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Abstract

The pebbling number f(G) of a graphG is the least p such that, no matter
how p pebbles are placed on the vertices of G, we can move a pebble to
any vertex by a sequence of moves, each move taking two pebbles off one
vertex and placing one on an adjacent vertex. It is conjectured that for
all graphs G and H , we have f(G × H) ≤ f(G)f(H). If the graph G
satisfies the odd 2-pebbling property, we will prove that f(C4k+3 ×G) ≤
f(C4k+3)f(G) and f(M(C2n)×G) ≤ f(M(C2n))f(G), where C4k+3 is the
odd cycle of order 4k + 3 and M(C2n) is the middle graph of the even
cycle C2n.

1 Introduction

Pebbling in graphs was first introduced by Chung ([2]). Consider a connected graph
with a fixed number of pebbles distributed on its vertices. A pebbling move consists
of the removal of two pebbles from a vertex and the placement of one pebble on an
adjacent vertex. The pebbling number of a vertex v, the target vertex, in a graph
G is the smallest number f(G, v) with the property that, from every placement of
f(G, v) pebbles on G, it is possible to move one pebble to v by a sequence of pebbling
moves. The t-pebbling number of v in G is defined as the smallest number ft(G, v)
such that from every placement of ft(G, v) pebbles, it is possible to move t pebbles
to v. Then the pebbling number and the t-pebbling number of G are the smallest
numbers, f(G) and ft(G), such that from any placement of f(G) pebbles or ft(G)
pebbles, respectively, it is possible to move one or t pebbles, respectively, to any
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specified target vertex by a sequence of pebbling moves. Thus, f(G) and ft(G) are
the maximum values of f(G, v) and ft(G, v) over all vertices v.

Chung ([2]) defined the 2-pebbling property of a graph, and Wang ([9]) extended
her definition to the odd 2-pebbling property as follows.

Suppose p pebbles are located on G. Let l be the number of occupied vertices
(vertices with at least one pebble), and r be the number of vertices with an odd
number of pebbles. Then to say G satisfies the 2-pebbling property means that two
pebbles can be moved to any vertex of G whenever p > 2f(G) − l, and the odd
2-pebbling property means two pebbles can be moved to any vertex of G whenever
p > 2f(G) − r. It is clear that any graph which satisfies the 2-pebbling property
also satisfies the odd 2-pebbling property. It is known that both trees and cycles
have the 2-pebbling property ([7, 8]). The graph L, called Lemke graph ([9]), is
the minimal graph that does not satisfy the 2-pebbling property; this is shown in
Figure 1. It is not hard to see that the pebbling number of this Lemke graph is
f(L) = 8. If we place 13 pebbles on the vertices of L as shown in Figurer 1, then
we have p+ l = 13 + 5 > 16 = 2f(L), but we cannot move two pebbles to v0.
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Figure 1: Lemke graph (L)

The middle graph of a graph G, denoted by M(G), is obtained from G by in-
serting a new vertex into each edge of G, and joining the new vertices by an edge
if the two corresponding edges share the same vertex of G. For any two graphs G
and H , we define the Cartesian product G × H to be the graph with vertex set
V (G) × V (H) and edge set the union of {((a, v), (b, v))|(a, b) ∈ E(G), v ∈ V (H)}
and {((u, x), (u, y))|u ∈ V (G), (x, y) ∈ E(H)}.

The following conjecture ([2]), by Ronald Graham, suggests a constraint on the
pebbling number of the product of two graphs.

Conjecture 1.1 (Graham) For any two graphs G and H, f(G×H) ≤ f(G)f(H).
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While this conjecture is still open, many successful results in support have ap-
peared. It has been proven that f(G×H) ≤ f(G)f(H) for the following cases:

(1) G is a tree and H is a graph with the odd 2-pebbling property ([6]), (and in
particlar, H is a tree);

(2) G is an even cycle and H is a graph with the odd 2-pebbling property;

(3) both G and H are cycles ([5]);

(4) G is a complete or complete bipartite graph and H is a graph with the 2-
pebbling property ([2, 3]);

(5) both G and H are fan graphs ([4]);

(6) both G and H are wheel graphs ([4]);

(7) G is a thorn graph of the complete graph with every pi > 1 and H is a graph
with the 2-pebbling property ([10]);

(8) G is the middle graph of an odd cycle and H is the middle graph of a cycle
([11]).

In Section 2, we show that Graham’s conjecture holds for the product of the odd
cycle C4k+3 with a graph with the odd 2-pebbling property.

In Section 3, we show that Graham’s conjecture holds for the product of the
middle graph of an even cycle with a graph with the odd 2-pebbling property.

Given a distribution of pebbles on G, let p(K) be the number of pebbles on a
subgraph K of G, p(v) be the number of pebbles on vertex v of G and l(K) (r(K))
to be the number of vertices of K with at least one pebble (with an odd number of
pebbles). Moreover, denote by p̃(K) and p̃(v) the number of pebbles on K and v
after some sequence of pebbling moves, respectively.

Let T be a tree and let v be a vertex of T . Let �Tv be the rooted tree obtained from
T by directing all edges towards v, which becomes the root. A path-partition is a set
of non-overlapping directed paths the union of which is �Tv. The path-size sequence
of a path-partition P1, . . . , Pn, is an n-tuple (a1, . . . , an), where ai is the length of
Pi (i.e., the number of edges in it), with a1 ≥ a2 ≥ . . . ≥ an. A path-partition is
said to majorize another if the nonincreasing sequence of its path size majorizes that
of the other. That is, (a1, a2, . . . , ar) > (b1, b2, . . . , bt) if and only if ai > bi where
i = min{j : aj �= bj}. A path-partition of a tree T is said to be maximum if it
majorizes all other path-partitions.

The following two lemmas will be the key tools in the next sections.

Lemma 1.2 ([2]) The pebbling number ft(T, v) for a vertex v in a tree T is t2a1 +
2a2 + · · · + 2ar − r + 1, where a1, a2, . . . , ar is the sequence of the path sizes in a
maximum path-partition of �Tv.
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Lemma 1.3 ([6]) If T is a tree, and G satisfies the odd 2-pebbling property, then
f(T × G, (x, g)) ≤ f(T, x)f(G) for every vertex g in G. In particular, if Pm =
x1x2 . . . xm is a path, then

f(Pm ×G, (xi, g)) ≤ f(Pm, xi)f(G) = (2i−1 + 2m−i − 1)f(G) ≤ 2m−1f(G).

2 The case C4k+3 ×G

In 2003, Herscovici [5] proved the following two theorems about cycles.

Theorem 2.1 ([5]) If G satisfies the odd 2-pebbling property, then

f(C2n ×G) ≤ f(C2n)f(G) = 2nf(G).

Theorem 2.2 ([5]) Suppose G is a graph with m ≥ 5 vertices which satisfies the odd
2-pebbling property and the following inequality

4f4(G) < 14f(G)− 2(m− 5). (2.1)

Then f(C2n+1 ×G) ≤ f(C2n+1)f(G) for n ≥ 3.

The inequality (2.1) holds for all odd cycles, but does not hold for paths or even
cycles. In this section, we show the following theorem.

Theorem 2.3 If G satisfies the odd 2-pebbling property, then

f(C4k+3 ×G) ≤ f(C4k+3)f(G).

Throughout this section, we use the following notation. Let the vertices of C4k+3

be {v0, v1, . . . , v4k+1, v4k+2} in order. We define the vertex subsets A and B of C4k+3

by
A = {v1, v2, . . . , v2k}, B = {v2k+3, v2k+4, . . . , v4k+2}

For simplicity, among C4k+3 × G, let pi = p(vi × G), ri = r(vi × G), p(A) =
p(A × G), p(B) = p(B × G). Thus, the number of pebbles in a distribution on
C4k+3 ×G is given by p0 + p(A) + p(B) + p2k+1 + p2k+2.

Lemma 2.4 ([7]) The pebbling numbers of the odd cycles C4k+1 and C4k+3 are

f(C4k+1) =
22k+2 − 1

3
= 1 + 22 + 24 + · · ·+ 22k.

f(C4k+3) =
22k+3 + 1

3
= 1 + 21 + 23 + · · ·+ 22k+1.



Z.-J. XIA ET AL. /AUSTRALAS. J. COMBIN. 65 (2) (2016), 124–136 128

Lemma 2.5 Let P2k = x1x2 . . . x2k be a path with length 2k − 1, and let g be some
vertex in a graph G which satisfies the odd 2-pebbling property. Then, from any
arrangement of (21 + 23 + · · ·+ 22k−1)f(G) pebbles on P2k × G, it is possible to put
a pebble on every (xi, g) at once, where i = 1, 3, . . . , 2k − 1.

Proof. We use induction on k, where the case k = 1 is trivial.

Suppose that there are (21 + 23 + · · · + 22k−1)f(G) pebbles on P2k × G. Then
there are at least (21 + 23 + · · · + 22k−3)f(G) pebbles on {x3, x4, . . . , x2k} × G (or
on {x1, x2, . . . , x2k−2} ×G). By induction, we can use these pebbles to put one peb-
ble to each of these vertices {(x3, g), (x5, g), . . . , (x2k−1, g)} (or {(x1, g), (x3, g), . . . ,
(x2k−3, g)}). By Lemma 1.2, f(P2k, x1) = 22k−1, f(P2k, x2k−1) = 22k−2 + 1 ≤ 22k−1.
By Lemma 1.3, with the remaining 22k−1f(G) pebbles, one pebble can be moved to
(x1, g)(or (x2k−1, g)), and we are done.

Similarly, we can obtain the following lemma.

Lemma 2.6 Let P2k+1 = x1x2 . . . x2k+1 be a path with length 2k, and let g be some
vertex in a graph G which satisfies the odd 2-pebbling property. Then, from any
arrangement of (22 + 24 + · · ·+ 22k)f(G) pebbles on P2k+1 × G, it is possible to put
a pebble on every (xi, g) at once, where i = 1, 3, . . . , 2k − 1.

From the proof of Theorem 3.2 in [5], it follows that:

Lemma 2.7 ([5]) If p(A) ≥ 22k−1f(G), then with f(C4k+3)f(G) pebbles on C4k+3 ×
G, one pebble can be moved to (v0, g).

Proof of Theorem 2.3:
Suppose that there are f(C4k+3)f(G) pebbles located on C4k+3 ×G. Then

p0 + p2k+1 + p2k+2 + p(A) + p(B) = (1 + 21 + 23 + · · ·+ 22k+1)f(G). (2.2)

Without loss of generality, we may assume that p(A) ≥ p(B) and the target
vertex is (v0, g). The case k = 0 is trivial, so we assume that k ≥ 1.

Note that the vertices of B ∪ {v2k+2} ∪ {v0} form a path isomorphic to P2k+2. It
follows from Lemma 1.3 that if we move as many pebbles as possible from v2k+1×G
to v2k+2 ×G, then one pebble could be moved to (v0, g) unless

p2k+1 − r2k+1

2
+ p2k+2 + p(B) + p0 < 22k+1f(G). (2.3)

From Lemma 2.7, we could move one pebble to (v0, g) unless

p(A) < 22k−1f(G). (2.4)

If (2.2) and (2.3) hold, then

p2k+1 + r2k+1

2
+ p(A) > (1 + 21 + 23 + · · ·+ 22k−1)f(G). (2.5)
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From (2.4) and (2.5), we obtain p2k+1 + r2k+1 > 2f(G), and

p2k+1 − (2f(G)− r2k+1 + 2)

2
+ p(A) ≥ (21 + 23 + · · ·+ 22k−1)f(G).

This implies that we can move enough pebbles from v2k+1 ×G to A×G so that
the number of the pebbles on A × G will reach (21 + 23 + · · · + 22k−1)f(G), and at
the same time, h2k+1 pebbles are kept on v2k+1 ×G, where

h2k+1 =

{
2f(G)− r2k+1 + 2, if r2k+1 ≥ 2,

2f(G), if r2k+1 ≤ 1.

Assume that 2x pebbles are taken away from v2k+1×G such that there are x pebbles
that reach A×G, i.e.,

x+ p(A) = (21 + 23 + · · ·+ 22k−1)f(G). (2.6)

Step 1. With the h2k+1 pebbles on v2k+1 ×G, we can move one pebble to (v2k, g).

Now there are at least p2k+1 − 2x− h2k+1 pebbles on v2k+1 ×G, that is,

p̃2k+1 = p2k+1 − 2x− h2k+1

= p2k+1 + 2p(A)− (22 + · · ·+ 22k)f(G)− h2k+1.

So the remaining pebbles on {v0, v2k+1, v2k+2} ×G are

p0 + p2k+2 + p̃2k+1

= p0 + p2k+2 + p2k+1 + 2p(A)− (22 + · · ·+ 22k)f(G)− h2k+1

≥ p0 + p2k+2 + p2k+1 + p(A) + p(B)− (22 + · · ·+ 22k)f(G)− h2k+1

≥ (1 + 22 + 24 + · · ·+ 22k)f(G).

Now p0 < f(G) (otherwise one pebble can be moved to (v0, g), and we are done),
so

p2k+2 + p̃2k+1 ≥ (22 + 24 + · · ·+ 22k)f(G). (2.7)

Step 2. It follows from (2.6) and Lemma 2.5 that with (21+23+· · ·+22k−1)f(G) peb-
bles on A×G, we can put one pebble to each vertex of {(v1, g), (v3, g), . . . , (v2k−1, g)}.
Step 3. From the inequality (2.7) and Lemma 2.6, it follows that, with (22 + 24 +
· · ·+ 22k)f(G) pebbles on {v2k+1, v2k+2} ×G, we can put one pebble to each vertex
of {(v2, g), (v4, g), . . . , (v2k, g)}.

The above three steps imply that at least one pebble can be moved to (v0, g).
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3 The case M(C2n)×G

Throughout this section, we will use the following notation (see Figure 2).

Let C2n = v0v1 . . . v2n−1v0. The middle graph of C2n, denoted by M(C2n), is ob-
tained from C2n by inserting ui into viv(i+1) mod (2n), and connecting uiu(i+1) mod (2n)

(0 ≤ i ≤ 2n − 1). The graph M∗(C2n) is obtained from M(C2n) by removing the
edges viui for 1 ≤ i ≤ n− 1, un−1un , ujvj+1 for n ≤ j ≤ 2n− 2 and u0u2n−1.

We define the vertex subsets A and B of V (M∗(C2n)) by

A = {v1, v2, . . . , vn−1, u0, u1, . . . , un−1},

B = {vn+1, vn+2, . . . , v2n−1, un, un+1, . . . , u2n−1}.
For simplicity, among M(C2n) × G (or M∗(C2n) × G), let pi = p(vi × G), ri =

r(vi ×G), qi = p(ui ×G), si = r(ui ×G), p(A) = p(A×G), p(B) = p(B ×G).
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Figure 2: The graphs M(C6) and M∗(C6).

Lemma 3.1 ([6]) Trees satisfy the 2-pebbling property.

Lemma 3.2 ([11]) If n ≥ 2, then f(M(C2n)) = 2n+1 + 2n− 2.

From Lemma 1.2 and the proof of Lemma 3.2, it is not hard to obtain the fol-
lowing.

Lemma 3.3 If n ≥ 2, then f(M∗(C2n), v0) = 2n+1 + 2n− 2.

Proposition 3.4 M(C2n) satisfies the 2-pebbling property.



Z.-J. XIA ET AL. /AUSTRALAS. J. COMBIN. 65 (2) (2016), 124–136 131

Proof. By symmetry, it is clear that

f(M(C2n)) = max{f(M(C2n), v0), f(M(C2n), u0)}.
Assume that the target vertex is v0, and p + l ≥ 2f(M(C2n)) + 1. Since l ≤ 4n ≤
f(M(C2n)), we have p ≥ f(M(C2n)) + 1. Thus if there is one pebble located on v0,
then with the remaining f(M(C2n)) pebbles, a second pebble can be moved to v0.

Now, suppose that p(v0) = 0. We will prove that with the same arrangement of
pebbles on M∗(C2n), two pebbles can be moved to v0.

Let H = M∗(C2n), C = H [A \ v1], and D = H [B \ v2n−1]. Then by Lemma 1.2,

f(C) = f(D) = 1n−1 + n− 2,

f(C ∪ {v0}) = f(D ∪ {v0}) = 2n + n− 2,

f(C ∪ {vn}) = f(D ∪ {vn}) = 2n + n− 2.

We consider the worst case, which is p(v1) = l(v1) = p(v2n−1) = l(v2n−1) = 1
(where l(vi) = 1 if there is at least one pebble located on vi and 0 otherwise), then

p(C) + l(C) + p(D) + l(D) + pn + ln + 4 ≥ 2n+2 + 4n− 3,

where pn = p(vn), ln = l(vn).

If p(C)+l(C) > 2n+1+2n−4, then by Lemma 3.1, two pebbles can be moved to v0.
Thus we may assume that p(C)+l(C) ≤ 2n+1+2n−4 and p(D)+l(D) ≤ 2n+1+2n−4.
We will show that both u0 and u2n−1 will get at least two pebbles by a sequece of
pebbling moves.

Let p′n = 2n+1 + 2n − 4 − p(C) − l(C) ≥ 0, and paint all the pebbles on C red
along with the p′n pebbles on vn. Similarly, paint the pebbles on D black, along with
p′′n = 2n+1+2n−4−p(D)− l(D) pebbles on vn. Since pn ≥ p′n+p′′n, there are enough
pebbles on vn to do this.

Now either p(C)+ l(C) = 2n+1+2n−4 or there are red pebbles on vn. If equality
holds, then p(C) ≥ 2n + n − 2, then two red pebbles can be moved to u0. If there
are red pebbles on vn, then l′n = 1, and the red pebbles satisfy

p(C) + l(C) + p′n + l′n = 2n+1 + 2n− 3,

and again two red pebbles can be moved to u0. Similarly, two black pebbles can be
moved to u2n−1, so we can move one red pebble and one black pebble to v0.

If the target vertex is u0, then a similar argument can show that there are at
least two pebbles which can be moved to u0.

Lemma 3.5 ([5]) Let Pk = x1x2 . . . xk be a path, and let g be some vertex in a
graph G which satisfies the odd 2-pebbling property. Then, from any arrangement of
(2k − 1)f(G) pebbles on Pk ×G, it is possible to put a pebble on every (xi, g) at once
(1 ≤ i ≤ k).
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Lemma 3.6 Let Pk = x1x2 . . . xk be a path (k ≥ 2), and g be some vertex in a
graph G which satisfies the odd 2-pebbling property. Then from any arrangement of
(2k − 2)f(G) pebbles on xk ×G, it is possible to put a pebble on every (xi, g) at once
(1 ≤ i ≤ k − 1).

Proof. We use induction on k, where the case k = 2 is trivial. If it is true for k− 1,
suppose there are (2k − 2)f(G) pebbles on xk × G, we use (2k−1 − 2)f(G) pebbles
to put a pebble on every (xi, g) at once (2 ≤ i ≤ k − 1), and with the remaining
2k−1f(G) pebbles we can put one pebble on (x1, g).

Lemma 3.7 Let Tk be the graph obtained from Pk by joining xi to a new vertex yi
(1 ≤ i ≤ k − 1), where Pk = x1x2 . . . xk is a path (k ≥ 2). Let g be some vertex in
a graph G which satisfies the odd 2-pebbling property. Then for any arrangement of
(2k + k − 3)f(G) pebbles on Tk ×G, one of the following will occur

(1) we can put a pebble on every (xi, g) at once (1 ≤ i ≤ k − 1);
(2) we can put two pebbles on (x1, g).

· · ·
x

1
x

2
x

k−2
x

k−1 x
k

y
1

y
2

y
k−2

y
k−1

Figure 3: The graph Tk in Lemma 3.7.

Proof. When k = 2, by Lemma 1.2 and Lemma 1.3, with 3f(G) pebbles on T2 ×G,
one pebble can be moved to the vertex (x1, g).

Suppose that there are (2k + k − 3)f(G) pebbles on Tk × G for k ≥ 3. Let
T ′
k = Tk \ {x1, y1}. Clearly, T ′

k
∼= Tk−1.

If p(T ′
k ×G) < (2k−1+ k− 4)f(G), then p(Px1y1 ×G) ≥ (2k−1+1)f(G) ≥ 5f(G).

Then clearly, we can move two pebbles to (x1, g).
Suppose p(T ′

k×G) ≥ (2k−1+k−4)f(G), and pk ≥ (2k−1−2)f(G). By Lemma 3.6,
using (2k−1 − 2)f(G) pebbles on xk × G, we can put a pebble on every (xi, g) for
2 ≤ i ≤ k − 1. With the remaining (2k−1 + k − 1)f(G) pebbles, by Lemma 1.2 and
Lemma 1.3, we can put one pebble on (x1, g) for f(Tk×G, (x1, g)) ≤ f(Tk, x1)f(G) =
(2k−1 + k − 1)f(G).

Suppose p(T ′
k × G) ≥ (2k−1 + k − 4)f(G), and pk < (2k−1 − 2)f(G). We use

induction in this case, while the case k = 2 holds.

Let ry be the number of vertices with an odd number of pebbles in {y2, y3, . . . ,
yk−1} × G. We only need to take off ry pebbles from {y2, y3, . . . , yk−1} × G so that
each vertex in it has an even number of pebbles. It is clear that ry ≤ (k−2)|V (G)| ≤
(k − 2)f(G), so ry + pk < (2k−1 + k − 4)f(G). So we can choose (2k−1 + k − 4)f(G)
pebbles from T ′

k ×G which contains all pebbles on xk ×G, so that the number of the
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remaining pebbles on each vertex of {y2, y3, . . . , yk−1}×G is even except at most one
vertex. By induction, with these (2k−1 + k − 4)f(G) pebbles we can put one pebble
on every (xi, g) at once for 2 ≤ i ≤ k− 1 or move two pebbles to (x2, g) and then at
least one pebble can be moved to (x1, g).

Now we prove that with the remaining (2k−1 + 1)f(G) pebbles, one pebble can
be moved to (x1, g).

Let p̃y =
k−1∑
i=2

p̃(yi × G). Let P ′ denote the path y1x1x2 . . . xk−1, and P ′′ denote

the path x1x2 . . . xk−1.

Since the number of the remaining pebbles on each vertex of {y2, y3, . . . , yk−1}×G
is even except at most one vertex, then we can move

⌊
1
2
p̃y
⌋
pebbles from the vertices

of {y2, y3, . . . , yk−1} ×G to {x2, x3, . . . , xk−1} ×G.

Case 1. p̃y ≤ 2k−1f(G)− 1. Then

p̃(P ′ ×G) = (2k−1 + 1)f(G)− p̃y +

⌊
1

2
p̃y

⌋
≥ (2k−2 + 1)f(G).

By Lemma 1.3, f(P ′ × G, (x1, g)) ≤ f(P ′, x1)f(G) = (2k−2 + 1)f(G), so one pebble
can be moved to (x1, g).

Case 2. p̃y ≥ 2k−1f(G). Then

p̃(P ′′ ×G) ≥
⌊
1

2
p̃y

⌋
≥ 2k−2f(G).

By Lemma 1.3, f(P ′′ × G, (x1, g)) ≤ f(P ′′, x1)f(G) = 2k−2f(G), so one pebble can
be moved to (x1, g).

Theorem 3.8 If G satisfies the odd 2-pebbling property, then

f(M(C2n)×G) ≤ f(M(C2n))f(G) = (2n+1 + 2n− 2)f(G).

Proof. Suppose that there are (2n+1 + 2n− 2)f(G) pebbles placed on the vertices
of M(C2n) × G. We will show that at least one pebble can be moved to the target
vertex.

By symmetry, it is clear that

f(M(C2n)×G) = max{f(M(C2n)×G, (v0, g)), f(M(C2n)×G, (u0, g))}.
So we only need to distinguish two cases.

Case 1. The target vertex is (v0, g).

Subcase 1.1. pn + rn ≤ 2f(G).

We remove all the pebbles off vn ×G such that

p̃((M∗(C2n) \ vn)×G) =
pn − rn

2
+ p(A) + p(B) + p0

= −1

2
(pn + rn) + pn + p(A) + p(B) + p0

≥ (2n+1 + 2n− 3)f(G).
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By Lemma 1.2, f(M∗(C2n) \ vn, v0) = 2n+1 + 2n− 3. According to Lemma 1.3, one
pebble can be moved to (v0, g).

Subcase 1.2. pn + rn > 2f(G).

Then we can move two pebbles to (vn, g). Note that pn and rn are of the same-
parity, we keep 2f(G)− rn + 2 pebbles on vn × G so that at least two pebbles still
can be moved to (vn, g), and move the rest pebbles to A×G. So

p̃(A×G) =
1

2
(pn − (2f(G)− rn + 2)) + p(A) =

pn + rn
2

− f(G)− 1 + p(A). (3.1)

By Lemma 1.2, f(M∗(C2n)[B, v0], v0) = 2n+n−1, so if we move as many pebbles
as possible from vn ×G to B ×G, then one pebble can be moved to (v0, g) unless

pn − rn
2

+ p(B) + p0 ≤ (2n + n− 1)f(G)− 1. (3.2)

If (3.2) holds, then

p̃(A×G) = 1
2
(pn + rn)− f(G)− 1 + p(A)

≥ pn + p(A) + p(B) + p0 − f(G)− (2n + n− 1)f(G)
= (2n+1 + 2n− 2)f(G)− (2n + n)f(G)
= (2n + n− 2)f(G).

(3.3)

It follows from Lemma 1.2 that

f(M∗(C2n) \ {vn, un−1, vn−1}, v0) = 3 · 2n−1 + 2n− 4.

Thus if we move as many pebbles as possible from vn × G to un × G, and from
vn−1 ×G to un−2 ×G, then one pebble can be moved to (v0, g) unless

1
2
(pn − rn) +

1
2
(pn−1 − rn−1) + p(B) + p0 + (p(A)− pn−1 − qn−1)
≤ (3 · 2n−1 + 2n− 4)f(G)− 1.

(3.4)

If (3.4) holds, then 1
2
(pn + rn) +

1
2
(pn−1 + rn−1) + qn−1 ≥ (2n−1 + 2)f(G) + 1. Thus(

1

2
(pn + rn)− f(G)− 1 + qn−1

)
+

(
1

2
(pn−1 + rn−1)− f(G)− 1

)
≥ 2n−1f(G)− 1.

(3.5)

Subcase 1.2.1. 1
2
(pn + rn)− f(G)− 1 + qn−1 ≥ f(G).

Then from (3.3) it follows that, with f(G) pebbles on un−1 × G, one pebble
can be moved to (un−1, g); and from Lemma 3.7 it follows that, with the remaining
(2n+n−3)f(G) pebbles, we can put one pebble to each (ui, g) for 0 ≤ i ≤ n−2 or put
two pebbles to (u0, g), we can move one more pebble to (un−1, g) with 2f(G)−rn+2
pebbles on vn ×G, so one pebble can be moved to (v0, g).

Subcase 1.2.2. 1
2
(pn + rn)− f(G)− 1 + qn−1 < f(G).
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Then from (3.5), we have

pn−1 + rn−1

2
− f(G)− 1 ≥ (2n−1 − 1)f(G). (3.6)

So we can keep 2f(G) − rn−1 + 2 pebbles on vn−1 × G, so that one pebble can be
moved to (un−2, g), and moving no less than (2n−1 − 1)f(G) pebbles to un−2 × G.
With these pebbles, by Lemma 3.5, we can put one pebble to every (ui, g) at once
(0 ≤ i ≤ n− 2). So one pebble can be moved to (v0, g).

Case 2. The target vertex is (u0, g).

Let M ′(C2n) be the graph obtained from M(C2n) by removing the edges uivi+1

for 0 ≤ i ≤ n− 2 and ujvj for n + 2 ≤ j ≤ 2n− 1 and unvn, unvn+1, u0v0.

Let A′ = {u1, u2, . . . , un−1, v1, v2, . . . , vn} and B′ = {un+1, un+2, . . . , u2n−1, vn+1,
vn+2, . . . , v2n−1, v0}.

It is clear thatM ′(C2n)[A
′] ∼= M∗(C2n)[A], andM ′(C2n)[B

′, u0] ∼= M∗(C2n)[B, v0].
We only need to prove that one pebble can be moved from M ′(C2n)×G to (u0, g).

Subcase 2.1. qn + sn ≤ 2f(G). By a similar process as before, one pebble can be
moved to (u0, g).

Subcase 2.2. qn + sn > 2f(G).

Then by a similar process as before, we can keep 2f(G) − sn + 2 pebbles on
un×G so that two pebbles can be moved to (un, g), and move the remaining pebbles
to A′ ×G. So

p̃(A′ ×G) =
qn − (2f(G)− sn + 2)

2
+ p(A′)

=
qn + sn

2
− f(G)− 1 + p(A′).

Similarly, if we move as many as possible pebbles from un × G to B′ × G, then
one pebble can be moved from B′ ×G to (u0, g), unless

p̃(A′ ×G) ≥ (2n + n− 2)f(G).

According to Lemma 3.7, we can put one pebble on (ui, g) at once for 1 ≤ i ≤ n−1
or put two pebbles on (u1, g). With 2f(G) − sn + 2 pebbles on un × G, one more
pebble can be moved to (un−1, g). So one pebble can be moved to (u0, g).
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