, say C;. Since L and R
are 3-regular and isomorphic, there is an edge ugvg
in Py which is not incident with x and y such that

L=VQ) R=VO,

r ™ 4 B N

J

Upp Lt

Voo Vio

~
M

Zm )

[
1|01

(a)xel and ye VQ,E‘.;

the corresponding edge e; in L is contained in Cj.
Since n=4, by Lemma 1.1 e=u;v;, where u; and
v be neighbors of uz and vz in L, respectively.
Thus, Pr — ugvg + wug + vivg + Cp is an xy-
Hamilton path in VQ, — F (as a reference, see
Fig. 3(a)).

Assume n—=5 below, that is, n—2>3.

(a) 2,y€EVQ,— " (see Fig. 5(a)).

By Lemma 1.3,
Hamilton path, say Pj. Take wyjv, €E(Py),

and let uy and vy be neighbors of u;; and v, in

VQ!, contains an xy-

VQiL, , respectively. Take e=xwwy 200 € Fop. By the
induction hypothesis, L — (F;, — e) contains a
uy1 vo-Hamilton path, say P,. Without loss of

generality, assume that e is in P, and let wj, and

Z10 be neighbors Of Woo and 200 11’1 VQ,],(L2 s
respectively. By Lemma 1.3, VQ,%; contains a
wiozo-Hamilton path, say Py. Thus, P, +

Woo Wio T 200 210 T Pr. — %o 200 T P1i —un o T uerun +
vo vy 18 an xy-Hamilton path in VQ, — F (see
Fig. 5(a)).

(b) z€VQ, " and yEVQ!, (see Fig. 5(b)).

Choose e = wugpvw€EFo such that their
neighbors u,, and vy, in VQ!%, do not contain y. By
the induction hypothesis, L — (F, —e) contains a
U voo-Hamilton path, say P;. Without loss of
generality, assume e in P,. By Lemma 1. 3, VQ!°,
contains a u;,v-Hamilton path, say P;,. Since
y& Py, we can write

Py = Py Cuio»y) + ywig + Pio Cwng s uio ).
Let wy be the neighbor of wy, in VQ,. By
Lemma 1.3, VQ!', contains an zwi;-Hamilton

L=VQ) R=VQ,
é N\ (P )

408

Voo Vio

Py

01 1

,\'r

\. J \ P J
(b)xel and ye VQ,’,.”:

Fig. 4 Illustrations of Subcase 2. 2 in the proof of Theorem 2. 1
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R= VQI'IJ
P 10

Wi

L=VQ,(,’

]

>
O——)
:\ o V-‘

Waon

Z0

LU

Vigy Vil y

. J U il J
(a) x,ve VQ,',I;

L

L=vQ; R=VQ,
4 N\ (e )

Ty

Vi Vi

\. 2 X\ Pu y,
(b) xe i”Q,‘..'.; and ye V(_),','j;

Fig. 5 Illustrations of Subcase 2. 3 in the proof of Theorem 2. 1

path, say Py;. Then P —wuo v 1 ttoo 1o 1000 v10 +
P, — ywy twiowy + Py is an xy-Hamilton path in
VQ,—F (see Fig. 5(b)).

(o) x,yEVQ)", (see Fig. 6(a)).

By Lemma 1.3, VQ\’; contains an xy-
Hamilton path, say Pj.

(cl) |Fy |70,

Take w210 € E(Py1y) s and let wy and zo, be
neighbors of w;, and 2z, in VQJ2,, respectively.
Take e=uy vy, € Fo1. By the induction hypothesis,
L—(F;, —e) contains a wy, zoo-Hamilton path, say
P,. Without loss of generality, assume that e is in
P, , and let u;; and v, be neighbors of u, and v, in
VQil, . By Lemma 1.3, VQ!.,

contains a u;;v;;-Hamilton path, say P;;. Thus,

respectively.

Py — wio 210 T woo wio + 200 210 + Pr. — wor va +
oty + v vy + Py is an xy-Hamilton path in
VQ,—F (see Fig. 6(a)).

(c2) |Fyy | =0. Then |Fy | =n—3>2 since
n=>5.

Let P, be an 4 yoo-Hamilton path in VQ,

L=vQ} R=VO)
P 10
Woo l 5 Wi 1 X
Zoo Zio ¥y
Py

by [T

Vil ? Vi
\, J \ Py /

(@) [Fn|#0

]

that corresponds to P), obtained from P, by
changing the left-most coordinate 1 of every vertex
into 0, where x, (resp. wyn ) 1is a vertex
corresponding to x (resp. y). Arbitrarily take an
edge ugp v in Poy. Let uy and vy, be neighbors of
oo and vy in VQL,, respectively. Then wuy vio is
an edge in Py, wuouyo and vy vy are edges in VQ,
(see Fig. 2).

If P’y contains at most one edge in Fy.
Without loss of generality, take e; = w0 € Foo »
and let Py, =Py,.

If P}, contains exactly two edges ¢; and e, in
Fo and n=5. Let e, = up voo. By Lemma 1.3,
there is a Hamilton cycle C; in VQY° containing the
edge e;. Without loss of generality, assume that
e, =X Yoo 18 in Cr, and let Pyy=C; —e,.

If P’y contains at least three edges in Fy.
Then n—3=|F|=|Fy | =3, that is, n—2>4.
Let e; =ug v and e; =4 Yoo be two edges in Fy.
Since | Foo—e; —e; | =(n—2)—3, by the induction
hypothesis VQ%, — (Fy — e, — e; ) contains an

L=vQ) R=VQ;
PIK] PEH

J
]

U

Uno

Voo

Vi
Xoo Voo

[
g

I

]

X J

‘01

wi
Wl

\_ Py J \_ Py J
(b) [Fu|=0

L

Fig. 6  Other illustrations of Subcase 2. 3 in the proof of Theorem 2. 1
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Zoo Yoo-Hamilton path, say P,. Without loss of
generality, assume that e; is in Py.

Let x4, and y, be neighbors of x4 and yy in
VaQ,': .

contains

respectively. By Lemma 1.3, VQI.,
an o yo-Hamilton path, say Py.
Arbitrarily take an edge wy 2o, in Py;. Let wy; and
in VQ,'.,

respectively. By Lemma 1.3, VQ.\.; contains a

211 be neighbors of wy, and =z
wi; z11-Hamilton path, say Py;. Then Py, —uy vy 1+
oo 1o 00 v10 1 Poo — ttoo voo T 00 o1 + 00 yor + Por —
wWo1 Zo1 T wor Wi T 2o1 211 + P11 1s an xy-Hamilton
path in VQ, —F (see Fig. 6(b)).

The theorem follows. ]

Theorem 2.2 VQ, is (n — 2)-edge-fault-
tolerant Hamiltonian for n=3.

Proof We proceed by induction on n=3.

Since VQ; = (CQs,
conclusion is true for n=3. Assume the induction
hypothesis for n—1 with n==4. Let FCE(VQ,)
with |F|=1, VQ,=L®R. and let
F,=FNL,Fr=FOR,F,=F\(F_U Fg).
Without loss of generality, assume |Fp|=]|Fg].

If |F.|=n—2, then |Fx|=|F,|=0. For any
ee€ F, |F. —el| =n—3.

hypothesis, L — (F;, — e) contains a Hamilton

by Lemma 1.4, the

By the induction

cycle, say C.. Without loss of generality, assume
that e=wu;v; is in C.. Let ug and v; be neighbors
of uy and v, in R, respectively. Then wugvg €
E(L). By Theorem 2.1, R contains a wugvg-
Hamilton path, say Pr. Then, C. —u v, tuiur+
vpvgr T Pr is a Hamilton cycle in VQ, —F.

We now assume | F, |<<n—3. If n=4, then
|Fr|+|F,|<1. Since L=R=(CQ,, by Lemma
1.4 both L and R contain fault-free Hamilton
cycles, say C; and Cg, respectively. Since CQ; is
3-regular, any two Hamilton cycles have at least
one edge in common. Thus, assume u;v;, € E(Cp)
and ugvr € E(Cg). Then C.UCgr —upv. —ugvg +
urug+uv vk is a Hamilton cycle in VQ,—F.

We now assume n>=5. Since | F. | <n—3,
| Fp | <<n—4, otherwise n—2=|F|=|F. |+ |Fr | =
2n—6, which contradicts the hypothesis of n-=5.
By the induction hypothesis, I — F| contains a

Hamilton cycle, say C.. Choose e=u;v; € C; such
that it is not incident with any edge in F, if F,540.
Let ug and v be the neighbors of u; and v, in R.
By Theorem 2.1, R contains a wugvr-Hamilton
path, say Pg. Then, C,—wu;v, tuiug+vvg+Pg
is a Hamilton cycle in VQ, —F.

The theorem follows. L]
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