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The conditional diagnosability and the 2-extra connectivity are two important parameters 
to measure ability of diagnosing faulty processors and fault-tolerance in a multiprocessor 
system. The conditional diagnosability tc(G) of G is the maximum number t for which G
is conditionally t-diagnosable under the comparison model, while the 2-extra connectivity
κ2(G) of a graph G is the minimum number k for which there is a vertex-cut F with |F | = k
such that every component of G − F has at least 3 vertices. A quite natural problem is what 
is the relationship between the maximum and the minimum problem? This paper partially 
answers this problem by proving tc(G) = κ2(G) for a regular graph G with some acceptable 
conditions. As applications, the conditional diagnosability and the 2-extra connectivity are 
determined for some well-known classes of vertex-transitive graphs, including, star graphs, 
(n, k)-star graphs, alternating group networks, (n, k)-arrangement graphs, alternating group 
graphs, Cayley graphs obtained from transposition generating trees, bubble-sort graphs, 
k-ary n-cube networks, dual-cubes, pancake graphs and hierarchical hypercubes as well. 
Furthermore, many known results about these networks are obtained directly.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, unless otherwise specified, a graph G = (V , E) is always assumed to be a simple and connected 
graph, where V = V (G) is the vertex-set and E = E(G) is the edge-set of G . We follow [41] for terminologies and notations 
not defined here.

Two distinct vertices x and y in G are adjacent if xy ∈ E(G) and non-adjacent otherwise. If xy ∈ E(G), then y (resp. x) is 
a neighbor of x (resp. y). The neighbor-set of x is denoted by NG (x) = {y ∈ V (G) : xy ∈ E(G)}. For a subset X ⊂ V (G), the 
notation G − X denotes the subgraph obtained from G by deleting all vertices in X and all edges incident with vertices in 
X , and let X = V (G − X).

It is well known that a topological structure of an interconnection network N can be modeled by a graph G = (V , E), 
where V represents the set of components such as processors and E represents the set of communication links in N (see a 
text-book by Xu [42]). Faults of some processors and/or communication lines in a large-scale system are inevitable. People 
are concerned with how to diagnose faults and to determine fault tolerance of the system.
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A vertex in a graph G is called a fault-vertex if it corresponds a faulty processor in the interconnection network N when 
it is modeled by G . A subset F ⊆ V (G) is called a fault-set if every vertex in F is a faulty vertex in G , and is fault-free if it 
contains no faulty vertex in G . A fault-set F is called a conditional fault-set if NG(x) � F for any x ∈ F . The pair (F1, F2) is 
called a conditional fault-pair if both F1 and F2 are conditional fault-sets.

The ability to identify all faulty processors in a multiprocessor system is known as system-level diagnosis. Several system-
level self-diagnosis models have been proposed for a long time. One of the most important models is the comparison 
diagnosis model, shortly comparison model. Throughout this paper, we only consider the comparison model.

The comparison model was proposed by Malek and Maeng [36,37]. A node can send a message to any two of its neigh-
bors which then send replies back to the node. On receipt of these two replies, the node compares them and proclaims 
that at least one of the two neighbors is faulty if the replies are different or that both neighbors are fault-free if the replies 
are identical. However, if the node itself is faulty then no reliance can be placed on this proclamation. According as that 
the two outputs are identical or different, one gets the outcome to 0 or 1. The collection of all comparison results forms a 
syndrome, denoted by σ .

A subset F ⊆ V (G) is a compatible fault-set of a syndrome σ or σ is compatible with F , if σ can arise from the cir-
cumstance that F is a fault-set and F is fault-free. Let σF = {σ : σ is compatible with F }. A pair (F1, F2) of two distinct 
compatible fault-sets is distinguishable if and only if σF1 ∩ σF2 = ∅, and (F1, F2) is indistinguishable otherwise.

For a positive integer t , a graph G is conditionally t-diagnosable if every syndrome σ has a unique conditional compatible 
fault-set F with |F | � t . The conditional diagnosability of G under the comparison model, denoted by tc(G) and proposed by 
Lai et al. [29], is the maximum number t for which G is conditionally t-diagnosable. The conditional diagnosability better 
reflects the self-diagnostic capability of networks under more practical assumptions, and has received much attention in 
recent years. The diagnosability of many interconnection networks have been determined, see, for example, [2,3,13–15,19,
28,40]. A survey on this field, from the earliest theoretical models to new promising applications, is referred to Duarte et 
al. [12].

A subset X ⊂ V (G) is called a vertex-cut if G − X is disconnected. A vertex-cut X is called a k-cut if |X | = k. The 
connectivity κ(G) of G is defined as the minimum number k for which G has a k-cut.

Fault-tolerance or reliability of a large-scale parallel system is often measured by the connectivity κ(G) of a correspond-
ing graph G . However, the connectivity has an obvious deficiency because it tacitly assumes that all vertices adjacent to the 
same vertex of G could fail at the same time, but that is almost impossible in practical network applications. To compensate 
for this shortcoming, Fàbrega and Fiol [16] proposed the concept of the extra connectivity.

For a non-negative positive integer h, a vertex-cut X is called an Rh-vertex-cut if every component of G − X has at least 
h + 1 vertices. For an arbitrary graph G , Rh-vertex-cuts do not always exist for some h. For example, a cycle of order 5
contains no R2-vertex-cut. A graph G is called an Rh-graph if it contains at least one Rh-vertex-cut. For an Rh-graph G , the 
h-extra connectivity of G , denoted by κh(G), is defined as the minimum number k for which G contains an Rh-vertex-cut F
with |F | = k. Clearly, κ0(G) = κ(G). Thus, the h-extra connectivity is a generalization of the classical connectivity and can 
provide more accurate measures regarding the fault-tolerance or reliability of a large-scale parallel system and therefore, it 
has received much attention (see Xu [42] for details). We are interested in the 2-extra connectivity of a graph in this paper.

Clearly, for a graph G there are two problems here, one is the maximizing problem – conditional diagnosability tc(G), 
and another is the minimizing problem – the 2-extra connectivity κ2(G). A quite natural problem is what is the relationship 
between the maximum and the minimum problems? In the current literature, people are still determining these two prob-
lems independently for some classes of graphs, such as alternating group network [47], alternating group graph [20,45,51], 
the 3-ary n-cube network [46].

In this paper, we reveal the relationships between the conditional diagnosability tc(G) and the 2-extra connectivity 
κ2(G) of a regular graph G with some acceptable conditions by establishing tc(G) = κ2(G). As applications of our result, 
we consider some more general well-known classes of vertex-transitive graphs, such as star graphs, (n, k)-star graphs, 
alternating group networks, (n, k)-arrangement graphs, alternating group graphs, Cayley graphs obtained from transposition 
generating trees, bubble-sort graphs, k-ary n-cube networks, dual-cubes and pancake graphs, and obtain the conditional 
diagnosability under the comparison model and the 2-extra connectivity of these graphs, which contain all known results 
on these graphs.

The rest of the paper is organized as follows. Section 2 first recalls some necessary notations and lemmas, then es-
tablishes the relationship between the conditional diagnosability and the 2-extra connectivity of regular graphs with some 
conditions. As applications of our main result, Section 3 determines the conditional diagnosability and the 2-extra connec-
tivity for some well-known classes of vertex-transitive graphs.

2. Main results

We first recall some terminologies and notation used in this paper. Let G = (V , E) be a graph, where V = V (G), E = E(G)

and |V (G)| is the order of G .
A sequence (x1, . . . , xn) of n (� 3) distinct vertices with xi xi+1 ∈ E(G) for each i = 1, . . . , n − 1 is called an n-path, 

denoted by Pn , if x1xn /∈ E(G), and called an n-cycle, denoted by Cn , if x1xn ∈ E(G). A cycle C in G is chordless if any two 
non-adjacent vertices of C are non-adjacent in G .
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Fig. 1. Illustrations of Lemma 2.1.

For X ⊂ V (G), let NG (X) = (∪x∈X NG(x)) \ X . For simplicity of writing, in case of no confusion from the context, we 
write N(x) for NG(x); moreover, if X is a subgraph of G , we write N(X) for NG(V (X)) in this paper. For two non-adjacent 
vertices x and y in G , let �(x, y) = |N(x) ∩ N(y)|, and let �(G) = max{�(x, y) : x, y ∈ V (G) and xy /∈ E(G)}.

The degree d(x) of a vertex x is the number of neighbors of x, i.e., d(x) = |N(x)|. The minimum degree δ(G) = min{d(x) :
x ∈ V (G)} and the maximum degree �(G) = max{d(x) : x ∈ V (G)}. A vertex x is an isolated vertex if d(x) = 0, an edge xy
is an isolated edge if d(x) = d(y) = 1. A graph G is k-regular if δ(G) = �(G) = k. Kn denotes a complete graph of order n, 
which is an (n − 1)-regular graph. For a subgraph H of G , we will use �(H) to denote �x∈H dH (x). For example, if P3 and 
C3 are subgraphs of G , then �(P3) = 4 and �(C3) = 6.

Let X ⊂ V (G) be a vertex-cut. The maximal connected subgraphs of G − X are called components. A component is small
if it is an isolated vertex or an isolated edge; is large otherwise.

In this section, we present our main theorem, which explores the close relationship between the conditional diagnos-
ability tc(G) and the 2-extra connectivity κ2(G) of a regular graph G under some conditions, that is, tc(G) = κ2(G). The 
following three lemmas play a key role in the proof of our theorem.

Lemma 2.1. (See [39].) Let G = (V , E) be a graph, F1, F2 ⊆ V (G), F1 	= F2 . Then, under the comparison model, (F1, F2) is a distin-
guishable pair if and only if one of the following conditions is satisfied (see Fig. 1).

(a) There exists x, z ∈ F1 ∪ F2 and y ∈ (F1 ∪ F2) \ (F1 ∩ F2) such that xz, yz ∈ E(G);
(b) There exists z ∈ F1 ∪ F2 and x, y ∈ F1 \ F2 such that xz, yz ∈ E(G);
(c) There exists z ∈ F1 ∪ F2 and x, y ∈ F2 \ F1 such that xz, yz ∈ E(G).

Lemma 2.2. (See [39].) A graph G is conditionally t-diagnosable if and only if, for any two distinct conditional fault-sets F1 and F2
with max{|F1|, |F2|} � t, (F1, F2) is a distinguishable pair.

Lemma 2.3. (See [6].) Let G = (V , E) be a graph with maximum degree � and minimum degree δ � 3. If there is some integer t such 
that

(a) |V | > (� + 1)(t − 1) + 4;1

(b) for any F ⊂ V (G) with |F | � t − 1, G − F has a large component and small components (if exist) which contain at most two 
vertices in total,

then tc(G) � t.

Theorem 2.4. Let G be an n-regular R2-graph and t = min{|N(T )| : T is a 3-path or a 3-cycle in G}. If G satisfies the following 
conditions

(a) for any F ⊂ V (G) with |F | � t − 1, G − F has a large component and small components which contain at most two vertices in 
total;

(b) n � 2�(G) + 2 if G contains no 5-cycle, and n � 3�(G) + 2 otherwise;
(c) |V (G)| > (n + 1)(t − 1) + 4;

then tc(G) = t = κ2(G).

Proof. Let T = P3 or C3 (if exists) in G such that |N(T )| = t . The condition (c) implies that N(T ) is a vertex-cut of G .

1 This lower bound on |V | given here is quite enough for the conclusion. The original article claims |V | > (� + 2)(t − 1) + 4.
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Since G is an R2-graph, it certainly contains R2-vertex-cuts. Suppose to the contrary that N(T ) is not an R2-vertex-cut 
of G . Then G − N(T ) contains a small component C consisting of at most two vertices. We will deduce contradictions with 
the hypothesis (b) according as C is an isolated vertex or an isolated edge.

If C is an isolated vertex, say x, then x shares at most �(G) common neighbors with any one of the three vertices in T . 
Thus, n = |N(x) ∩ N(T )| � min{3�(G), n}, which implies n � 3�(G), a contradiction with the hypothesis (b) that n � 3�(G) +2. 
Moreover, if G contains no 5-cycle, then x shares at most �(G) common neighbors with each of at most two vertices 
in T , and so n = |N(x) ∩ N(T )| � min{2�(G), n}, which implies n � 2�(G), a contradiction with the hypothesis (b) that 
n � 2�(G) + 2.

If C is an isolated edge, say xy, then at most (n − 1) neighbors of x are in N(T ). In the same discussion above, if G
contains no 5-cycle, then n − 1 = |N(x) ∩ N(T )| � min{2�(G), n − 1}, which implies n � 2�(G) + 1, a contradiction; otherwise, 
we have n − 1 = |N(x) ∩ N(T )| � min{3�(G), n − 1}, which implies n � 3�(G) + 1, a contradiction.

It follows that N(T ) is an R2-vertex-cut of G , and so κ2(G) � |N(T )| = t .
On the other hand, since G is an R2-graph, there is an R2-vertex-cut F of G such that |F | = κ2(G). Clearly, F is a 

vertex-cut of G . By the condition (a), if |F | � t − 1, then G − F certainly contains a small component C with |V (C)| � 2, 
which contradicts the assumption that F is an R2-vertex-cut, and so κ2(G) = |F | � t . Thus, κ2(G) = t .

We now prove tc(G) = t . The conditions (a) and (c) satisfy two conditions in Lemma 2.3, and so tc(G) � t .
On the other hand, let T = {x, z, y} with xz, yz ∈ E(G) such that |N(T )| = t . By the above discussion, N(T ) is an 

R2-vertex-cut of G . Let F1 = N(T ) ∪ {x} and F2 = N(T ) ∪ {y}. Then F1 	= F2 and |F1| = |F2| = t + 1. If there is a vertex 
u ∈ F1 such that N(u) ⊆ F1, then u /∈ {y, z} clearly, and so u is in G − N[T ]. Since u is not adjacent to x, u is an isolated 
vertex in G − N(T ), which implies that N(T ) is not an R2-vertex-cut, a contradiction. Therefore, F1 is a conditional fault-set. 
Similarly, F2 is also a conditional fault-set. Note that (F1 ∪ F2) \ (F1 ∩ F2) = {x, y}, F1 \ F2 = {x} and F2 \ F1 = {y}. It is easy 
to verify that F1 and F2 satisfy none of conditions in Lemma 2.1, and so (F1, F2) is an indistinguishable pair. By Lemma 2.2, 
G is not conditionally (t + 1)-diagnosable, which implies tc(G) � t . Thus, tc(G) = t .

It follows that tc(G) = t = κ2(G). The theorem follows. �
3. Applications to some well-known networks

As applications of Theorem 2.4, in this section, we determine the conditional diagnosability and 2-extra connectivity for 
some well-known vertex-transitive graphs, which, due to their high symmetry, frequently appear in the literature on de-
signs and analyses of interconnection networks, including star graphs, alternating group networks, alternating group graphs, 
bubble-sort graphs, (n, k)-arrangement graphs, (n, k)-star graphs, a class of Cayley graphs obtained from transposition gen-
erating trees, k-ary n-cube networks, dual-cubes, pancake graphs and hierarchical hypercubes as well.

3.1. Preliminary on groups and Cayley graphs

We first simply recall some basic concepts on groups and the definition of Cayley graphs, and introduce two classes of 
Cayley graphs based on the alternating group, alternating group networks and alternating group graphs.

Denote by �n the group of all permutations on In = {1, . . . , n}. For convenience, we use p1 p2 · · · pn to denote the permu-
tation 

( 1 2 ··· n
p1 p2···pn

)
. A transposition is a permutation that exchanges two elements and leaves the rest unaltered. A transposition 

that exchanges i and j is denoted by (i, j).
It is well known that any permutation can be expressed as multiplications of a series of transpositions with opera-

tion sequence from left to right. In particular, a 3-cycle (a, b, c) is always expressed as (a, b, c) = (a, b)(a, c). For example, 
(1, 2, 4) = (1, 2)(1, 4).

A permutation is called even if it can be expressed as a composition of even transpositions, and odd otherwise. There are 
n!/2 even permutations in �n , which form a subgroup of �n , called the alternating group and denoted by 	n , the generating 
set to be a set of 3-cycles.

An automorphism of a graph G is a permutation on V (G) that preserves adjacency. All automorphisms of G form a 
group, denoted by Aut (G), and referred to as the automorphism group. A graph G is vertex-transitive if for any two vertices 
x and y in G there is a σ ∈ Aut (G) such that y = σ(x). A vertex-transitive graph is necessarily regular. A graph G is 
edge-transitive if for any two edges a = xy and b = uv of G there is a σ ∈ Aut(G) such that {u, v} = {σ(x), σ(y)}. A graph is 
symmetric if it is vertex-transitive and edge-transitive.

For a finite group 	 with the identity e and a non-empty subset S of 	 such that e /∈ S and S = S−1, define a graph G
as follows.

V (G) = 	; xy ∈ E(G) ⇔ x−1 y ∈ S for any x, y ∈ 	.

In other words, xy ∈ E(G) if and only if there exists s ∈ S such that y = xs. Such a graph G is called the Cayley graph on 	
with respect to S , denoted by C	(S). A Cayley graph is |S|-regular, and is connected if and only if S generates 	. Moreover, 
A Cayley graph is |S|-connected if S is a minimal generating set of 	.

A Cayley graph is always vertex-transitive and, thus, becomes an important topological structure of interconnection 
networks and has attracted considerable attention in the literature [21,30].
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Fig. 2. Alternating group networks AN3 and AN4.

Fig. 3. Alternating group graphs AG3 and AG4.

As examples, we recall two well-known classes of Cayley graphs on the alternating group 	n with respect to some S .

1. Alternating group networks
For n � 3, let S = {(1, 2)(1, 3), (1, 3)(1, 2), (1, 2)(3, i): 4 � i � n}, where (1, 2)(1, 3) and (1, 3)(1, 2) are mutually inverse, 

(1, 2)(3, i) is self-inverse for each i = 4, · · · , n, and so S = S−1. The Cayley graph C	n (S) is called the alternating group 
network, proposed by Ji [25] in 1999 and denoted by ANn , which is (n − 1) regular and (n − 1)-connected. The alternating 
group networks AN3 and AN4 are shown in Fig. 2.

Zhou and Xiao [51] determined tc(ANn) = 3n − 9 for n � 5 and Zhou [47] determined κ2(ANn) = 3n − 9 for n � 4. Thus, 
tc(ANn) = 3n − 9 = κ2(ANn) for n � 5

2. Alternating group graphs
For n � 3, let S = {(1, 2)(1, i), (1, i)(1, 2) : 3 � i � n}, where (1, 2)(1, i) and (1, i)(1, 2) are mutually inverse for each 

i = 3, · · · , n, and so S = S−1. The Cayley graph C	n (S) is called the alternating group graph, proposed by Jwo et al. [26] in 
1993 and denoted by AGn , which is (2n − 4)-regular and (2n − 4)-connected. AG3 and AG4 are shown in Fig. 3.

It is known that κ2(AGn) = 6n − 19 for n � 5 determined by Lin et al. [35] and tc(AG4) = 4 and tc(AGn) = 6n − 19
for n � 6 obtained by Zhou and Xu [52], and Hao et al. [19], in which “tc(AGn) = 6n − 18” is a slip of the pen. Thus, 
tc(AGn) = 6n − 19 = κ2(AGn) for n � 6.

3.2. Star graphs

Let �n be the symmetry group and S = {(1, i) : 2 � i � n}. The Cayley graph C�n (S) is called a star graph, denoted by 
Sn , proposed by Akers and Krishnamurthy [1] in 1989. The graphs shown in Fig. 4 are S2, S3 and S4.

A star graph Sn is (n − 1)-regular and (n − 1)-connected. Furthermore, since a transposition changes the parity of a 
permutation, each edge connects an odd permutation with an even permutation, and so Sn is bipartite, and contains no C4. 
A star graph is not only vertex-transitive but also edge-transitive [1], and so is symmetric.

Lemma 3.1. For any x, y ∈ V (Sn), if xy /∈ E(Sn) and N(x) ∩ N(y) 	= ∅, then |N(x) ∩ N(y)| = 1.
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Fig. 4. The star graphs S2, S3 and S4.

Since Sn is (n − 1)-regular and contains no C3, according to Lemma 3.1, if P3 = (x, y, z) is a 3-path, where xz /∈ E(G), 
then |N(x) ∩ N(y)| = |N(y) ∩ N(z)| = 0 and N(x) ∩ N(z) = {y}, and so the number of neighbors of P3 in Sn can be counted 
as follows.

|N(P3)| = d(x) + d(y) + d(z) − |N(x) ∩ N(y)| − |N(y) ∩ N(z)| − �(P3)

= 3(n − 1) − 4 = 3n − 7.

Thus, for any 3-path P3 in Sn , we have that

|N(P3)| = 3(n − 1) − 4 = 3n − 7. (1)

Lemma 3.2. (See Cheng and Lipták [5].) Let F ⊂ V (Sn) with |F | � 3n − 8 and n � 5. If Sn − F is disconnected, then it has either two 
components, one of which is an isolated vertex or an edge, or three components, two of which are isolated vertices.

Lin et al. [34], Zhou and Xu [52] determined tc(Sn) = 3n − 7 for n � 4. However, κ2(Sn) has not been determined so for. 
We can deduce these results by Theorem 2.4.

Theorem 3.3. tc(Sn) = 3n − 7 = κ2(Sn) for n � 5.

Proof. Since Sn contains no C3, t = min{|N(T )| : T = P3 or C3 in Sn} = |N(P3)|, where P3 is any 3-path in Sn . Let F =
N(P3). Then |F | = t = 3n − 7 by (1). It is easy to check that |V (Sn)| − |F | − 3 = n ! − 3n + 4 > 0 for n � 4. Thus F is a 
vertex-cut of Sn . To prove the theorem, we only need to verify that Sn satisfies conditions in Theorem 2.4.

(a) If |F | � t − 1 then, by Lemma 3.2, Sn − F has a large component and small components which contain at most two 
vertices in total.

(b) By Lemma 3.1, �(Sn) = 1. Since Sn is (n − 1)-regular bipartite, it contains no 5-cycle, and so n − 1 � 4 = 2�(Sn) + 2.
(c) When n � 4, it is easy to check that

n ! − n(t − 1) − 4 = n ! − n(3n − 8) − 4
� 4(n − 1)(n − 2) − 3n2 + 8n − 4
= (n − 2)2

> 0.

It follows that Sn satisfies all of conditions in Theorem 2.4, and so tc(Sn) = 3n − 7 = κ2(Sn). �
The star graph Sn is an important topological structure of interconnection networks and has attracted considerable 

attention since it has been thought to be an attractive alternative to the hypercube. However, since Sn has n ! vertices, there 
is a large gap between n ! and (n + 1) ! for expanding Sn to Sn+1. To relax the restriction of the numbers of vertices in Sn , 
the arrangement graph An,k and the (n, k)-star graph Sn,k were proposed as generalizations of the star graph Sn . In the 
following two sections, we discuss such two classes of graphs, respectively.

For this purpose, we need some notations. Given two positive integers n and k with k < n, let Pn,k be a set of arrange-
ments of k elements in In , i.e., Pn,k = {p1 p2 . . . pk : pi ∈ In, pi 	= p j, 1 � i 	= j � k}. Clearly, |Pn,k| = n! .
(n−k)!
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Fig. 5. The structure of a (4,2)-arrangement graph A4,2.

Fig. 6. Two partitions of A4,2 into 4 triangles K3 (dark edges).

3.3. Arrangement graphs

The (n, k)-arrangement graph, denoted by An,k , was proposed by Day and Tripathi [11] in 1992. The definition of An,k is 
as follows. An,k has vertex-set Pn,k and two vertices are adjacent if and only if they differ in exactly one position.

Fig. 5 shows a (4, 2)-arrangement graph A4,2, which is isomorphic to AG4 (see Fig. 3).
An,k is k(n − k)-regular, k(n − k)-connected, vertex-transitive and edge-transitive (see [11]). Clearly, An,1 ∼= Kn and 

An,n−1 ∼= Sn . Chiang and Chen [9] showed that An,n−2 ∼= AGn . Thus, the (n, k)-arrangement graph An,k is naturally regarded 
as a common generalization of the star graph Sn and the alternating group graph AGn . For a fixed i (1 � i � k), let

V i = {p1 · · · pi−1qi pi+1 · · · pk : qi ∈ In \ {p1, · · · , pi−1, pi+1, · · · , pk}}
Then |V i | = n − k + 1. There are |Pn,k−1| such V i ’s. By definition, it is easy to see that the subgraph of An,k induced by V i

is a complete graph Kn−k+1. In special, Kn−k+1 = Kn if k = 1, and Kn−k+1 = K2 if k = n − 1.
When n = k + 1, An,k contains no 3-cycle C3, there is a big difference in the way of dealing it with other conditions. 

Since An,n−1 ∼= Sn , which has been discussed in the above subsection, to avoid duplication of discussion, we may assume 
n � k + 2 and k � 2 in the following discussion.

Thus, when n � k + 2 and k � 2, for each fixed i (1 � i � k), the vertex-set of An,k can be partitioned into |Pn,k−1|
subsets, each of which induces a complete graph Kn−k+1. For example, for n = 4 and k = 2, |P4,1| = 4. Fig. 6 illustrates two 
partitions of V (A4,2) into 4 subsets for each i = 1, 2, each of which induces a complete graph K3 (dark edges). This fact and 
the arbitrariness of i (1 � i � k) show that each vertex is contained in k distinct Kn−k+1’s, and each edge is contained in 
(n − k − 1) distinct 3-cycles, that is, any two adjacent vertices have exactly (n − k − 1) common neighbors.

Furthermore, each edge of An,k is contained in (k − 1) chordless 4-cycles when n � k + 2 and k � 2. In fact, let p q ∈
E(An,k), if p = p1 · · · pi−1 pi pi+1 · · · pk , then q = p1 · · · pi−1qi pi+1 · · · pk , where qi ∈ In \ {p1, · · · , pk}. For each j ∈ {1, 2, · · · , k}
and j 	= i, let
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Fig. 7. Construction of a chordless 4-cycle containing a given edge pq in An,k .

x j = p1 · · · pi−1qi pi+1 · · · p j−1t j p j+1 · · · pk and
y j = p1 · · · pi−1 pi pi+1 · · · p j−1t j p j+1 · · · pk,

where t j ∈ In \ {p1, · · · , pk, qi}, such t j certainly exists since n � k + 2 and k � 2. Then, (p, q, x j, y j) is a chordless 4-cycle in 
An,k for each j ∈ {1, 2, · · · , k} and j 	= i (see Fig. 7).

According to the above discussion, we have the following result.

Lemma 3.4. When n � k +2, for any x, y ∈ V (An,k), then |N(x) ∩N(y)| = n −k −1 if xy ∈ E(An,k); |N(x) ∩N(y)| � 2 if xy /∈ E(An,k)

and N(x) ∩ N(y) 	= ∅; and |N(x) ∩ N(y)| = 0 otherwise.

Since each edge is contained in a Kn−k+1 (n � k + 2), for a 3-cycle C3 = (x, y, z), every vertex in V (Kn−k+1 − C3) is a 
common neighbor of the three vertices x, y, z. In other words, when we count the number |N(C3)| of neighbors of C3 in 
An,k , every vertex in V (Kn−k+1 − C3) is counted three times. Thus, the number |N(C3)| of neighbors of C3 in An,k can be 
counted as follows.

|N(C3)| = d(x) + d(y) + d(z) − 2|V (Kn−k+1 − C3)| − �(C3)

= 3k(n − k) − 2(n − k − 2) − 6
= (3k − 2)(n − k) − 2.

Thus, for any 3-cycle C3 in An,k , we have that

|N(C3)| = (3k − 2)(n − k) − 2. (2)

Since An,k contains chordless 4-cycle, say (x, y, z, u), we choose a 3-path P3 = (x, y, z). Then xz /∈ E(An,k). Since each 
edge is contained in a Kn−k+1, |N(x) ∩ N(y)| = |N(y) ∩ N(z)| = n −k − 1 and |N(z) ∩ N(x)| = |{y, u}| = 2 by Lemma 3.4. Note 
that two edge xy and yz are in different complete graphs. Thus, the number of neighbors of P3 in An,k can be counted as 
follows.

|N(P3)| = d(x) + d(y) + d(z) − |N(x) ∩ N(y)|
− |N(y) ∩ N(z)| − |N(z) ∩ N(x) \ {y}| − �(P3)

= 3k(n − k) − 2(n − k − 1) − 1 − 4
= (3k − 2)(n − k) − 3

Thus, we have that

min{|N(P3)| : P3 is a 3-path in An,k} � (3k − 2)(n − k) − 3. (3)

Lemma 3.5. (See [52].) Let F be a vertex-cut of An,k with |F | � (3k − 2)(n − k) − 4. If n � k + 2 and k � 4, then An,k − F contains 
either two components, one of which is an isolated vertex or an isolated edge, or three components, two of which are isolated vertices.

Zhou and Xu [52] determined that for n � k + 2 and k � 4, tc(An,k) = (3k − 2)(n −k) − 3. However, κ2(An,k) has not been 
determined. We can deduce these results by Theorem 2.4.

Theorem 3.6. tc(An,k) = (3k − 2)(n − k) − 3 = κ2(An,k) for n � k + 2 and k(n − k) � 8.

Proof. Comparing (2) with (3), when n � k + 2, t = min{|N(T )| : T = P3 or C3 in An,k} = |N(P3)|, where P3 is a 3-path in 
An,k . Let F = N(P3). Then F is a vertex-cut of An,k and |F | = t � (3k − 2)(n − k) − 3 by (3). To prove the theorem, we only 
need to verify that An,k satisfies conditions in Theorem 2.4.

(a) If |F | � t − 1 then, by Lemma 3.5, An,k − F has a large component and small components which contain at most two 
vertices in total.

(b) By Lemma 3.4, �(An,k) = 2, and so k(n − k) � 8 = 3�(An,k) + 2.
(c) It is not difficult to check that
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Fig. 8. Two (n,k)-star graphs S4,3 and S4,2.

|V | − [(� + 1)(t − 1) + 4]
= |V | − (k(n − k) + 1)((3k − 2)(n − k) − 4) − 4
= |V | − 3k2(n − k)2 + 2k(n − k)2 + (k + 2)(n − k)

> |V | − 3k2(n − k)2 (for n − k � 2)
� |V | − 3(n − 2)2(n − k + 1)2 (for k � n − 2)
= n!/(n − k)! − 3(n − 2)2(n − k + 1)2

= n(n − 1) · · · (n − k + 1) − 3(n − 2)2(n − k + 1)2

> 3(n − 2)2(n − k + 1)2 − 3(n − 2)2(n − k + 1)2

= 0.

Thus, An,k satisfies all conditions in Theorem 2.4, and so tc(An,k) = (3k − 2)(n − k) − 3 = κ2(An,k). �
Since An,n−2 ∼= AGn , by Theorem 3.6, we immediately obtain the following results.

Corollary 3.7. tc(AGn) = 6n − 19 = κ2(AGn) for n � 6.

3.4. (n, k)-Star graphs

The (n, k)-star graph Sn,k , proposed by Chiang et al. [8] in 1995 as another generalization of the star graph Sn , has 
vertex-set Pn,k , a vertex p = p1 p2 . . . pi . . . pk is adjacent to a vertex

(a) pi p2 · · · pi−1 p1 pi+1 · · · pk , where i ∈ {2, 3, · · · , k} (swap-edge).
(b) p′

1 p2 p3 · · · pk , where p′
1 ∈ In \ {pi : i ∈ Ik} (unswap-edge).

Fig. 8 shows two (n, k)-star graphs S4,3 and S4,2, where S4,3 ∼= S4 and S4,2 ∼= AN4.
Sn,k is (n − 1)-regular, (n − 1)-connected and vertex-transitive, however, it is not edge-transitive if n � k + 2 (see Chiang 

et al. [8]).
By definition, Sn,1 ∼= Kn and Sn,n−1 ∼= Sn obviously. Moreover, Cheng et al. [7] showed Sn,n−2 ∼= ANn . It follows that the 

(n, k)-star graph Sn,k is naturally regarded as a common generalization of the star graph Sn and the alternating group 
network ANn . For any α = p2 p3 · · · pk ∈ Pn,k−1 (2 � k � n), let

Vα = {p1α : p1 ∈ In \ {pi : 2 � i � k}.
By definition, it is easy to see that the subgraph of Sn,k induced by Vα is a complete graph Kn−k+1. Thus, V (Sn,k) can 
be partitioned into |Pn,k−1| subsets, each of which induces a complete graph Kn−k+1 whose edges are unswap-edges. Fur-
thermore, there is at most one swap-edge between any two complete graphs, and so Sn,k contains neither 4-cycle nor 
5-cycle.

Lemma 3.8. (See Li and Xu [31].) For any x, y ∈ V (Sn,k), then |N(x) ∩ N(y)| = n − k − 1 if xy ∈ E(Sn,k) is an unswap-edge, |N(x) ∩
N(y)| = 1 if xy /∈ E(Sn,k) and N(x) ∩ N(y) 	= ∅, and |N(x) ∩ N(y)| = 0 otherwise.
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Since Kn−k+1 = Kn when k = 1 and Kn−k+1 = K2 when k = n − 1, like An,k , to avoid duplication of discussion, we may 
assume n � k + 2 and k � 2 in the following discussion.

For a 3-cycle C3 = (x, y, z), since it is contained in a complete graph Kn−k+1, every vertex in V (Kn−k+1 − C3) is a 
common neighbor of the tree edges xy, yz, zx. In other words, when we count the number of neighbors of C3 in Sn,k , every 
vertex in V (Kn−k+1 − C3) is counted three times. Thus, the number of neighbors of C3 in Sn,k can be counted as follows.

|N(C3)| = d(x) + d(y) + d(z) − 2|V (Kn−k+1 − C3)| − �(C3)

= 3(n − 1) − 2(n − k − 2) − 6
= n + 2k − 5.

Thus, for any 3-cycle C3 in Sn,k , we have that

|N(C3)| = n + 2k − 5. (4)

For a 3-path P3 = (x, y, z) with xz /∈ E(Sn,k), then one of two edges xy and yz is an unswap-edge and another is a 
swap-edge. Without loss of generality, suppose that xy is an unswap-edge and yz is a swap-edge. Then |N(x) ∩ N(y)| =
n − k − 1, |N(y) ∩ N(z)| = 0 and |N(z) ∩ N(x)| = |{y}| = 1 by Lemma 3.8. Thus, the number of neighbors of C3 in An,k can 
be counted as follows.

|N(P3)| = d(x) + d(y) + d(z) − |N(x) ∩ N(y)|
− |N(y) ∩ N(z)| − |N(z) ∩ N(x) \ {y}| − �(P3)

= 3(n − 1) − (n − k − 1) − 0 − 4
= 2n + k − 6.

Thus, for any 3-path P3 in Sn,k , we have that

|N(P3)| = 2n + k − 6. (5)

Lemma 3.9. (See Zhou [48].) Let F be a vertex-cut of Sn,k (n � k + 2 and k � 3) with |F | � n + 2k − 6. Then Sn,k − F contains either 
two components, one of which is an isolated vertex or an isolated edge, or three components, two of which are both isolated vertices.

Zhou [48] determined that tc(Sn,k) = n + 2k − 5 if n � k + 2 and k � 3. However, κ2(Sn,k) has not been determined. We 
can deduce these results by Theorem 2.4.

Theorem 3.10. tc(Sn,k) = n + 2k − 5 = κ2(Sn,k) if n � k + 2 and k � 3.

Proof. Let t = min{|N(T )| : T = P3 or C3 in Sn,k}. By Lemma 3.8, Sn,k contains 3-cycles when n � k + 2. Comparing (4) with 
(5), t = |N(C3)| = n + 2k − 5, where C3 is any 3-cycle in Sn,k . Let F = N(C3). Then |F | = t and F is a vertex-cut of Sn,k . To 
prove the theorem, we only need to verify that Sn,k satisfies conditions in Theorem 2.4.

(a) If |F | � t − 1 then, by Lemma 3.9, Sn,k − F has a large component and small components which contain at most two 
vertices in total.

(b) Since Sn,k is (n − 1)-regular and contains no 5-cycle C5, by Lemma 3.8, �(Sn,k) = 1, and so n − 1 � 4 = 2�(Sn,k) + 2.
(c) It is not difficult to check that

|V | − [n(t − 1) + 4] = |V | − n(n + 2k − 6) − 4
� |V | − n(3n − 10) − 4 (for k � n − 2)
� |V | − 3n(n − 3) (for n � 5)
� n(n − 1)(n − 2) − 3n(n − 3)

> 3n(n − 3) − 3n(n − 3)

= 0.

Thus, Sn,k satisfies all conditions in Theorem 2.4, and so tc(Sn,k) = n + 2k − 5 = κ2(Sn,k). The theorem follows. �
Since Sn,n−2 ∼= ANn , by Theorem 3.10, we immediately obtain the following results.

Corollary 3.11. tc(ANn) = 3n − 9 = κ2(ANn) for n � 5.

3.5. Transposition graphs

Let Tn be a set of transpositions from �n and S ⊆ Tn . The graph T S with vertex-set In and edge-set {i j : (i, j) ∈ S} is 
called the transposition generating graph or simply transposition graph. The Cayley graph C�n (S) on �n with respect to S has 
n ! vertices.
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Fig. 9. The bubble-sort graphs B2, B3 and B4.

For example, if S = {(1, i) : 2 � i � n}, then T S is a star K1,n−1, the corresponding Cayley graph C�n (S) is a star graph 
Sn , proposed by Akers and Krishnamurthy [1], perhaps, this is why they called such a graph for the star graph.

Here is another example, if S = {(i, i + 1) : 1 � i � n − 1}, then T S is an n-path Pn , the corresponding Cayley graph 
C�n (S) is called a bubble-sort graph Bn , proposed by Akers and Krisnamurthy [1] in 1989. This series of transpositions 
looks like to be along a straight line on the bubbled. Perhaps this is why Akers and Krisnamurthy called such a graph for 
the bubble-sort graph. Fig. 9 shows the bubble-sort graphs B2, B3 and B4.

It is a well-known result, due to Polya (see Berge [4], p. 118), that a set S ⊆ Tn with |S| = (n − 1) generates �n if and 
only if the transposition graph T S is a tree, called a transposition tree.

Thus, one is interested in such a Cayley graph C�n (S) obtained from a transposition generating tree T S , denoted by 
Tn(S) shortly. The Cayley graph Tn(S) is a bipartite graph since a transposition changes the parity of a permutation, each 
edge connects an odd permutation with an even permutation.

As we have seen from the above examples, Tn(S) is a star graph Sn if T S ∼= K1,n−1, and a bubble-sort graph Bn if 
T S ∼= Pn . Thus, the star graph Sn and the bubble-sort graph Bn are special cases of the Cayley graph Tn(S).

Since when T S ∼= K1,n−1, Tn(S) is a star graph Sn . To avoid duplication of discussion, we may assume that T S is not a 
star K1,n−1 in the following discussion.

Under this assumption, when n � 4, Lin et al. [34] determined tc(Tn(S)) = 3n − 8, Yang et al. [44] determined 
κ2(Tn(S)) = 3n − 8. We can deduce these results for n � 7 by Theorem 2.4.

According to the recursive architecture of Tn(S), we easily obtain the following lemma.

Lemma 3.12. For any x, y ∈ V (Tn(S)), if xy /∈ E(Tn(S)) and N(x) ∩ N(y) 	= ∅, then |N(x) ∩ N(y)| = 1 if Tn(S) = Sn, and |N(x) ∩
N(y)| � 2 otherwise.

Lemma 3.13. (See Cheng and Lipták [5].) For n � 5, if T ⊂ V (Tn(S)) is a vertex-cut with |T | � 3n −8, then Tn(S) − T contains either 
two components, one of which is an isolated vertex or an isolated edge, or three components, two of which are both isolated vertices.

Theorem 3.14. tc(Tn(S)) = 3n − 8 = κ2(Tn(S)) for n � 7.

Proof. Since Tn(S) is a bipartite graph, it contains no C3, and so t = min{|N(T )| : T is a 3-path or a 3-cycle in Tn(S)} =
|N(P3)|, where P3 is any 3-path in Tn(S). When Tn(S) is not a star graph, it contains C4, and so t = |N(P3)| = 3(n − 1) −
1 − 4 = 3n − 8. Let F = N(P3). Then F is a vertex-cut of Tn(S). To prove the theorem, we only need to verify that Tn(S)

satisfies conditions in Theorem 2.4.
(a) Clearly, F is a vertex-cut. If |F | � t − 1 then, by Lemma 3.13, Tn(S) − F has a large component and small components 

have at most two vertices in total.
(b) By Lemma 3.12, if Tn(S) 	= Sn , then �(Tn(S)) = 2. Since Tn(S) is a bipartite graph, it contains no 5-cycle C5. It 

follows that n − 1 � 6 = 2�(An,k) + 2.
(c) It is easy to check that n! − [n(t − 1) + 4] > 0.
Thus, Tn(S) satisfies all conditions in Theorem 2.4, and so tc(Tn(S)) = 3n − 8 = κ2(Tn(S)). �
Since when T S ∼= Pn the Cayley graph C�n (S) is a bubble-sort graph Bn , by Theorem 3.14, we immediately obtain the 

following result.
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Fig. 10. The hypercubes Q n , where Q 1 = K2, Q i = K2 × Q i−1 for i = 2,3,4.

Corollary 3.15. tc(Bn) = 3n − 8 = κ2(Bn) for n � 7.

3.6. k-Ary n-cube networks

We first introduce the Cartesian product of graphs.
Let G1 = (V 1, E1) and G2 = (V 2, E2) be two undirected graphs. The Cartesian product of G1 and G2 is an undirected 

graph, denoted by G1 × G2, where V (G1 × G2) = V 1 × V 2, two distinct vertices x1x2 and y1 y2, where x1, y1 ∈ V (G1) and 
x2, y2 ∈ V (G2), are linked by an edge in G1 ×G2 if and only if either x1 = y1 and x2 y2 ∈ E(G2), or x2 = y2 and x1 y1 ∈ E(G1).

Examples of the Cartesian product are shown in Fig. 10, where Q 1 = K2, Q i = K2 × Q i−1 for i = 2, 3, 4.
As an operation of graphs, the Cartesian products satisfy commutative and associative laws if we identify isomorphic 

graphs. Thus, we can define the Cartesian product G1 × G2 × · · · × Gn . There is an edge between a vertex x1x2 · · · xn and 
another y1 y2 · · · yn if and only if they differ exactly in the ith coordinate and xi yi ∈ E(Gi).

The Cartesian product 	 = 	1 × 	2 × · · · × 	n = (X, ◦) of n finite groups 	i = (Xi, ◦i) for each i = 1, 2, . . . , n, where 
X = X1 × X2 × · · · × Xn . The operation ◦ is defined as follows:

(x1x2 · · · xn) ◦ (y1 y2 · · · yn) = (x1 ◦1 y1)(x2 ◦2 y2) · · · (xn ◦n yn),

where xi, yi ∈ Xi (i = 1, 2, . . . , n). For x1x2 · · · xn ∈ 	, its inverse (x1x2 · · · xn)−1 = x−1
1 x−1

2 · · · x−1
n , the identity e = e1e2 · · · en , 

where x−1
i is the inverse of xi in 	i , ei is the identity in 	i for each i = 1, 2, . . . , n.

For example, consider Z4 × Z2 = {00, 10, 20, 30, 01, 11, 21, 31}. For any x1x2, y1 y2 ∈ Z4 × Z2, x1, y1 ∈ Z4, x2, y2 ∈ Z2, 
definite the operation:

(x1x2) ◦ (y1 y2) = (x1 + y1)(mod 4)(x2 + y2)(mod 2).

It is easy to verify that under the above operation, Z4 × Z2 forms a group, the identity is 00.
Consider the additive group Zk (k � 2) of residue classes modulo k, that is the ring group with order k, zero is the 

identity, the inverse of i is k − i. If S = {1}, then S−1 = S for k = 2; and S−1 	= S otherwise. Thus the Cayley graph C Z2 ({1}) =
K2, the Cayley graph C Zk ({1, k − 1}) is a cycle Ck if k � 3.

Lemma 3.16. (See Xu [42].) The Cartesian product of Cayley graphs is a Cayley graph. More precisely speaking, let Gi = C	i (Si) be 
a Cayley graph of a finite group 	i with respect to a subset Si , then G = G1 × G2 × · · · × Gn is a Cayley graph C	(S) of the group 
	 = 	1 × 	2 × · · · × 	n with respect to the subset

S =
n⋃

i=1

{e1 · · · ei−1} × Si × {ei+1 · · · en},

where ei is the identity of 	i for each i = 1, 2, . . . , n.
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Let 	 be the Cartesian product of n(� 2) additive groups Zk , i.e., 	 = Zk × Zk × · · · × Zk , and let

S =
n⋃

i=1

{e1 · · · ei−1} × Si × {ei+1 · · · en},

where ei = 0 and Si = {1, k − 1} for each i = 1, 2, . . . , n. By Lemma 3.16, C	(S) is a Cayley graph. For example, let k = 2, 
then

S =
n⋃

i=1

{e1 · · · ei−1} × Si × {ei+1 · · · en}
= {100 · · ·00,010 · · · 00, . . . ,000 · · · 01},

where Si = {1} for i = 1, 2, . . . , n. The Cayley graph C	(S) = K2 × K2 × · · · × K2︸ ︷︷ ︸
n

is the well-known hypercube Q n .

When k � 3, the Cayley graph C	(S) = Ck × Ck × · · · × Ck︸ ︷︷ ︸
n

is called the k-ary n-cube, first studied by Dally [10] and 

denoted by Q k
n (also see Xu [42]), which is an 2n-regular graph with kn vertices and n kn edges.

Lemma 3.17. (See Gu and Hao [18], Hsieh et al. [24].) For any x, y ∈ V (Q k
n ), k � 2,

|N(x) ∩ N(y)| =
⎧⎨
⎩

1 if xy ∈ E(Q k
n) and k = 3;

2 if xy /∈ E(Q k
n) and N(x) ∩ N(y) 	= ∅;

0 otherwise.

Lemma 3.18. (See Gu et al. [17,18] and Hsu et al. [23].) Let F be a vertex-cut of Q k
n (n � 5) with

|F | �
⎧⎨
⎩

6n − 6 if k � 4;
6n − 8 if k = 3;
3n − 6 if k = 2.

Then Q k
n − F has a large component and small components have at most two vertices in total.

Xu et al. [43] determined κ2(Q 2
n ) = 3n − 5 for n � 4. Zhao and Jin [46] determined κ2(Q 3

n ) = 6n − 7 for n � 3. Hsieh et 
al. [22] determined κ2(Q k

n ) = 6n − 5 for k � 4 and n � 5. Hsu et al. [23] proved tc(Q 2
n ) = 3n − 5 for n � 5. By Theorem 2.4, 

we immediately obtain the following result which contains the above results.

Theorem 3.19. For n � 8 if k = 5 and n � 6 otherwise, tc(Q k
n ) = t = κ2(Q k

n ), where

t =
⎧⎨
⎩

6n − 5 if k � 4;
6n − 7 if k = 3;
3n − 5 if k = 2.

Proof. Note that Q k
n is n-regular for k = 2, and 2n-regular for k � 3, and Q k

n contains C3 if and only if k = 3 and contains 
C5 if and only if k = 5. By Lemma 3.17, it is easy to verify that t = min{|N(T )| : T = P3 or C3 in Q k

n } = |N(P3)|, where P3
is any 3-path in Q k

n . Let F = N(P3). Then F is a vertex-cut of Q k
n and |F | = t . To prove the theorem, we only need to verify 

that Q k
n satisfies conditions in Theorem 2.4.

(a) If |F | � t − 1, then by Lemma 3.18, Q k
n − H has a large component and small components has at most two vertices 

in total.
(b) By Lemma 3.17, n � 3�(Q k

n ) + 2 = 8 if k = 5, and n � 2�(Q k
n ) + 2 = 6 otherwise.

(c) For n � 8, it is easy to verify that

|V (Q k
n)| − (� + 1)(t − 1) − 4 =

⎧⎨
⎩

2n − (n + 1)(3n − 6) − 4 > 0 if k = 2;
3n − (2n + 1)(6n − 8) − 4 > 0 if k = 3;
kn − (2n + 1)(6n − 6) − 4 > 0 if k � 4.

Thus, Q k
n satisfies all conditions in Theorem 2.4, and so tc(Q k

n ) = t = κ2(Q k
n ) for n � 8 if k = 5 and n � 6 otherwise. �

Corollary 3.20. tc(Q 2
n ) = 3n − 5 = κ2(Q 2

n ) and tc(Q 3
n ) = 6n − 7 = κ2(Q 3

n ) for n � 6.
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Fig. 11. The dual-cube DC2.

3.7. Dual-cubes

A dual-cube DCn , proposed by Li and Peng [32], consists of 22n+1 vertices, and each vertex is labeled with a unique (2n +
1)-bits binary string and has n + 1 neighbors. There is a link between two nodes u = u2nu2n−1 . . . u0 and v = v2n v2n−1 . . . v0
if and only if u and v differ exactly in one bit position i under the following conditions:

(a) if 0 ≤ i ≤ n − 1, then u2n = v2n = 0; and
(b) if n ≤ i ≤ 2n − 1, then u2n = v2n = 1.
Fig. 11 shows the dual-cube DC2. A dual-cube DCn is an (n + 1)-regular bipartite graph of order 22n+1. Moreover, Zhou 

et al. [49] showed that DCn is a Cayley graph, and so DCn is vertex-transitive.

Lemma 3.21. (See Zhou et al. [49].) For any x, y ∈ V (DCn), if xy /∈ E(DCn) and N(x) ∩ N(y) 	= ∅, then |N(x) ∩ N(y)| � 2.

Since DCn is an (n + 1)-regular bipartite graph, and so it contains no C3, according to Lemma 3.21, if P3 = (x, y, z) is a 
3-path, where xz /∈ E(G), then |N(x) ∩ N(y)| = |N(y) ∩ N(z)| = 0 and |N(x) ∩ N(z)| � 2, and so the number of neighbors of 
P3 in DCn can be counted as follows.

|N(P3)| = d(x) + d(y) + d(z) − |N(x) ∩ N(z) \ {y}| − �(P3)

= 3(n + 1) − (|N(x) ∩ N(z)| − 1) − 4

=
{

3n − 1 if |N(x) ∩ N(z)| = 1;
3n − 2 if |N(x) ∩ N(z)| = 2.

Thus, we have that

min{|N(P3)| : P3 is a 3-path in DCn} = 3n − 2. (6)

Lemma 3.22. (See Zhou et al. [49].) Let F ⊂ V (DCn) with |F | � 3n − 3 and n � 3. If DCn − F is disconnected, then it has either two 
components, one of which is an isolated vertex or an edge, or three components, two of which are isolated vertices.

Zhou et al. [49] determined κ2(DCn) = 3n − 2 and tc(DCn) = 3n − 2 for n � 3, dependently. By Theorem 2.4, we immedi-
ately obtain the following result which contains the above results.

Theorem 3.23. tc(DCn) = 3n − 2 = κ2(DCn) for n � 5.

Proof. Since DCn contains no C3, t = min{|N(T )| : T = P3 or C3 in DCn} = |N(P3)|, where P3 is a 3-path in DCn chosen 
by (6). Let F = N(P3). Then F is a vertex-cut of DCn and |F | = t = 3n − 2 by (6). To prove the theorem, we only need to 
verify that DCn satisfies conditions in Theorem 2.4.

(a) If |F | � t − 1 then, by Lemma 3.22, DCn − F has a large component and small components which contain at most two 
vertices in total.

(b) By Lemma 3.21, �(DCn) = 2. Since DCn is (n +1)-regular bipartite, it contains no 5-cycle, and so n +1 � 6 = 2�(DCn) +
2.

(c) It is easy to check that 22n+1 − (n + 2)(t − 1) − 4 = 22n+1 − (n + 2)(3n − 3) − 4 > 0 for n � 5.
Thus, DCn satisfies all conditions in Theorem 2.4, and so tc(DCn) = 3n − 2 = κ2(DCn). The theorem follows. �

3.8. Pancake graphs

The n-dimensional pancake graph, denoted by PGn and proposed by Akers and Krishnameurthy [1], is a graph consisting 
of n! vertices labeled with n! permutations in �n . There is an edge from a vertex i to a vertex j if and only if j is a 
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Fig. 12. The pancake graphs PG2, PG3 and PG4.

permutation of i such that i = i1i2 · · · ikik+1 · · · in and j = ik · · · i2i1ik+1 · · · in , where 2 � k � n. The pancake graphs P2, P3, 
and P4 are shown in Fig. 12 for illustration.

The pancake graph PGn is (n − 1)-regular and (n − 1)-connected and contains no 4-cycles [33]. Moreover, PGn is a Cayley 
graph and, hence, is vertex transitive, but not edge-transitive [1]. Kanevsky and Feng [27] showed that for n � 3, PGn

contains all �-cycles with 6 � � � n !, and no �-cycles with 3 � � � 5.
Since PGn contains no C4, for any x, y ∈ V (PGn), if xy /∈ E(PGn) and N(x) ∩ N(y) 	= ∅, then |N(x) ∩ N(y)| = 1. Since PGn is 

(n − 1)-regular and contains no C3, if P3 = (x, y, z) is a 3-path, where xz /∈ E(PGn), then |N(x) ∩ N(y)| = |N(y) ∩ N(z)| = 0
and N(x) ∩ N(z) = {y}, and so the number of neighbors of P3 in PGn can be counted as follows.

|N(P3)| = d(x) + d(y) + d(z) − �(P3)

= 3(n − 1) − 4
= 3n − 7.

Thus, for any 3-path P3 in PGn , we have that

|N(P3)| = 3n − 7. (7)

Lemma 3.24. (See Zhou and Xu [53].) Let F ⊂ V (PGn) with |F | � 3n − 8 and n � 5. If PGn − F is disconnected, then it has either two 
components, one of which is an isolated vertex or an edge, or three components, two of which are isolated vertices.

Zhou and Xu [53] determined tc(PGn) = 3n − 7 for n � 5. However, κ2(PGn) has not been determined so far. By Theo-
rem 2.4, we immediately obtain the following result which contains the above results.

Theorem 3.25. tc(PGn) = 3n − 7 = κ2(PGn) for n � 5.

Proof. Since PGn contains no C3, t = min{|N(T )| : T = P3 or C3 in PGn} = |N(P3)|, where P3 is any 3-path in PGn . Let 
F = N(P3). Then F is a vertex-cut of PGn and |F | = t = 3n − 7 by (7). To prove the theorem, we only need to verify that PGn

satisfies conditions in Theorem 2.4.
(a) If |F | � t − 1 then, by Lemma 3.24, PGn − F has a large component and small components which contain at most two 

vertices in total.
(b) Since PGn contains no C4, �(PGn) = 1. Since PGn is (n − 1)-regular and contains no 5-cycle, n − 1 � 4 = 2�(PGn) + 2.
(c) It is easy to check that n ! − n(t − 1) − 4 = n ! − n(3n − 8) − 4 > 0 for n � 5.
Thus, PGn satisfies all conditions in Theorem 2.4, and so tc(PGn) = 3n − 7 = κ2(PGn). The theorem follows. �

3.9. Hierarchical hypercubes

It is well-known that an n-dimensional cube-connected-cycle CCCn can be obtained by replacing each vertex of a hyper-
cube Q n with an n-cycle so that they are connected to the n neighbors of the original vertex in Q n . Actually, a hierarchical 
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Fig. 13. A hierarchical hypercube HHC6.

hypercube network is a modification of a CCCn in which the cycle is replaced with a hypercube [38]. An n-dimensional 
hierarchical cube HHCn can be constructed as follows: start with a hypercube Q 2m and then replace each vertex of it with 
a hypercube Q m .

HHCn is an (m + 1)-regular bipartite graph of order 2n , where n = 2m + m. An example is shown in Fig. 13, where m = 2
and n = 6.

It is easy to verify that for any two distinct vertices x and y in HHCn ,

|N(x) ∩ N(y)|
⎧⎨
⎩

= 0, if d(x, y) ≥ 3;
� 2, if d(x, y) = 2;
= 0, if d(x, y) = 1,

(8)

and that

min{|N(P3)| : P3 is a 3-path in HHCn} = 3m − 2. (9)

Lemma 3.26. (See Zhou et al. [50].) Let F be a set of faulty vertices in HHCn (n = 2m + m, m � 2) with |F | � 3m − 3. If HHCn − F is 
disconnected, then it either has two components, one of which is an isolated vertex or an isolated edge, or has three components, two 
of which are isolated vertices.

Zhou et al. [50] showed that κ(2)
0 (HHCn) = 3m − 2 and tc(HHCn) = 3m − 2 for n = 2m + m and m � 2, respectively. By 

Theorem 2.4, we immediately obtain the following theorem which contains the above results for m � 5.

Theorem 3.27. tc(HHCn) = 3m − 2 = κ
(2)
0 (HHCn) for n = 2m + m and m � 5.

Proof. Since HHCn contains no C3, t = min{|N(T )| : T = P3 or C3 in HHCn} = |N(P3)|, where P3 is a 3-path in HHCn . Let 
F = N(P3). Then F is a vertex-cut of HHCn and |F | = t = 3m − 2 by (7). To prove the theorem, we only need to verify that 
HHCn satisfies conditions in Theorem 2.4.

(a) If |F | � t − 1 then, by Lemma 3.26, HHCn − F has a large component and small components which contain at most 
two vertices in total.

(b) By (8), �(HHCn) = 2. Since HHCn is bipartite, it contains no 5-cycle, and so m + 1 � 6 = 2�(HHCn) + 2.
(c) It is easy to check that 22m+m − (m + 2)(t − 1) − 4 = 22m+m − (m + 2)(3m − 3) − 4 > 0 for m � 1.
Thus, HHCn satisfies all conditions in Theorem 2.4, and so tc(HHCn) = 3m − 2 = κ2(HHCn). The theorem follows. �

4. Conclusions

The conditional diagnosability tc(G) under the comparison model and the 2-extra connectivity κ2(G) are two important 
parameters to measure ability of diagnosing faulty processors and fault-tolerance in a multiprocessor system G with the 
presence of failing processors. Although these two parameters have attracted considerable attention and been determined 
for many classes of well-known graphs in recent years, but are obtained independently. This paper establishes the close 
relationship between these two parameters by proving tc(G) = κ2(G) for a regular graph G with some acceptable conditions. 
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As applications, the conditional diagnosability and the 2-extra connectivity are determined for some well-known classes 
of vertex-transitive graphs such as star graphs, (n, k)-star graphs, (n, k)-arrangement graphs, Cayley graphs obtained from 
transposition generating trees, k-ary n-cube networks, dual-cubes, pancake graphs and hierarchical hypercubes. Furthermore, 
many known results about these networks are obtained directly.

Under the comparison diagnosis model, the diagnosability and the 1-extra connectivity should have some relationships. 
On the other hand, in addition to the comparison diagnosis model, there are several other diagnosis models such as the 
PMC model. Under the PMC model, what is the relationship between the diagnosability or the conditional diagnosability 
and the h-extra connectivity for some h? These will be explored in future.
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