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Let Gn be an n-dimensional recursive network. The h-embedded connectivity ζh(Gn) (resp. 
edge-connectivity ηh(Gn)) of Gn is the minimum number of vertices (resp. edges) whose 
removal results in disconnected and each vertex is contained in an h-dimensional subnet-
work Gh . This paper determines ζh and ηh for the hypercube Q n and the star graph Sn , 
and η3 for the bubble-sort network Bn .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. 
An interconnection network can be modeled by a graph G = (V , E), where V is the set of processors and E is the set of 
communication links in the network.

The connectivity κ(G) (resp. edge-connectivity λ(G)) of G is defined as the minimum number of vertices (resp. edges) 
whose removal from G results in a disconnected graph. The connectivity κ(G) and edge-connectivity λ(G) of a graph G
are two important measurements for fault tolerance of the network since the larger κ(G) or λ(G) is, the more reliable the 
network is.

However, the definitions of κ(G) and λ(G) are implicitly assumed that any subset of system components is equally 
likely to be faulty simultaneously, which may not be true in real applications, thus they underestimate the reliability of 
the network. To overcome such a shortcoming, Harary [2] introduced the concept of conditional connectivity by appending 
some requirements on connected components, Latifi et al. [3] specified requirements and proposed the concept of the 
restricted h-connectivity. These parameters can measure fault tolerance of an interconnection network more accurately than 
the classical connectivity. The concepts stated here are slightly different from theirs.
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Fig. 1. The n-cubes Q 1, Q 2, Q 3 and Q 4.

For a graph G , δ(G) denotes its minimum degree. A subset S ⊂ V (G) (resp. F ⊂ E(G)) is called an h-vertex-cut (resp. 
h-edge-cut), if G − S (resp. G − F ) is disconnected and δ(G − S) ≥ h. The h-super connectivity κh(G) (resp. h-super edge-
connectivity λh(G)) of G is defined as the cardinality of a minimum h-vertex-cut (resp. h-edge-cut) of G .

For any graph G and any integer h, determining κh(G) and λh(G) is quite difficult, no polynomial algorithm to compute 
them has been yet known so far. In fact, the existence of κh(G) and λh(G) is an open problem for h ≥ 1. Only a little 
knowledge of results has been known on κh and λh for some special classes of graphs for any h, such as the hypercube Q n

and the star graph Sn .
In order to facilitate the expansion of the network, and to use the same routing algorithm or maintenance strategy as 

used in the original one, large-scale parallel computing systems always take some networks of recursive structures as un-
derlying topologies, such as the hypercube Q n , the star graph Sn , the bubble-sort graph Bn and so on. Since the presence of 
vertex and/or edge failures maybe disconnects the entire network, one hopes that every remaining component has undam-
aged subnetworks (i.e., smaller networks with same topological properties as the original one). Under this consideration, 
Yang et al. [12] proposed the concept of embedded connectivity.

Let Gn be an n-dimensional recursive network. For a positive integer h with h ≤ n − 1, there is a sub-network Gh ⊂ Gn . 
Let δh = δ(Gh).

A subset F ⊂ V (Gn) (resp. F ⊂ E(Gn)) is an h-embedded vertex-cut (resp. h-embedded edge-cut) if Gn − F is disconnected 
and each vertex is contained in an h-dimensional subnetwork Gh . The h-embedded connectivity ζh(Gn) (resp. edge-connectivity
ηh(Gn)) of Gn is defined as the cardinality of a minimum h-embedded vertex-cut (resp. h-embedded edge-cut) of Gn .

By definition, if S is an h-embedded vertex-cut of Gn with |S| = ζh(Gn), then Gn − S contains a sub-network Gh , and 
so δ(Gn − S) ≥ δh , which implies that S is a δh-vertex-cut of Gn . Thus, κδh (Gn) ≤ |S| = ζh(Gn). Similarly, λδh (Gn) ≤ ηh(Gn). 
These facts are useful and we write them as the following lemma.

Lemma 1.1. For h ≤ n − 1, ζh(Gn) ≥ κδh (Gn) if ζh(Gn) exists, and ηh(Gn) ≥ λδh (Gn) if ηh(Gn) exists.

Using Lemma 1.1, for a star graph Sn and a bubble-sort graph Bn , Yang et al. [12,13] determined ζ2(Sn) = 2n − 4 for 
n ≥ 3, η2(Sn) = 2n − 4 for n ≥ 3 and η3(Sn) = 6(n − 3) for n ≥ 4; and ζ2(Bn) = 2n − 4 for n ≥ 3. In this paper, we will 
determine ζh and ηh for Q n and Sn for any h ≤ n − 1 and determine η3(Bn).

The rest of the paper is organized as follows. In Section 2, we determine ζh(Q n) = 2h(n − h) for h ≤ n − 2 and ηh(Q n) =
2h(n − h) for h ≤ n − 1. In Section 3, we determine ζh(Sn) = ηh(Sn) = h!(n − h) for 1 ≤ h ≤ n − 1. In Section 4, we determine 
η3(Bn) = 6(n − 3) for n ≥ 4 and point out a flaw in the proof of this conclusion in [13]. A conclusion is in Section 5.

For graph terminology and notation not defined here we follow Xu [10]. For a subset X of vertices in G , we do not 
distinguish X and the induced subgraph G[X].

2. Hypercubes

The hypercube Q n has the vertex-set consisting of 2n binary strings of length n, two vertices being linked by an edge if 
and only if they differ in exactly one position. Hypercubes Q 1, Q 2, Q 3, Q 4 are shown in Fig. 1.
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Fig. 2. The star graphs S2, S3 and S4.

The hypercube Q n is also defined as Cartesian product K2 × K2 ×· · ·× K2 of n complete graph K2’s. Thus, Q n = Q h × Q n−h
for 1 ≤ h ≤ n − 1, and Q n is a Cayley graph with degree n (see Xu [10]). Oh et al. [5] and Wu et al. [7] independently 
determined κh(Q n), and Xu [8] determined λh(Q n).

Lemma 2.1. (See [5,7,8].) κh(Q n) = 2h(n − h) for any h with 0 ≤ h ≤ n − 2, and λh(Q n) = 2h(n − h) for any h with 0 ≤ h ≤ n − 1.

Since δh = δ(Q h) = h, by Lemma 1.1 and Lemma 2.1, the following corollary holds.

Corollary 2.2. ζh(Q n) ≥ 2h(n − h) for any h with 1 ≤ h ≤ n − 2, and ηh(Q n) ≥ 2h(n − h) for any h with 1 ≤ h ≤ n − 1.

Lemma 2.3. ζh(Q n) ≤ 2h(n − h) for any h with 1 ≤ h ≤ n − 2, and ηh(Q n) ≤ 2h(n − h) for any h with 1 ≤ h ≤ n − 1.

Proof. For h ≤ n − 2, let Q n = Q h × Q n−h . Let x be a vertex in Q n−h , N(x) be the neighbor-set of x in Q n−h , and S =
Q h × N(x). Then Q n − S is disconnected, and isomorphic to Q h × (Q n−h − N(x)), so each vertex of Q n − S is in some Q h . 
It follows that ζh(Q n) ≤ |S| = 2h(n − h).

For h ≤ n − 1, Q n = Q h × Q n−h , let F be the set of edges between Q h and Q n − Q h . It is easy to see that Q n − F is 
disconnected, and isomorphic to Q h × (Q n−h − E(y)), where E(y) is the set of edges in Q n−h incident with a vertex y of 
Q n−h . Thus each vertex of Q n − F is in some Q h . It follows that ηh(Q n) ≤ |F | = 2h(n − h). �

Combining Corollary 2.2 with Lemma 2.3, we obtain the following conclusion.

Theorem 2.4. ζh(Q n) = 2h(n − h) for any h with 1 ≤ h ≤ n − 2, and ηh(Q n) = 2h(n − h) for any h with 1 ≤ h ≤ n − 1.

3. Star graphs

For a given integer n with n ≥ 2, let In = {1, 2, . . . , n}, I ′n = {2, . . . , n} and P (n) = {p1 p2 . . . pn : pi ∈ In, pi �= p j, 1 ≤ i �=
j ≤ n}, the set of permutations on In . Clearly, |P (n)| = n !. For p = p1 . . . p j . . . pn ∈ P (n), the digit p j is called the j-th digit 
of p.

The n-dimensional star graph Sn has vertex-set P (n) and has an edge between any two vertices if and only if one can 
be obtained from the other by swapping the 1-th digit and the i-th digit for i ∈ I ′n , that is, two vertices x = p1 p2 . . . pi . . . pn

and y are adjacent if and only if y = pi p2 . . . pi−1 p1 pi+1 . . . pn for some i ∈ I ′n . The star graphs S2, S3, S4 are shown in 
Fig. 2. It is shown that the star graph Sn is a Cayley graph with degree (n − 1) (see Akers and Krishnamurthy [1]).

For a fixed i ∈ In , let S j:i
n denote a subgraph of Sn induced by all vertices whose the j-th digit is i for each j ∈ In . By 

definition, it is easy to see that S j:i
n is isomorphic to Sn−1 for each j ∈ I ′n and S1:i

n is an edgeless graph with (n −1) ! vertices. 
As shown in Fig. 1, S1:1

4 is an edgeless graph with 6 vertices, S j:1
4 is isomorphic to S3 for each j with 2 ≤ j ≤ 4.

There are two different hierarchical structures of Sn depending on different partition methods. The first one is partitioned 
along a fixed dimension, which is well-known and used frequently. The second one is partitioned along a fixed digit in In , 
which is a new structure proposed by Shi et al. [6].
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Lemma 3.1. (Shi et al. [6], 2012.) For a fixed i ∈ In, Sn can be partitioned into n subgraphs S j:i
n , which is isomorphic to Sn−1 for each 

j ∈ I ′n and S1:i
n is an edgeless graph with (n − 1) ! vertices. Moreover, there are (n − 2)! independent edges between S1:i

n and S j:i
n for 

any j ∈ I ′n, and there is no edge between S j1:i
n and S j2:i

n for any j1, j2 ∈ I ′n with j1 �= j2 .

Clearly, S1, S2, S3 are isomorphic to K1, K2, C6, respectively. As shown in Fig. 1, S4 is partitioned along digit 1.

Lemma 3.2. (Li and Xu [4], 2014.) κh(Sn) = λh(Sn) = (h + 1) ! (n − h − 1) for any h with 0 ≤ h ≤ n − 2.

Since δh = δ(Sh) = h − 1, by Lemma 1.1 and Lemma 3.2, the following corollary holds.

Corollary 3.3. ζh(Sn) ≥ h ! (n − h) and ηh(Sn) ≥ h ! (n − h) for any h with 1 ≤ h ≤ n − 1.

To determine ζh(Sn) and ηh(Sn), we investigate their upper bounds.

Lemma 3.4. (Yang et al. [12].) ηh(Sn) ≤ h ! (n − h) for any h with 1 ≤ h ≤ n − 1.

Now we establish the upper bound on ζh(Sn) by Lemma 3.1.

Lemma 3.5. ζh(Sn) ≤ h ! (n − h) for any h with 1 ≤ h ≤ n − 1.

Proof. Let

X = { p1 p2 · · · ph12 · · · (n − h) ∈ V (Sn) : pi ∈ In \ In−h, i ∈ Ih}.
Then, Sn[X] ∼= Sh . Let T be the neighbor-set of X in Sn − X . By the definition of Sn , for a vertex of X , since it has h − 1
neighbors in X , it exactly has (n − h) neighbors in T , and every vertex of T exactly has one neighbor in X . It follows that

|T | = h ! (n − h).

Next we show T is an h-embedded vertex-cut of Sn . It suffices to show each vertex on Sn − (X ∪ T ) is in some subgraph 
Sh of Sn − (X ∪ T ).

Assume that u = p′
1 p′

2 · · · p′
n is a vertex in Sn − (X ∪ T ), and let

J = { j ∈ In−h : p′
h+ j �= j} and J ′ = { j ∈ J : p′

1 �= j}.
Since u /∈ X , we have J ��= ∅. We claim J ′ �= ∅. Suppose to the contrary J ′ = ∅. Then p′

1 = j for each j ∈ J , and so | J | = 1. 
Assume J = { j}. Note that p′

1 = j and p′
h+ j �= j (1 ≤ j ≤ n − h). Thus u is a neighbor of some vertex in X , that is, u ∈ T , 

which contradicts to u /∈ T .
Thus, J ′ �= ∅. Let j0 ∈ J ′ and p′

i0
= j0 (1 ≤ i0 ≤ n). Then h + j0 �= i0 and p′

1 �= j0. We partition Sn by fixing digit j0. Then 

X ⊆ S(h+ j0): j0
n and u ∈ Si0: j0

n . By Lemma 3.1, S(h+ j0): j0
n and Si0: j0

n are both isomorphic to Sn−1, and there is no edge between 
S(h+ j0): j0

n and Si0: j0
n , and so u is in some Sn−1 of Sn \ (X ∪ T ), which implies that u is in some Sh of Sn \ (X ∪ T ). Thus, T is 

an h-embedded vertex-cut of Sn , and so

ζ (h)(Sn) ≤ |T | = h !(n − h).

The lemma follows. �
Theorem 3.6. ζh(Sn) = ηh(Sn) = h ! (n − h) for any h with 1 ≤ h ≤ n − 1.

Proof. For 1 ≤ h ≤ n − 1, combining Corollary 3.3 with Lemma 3.4, we have ηh(Sn) = h!(n − h), and combining Corollary 3.3
with Lemma 3.5, we have ζh(Sn) = h !(n − h). �
4. Bubble-sort graphs

The n-dimensional bubble-sort graph Bn has vertex-set P (n) and has an edge between any two vertices if and only if 
one can be obtained from the other by swapping the i-th digit and the (i + 1)-th digit where 1 ≤ i ≤ n − 1. The bubble-sort 
graphs B2, B3 and B4 are shown in Fig. 3.

It is shown that the bubble-sort graph Bn is a Cayley graph with degree (n − 1) (see Akers and Krishnamurthy [1]). More 
specifically, Bn is a bipartite graph with the girth 4 and contains n disjoint sub-graph Bn−1’s by fixing the 1-th digit or n-th 
digit (see Fig. 3), and λ2(Bn) = 4(n − 3) for n ≥ 4 (see [11]).

For each t ∈ {1, n}, i ∈ In , let Bt:i
n denote a subgraph of Bn induced by all vertices whose the t-th digit is i. Clearly, 

Bt:i
n

∼= Bn−1 for each t ∈ {1, n}, i ∈ In .
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Fig. 3. The bubble-sort graphs B2, B3 and B4.

Table 1
The disjoint paths between two disjoint B3’s in B4.

From
To B4,4

4 B1,1
4

B4,1
4

3241 – 3214 3241 – 3214 – 3124 – 1324
2341 – 2314 2341 – 2314 – 2134 – 1234
3421 – 3412 – 3142 – 3124 3421 – 3412 – 3142 – 1342
2431 – 2413 – 2143 – 2134 2431 – 2413 – 2143 – 1243
4321 – 4312 – 4132 – 1432 – 1342 – 1324 4321 – 4312 – 4132 – 1432
4231 – 4213 – 4123 – 1423 – 1243 – 1234 4231 – 4213 – 4123 – 1423

Lemma 4.1. (Akers and Krishnamurthy [1], 1989.) For a fixed t ∈ {1, n}, Bn can be partitioned into n subgraphs Bt: j
n isomorphic to 

Bn−1 for each j ∈ In, moreover, there are (n − 2)! independent edges between Bt: j1
n and Bt: j2

n for any j1, j2 ∈ In with j1 �= j2 .

Lemma 4.2. (Yang et al. [13], 2014.) ηh(Bn) ≤ h ! (n − h) for any h with 1 ≤ h ≤ n − 1 and n ≥ 2.

It was showed by Xu [9] in 2000 that for a vertex-transitive connected graph G with order n (� 4) and with degree 
d (� 2), λ1(G) = 2d − 2 if n is odd or G contains no triangles. Since Bn is vertex-transitive and bipartite, we have the 
following result.

Lemma 4.3. λ1(Bn) = 2n − 4 for n ≥ 3.

Since δh = δ(Bh) = h − 1, by Lemma 1.1 and Lemma 4.3 η2(Bn) ≥ λ1(Bn) = 2n − 4, and by Lemma 4.2 the following 
corollary holds.

Corollary 4.4. η2(Bn) = 2n − 4 if n ≥ 3.

In this section, we will determine η3(Bn) = 6(n − 3) for n ≥ 4. By Lemma 4.2, we only need to prove η3(Bn) ≥ 6(n − 3). 
The proof proceeds by induction on n (≥ 4). And so we first consider the case of n = 4.

An edge-cut F of Bn is called a Bh-edge-cut if every component of Bn − F contains a Bh as subgraph. By definition, 
every h-embedded edge-cut of Bn is certainly a Bh-edge-cut.

Lemma 4.5. If F is a B3-edge-cut of B4 , then |F | ≥ 6.

Proof. We first prove that there are 6 vertex-disjoint paths between each two disjoint B3s in B4. By symmetry, we only 
need to consider the paths from B4,1

4 to B4,4
4 and B1,1

4 . Such paths are illustrated in the Table 1 (also see Fig. 4 by heavy 
edges). If F is a B3-edge-cut of B4, then F contains at least one edge of every path in the 6 vertex-disjoint paths between 
the two disjoint B3s. It follows that |F | ≥ 6. �
Theorem 4.6. η3(Bn) = 6(n − 3) if n ≥ 4.

Proof. By Lemma 4.2, we only need to prove η3(Bn) ≥ 6(n − 3) for n ≥ 4. Let F be a B3-edge-cut of Bn . Since any 
3-embedded edge-cut is certainly a B3-edge-cut of Bn , we have that η3(Bn) ≥ |F |. Thus it suffices to show
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Fig. 4. The disjoint paths between two disjoint B3’s in B4 by heavy edges.

|F | ≥ 6(n − 3). (4.1)

The proof proceeds by induction on n (≥ 4). When n = 4, the result follows by Lemma 4.5. Assume the induction hypothesis 
for any m with 4 ≤ m ≤ n − 1 with n ≥ 5, that is

|F ′| ≥ 6(m − 3) for any B3-edge-cut F ′ of Bm. (4.2)

Let F be a minimum B3-edge-cut of Bn . Clearly, Bn − F has exactly two connected components, denoted by X and Y , 
respectively, and assume |X | ≤ |Y | without loss of generality.

Use notations δ(X) and δ(Y ) to denote the minimum degrees of X and Y , respectively. We assert that δ(X) ≥ 2 and 
δ(Y ) ≥ 2.

Assume to the contrary that there exists a vertex x ∈ X such that dX (x) = 1. Then x has at least 3 neighbors in Y since 
Bn is (n − 1)-regular and n ≥ 5. Let X ′ = X \ {x}, Y ′ = Y ∪ {x} and F ′ be the set of edges between X ′ and Y ′ . Then F ′ is also 
a B3-edge-cut of Bn and |F ′| ≤ |F | − 3 + 1 = |F | − 2, which contradicts to the minimality of F .

To complete our proof, for a fixed t ∈ {1, n} and any i ∈ In , let

Xi = X ∩ V (Bt:i
n ), Yi = Y ∩ V (Bt:i

n ),

Fi = F ∩ E(Bt:i
n ), Fij = F ∩ E(Bt:i

n , Bt: j
n ),

where E(Bt:i
n , Bt: j

n ) denotes the set of edges between Bt:i
n and Bt: j

n for i �= j. Let

J X = {i ∈ In : Xi �= ∅}, J Y = {i ∈ In : Yi �= ∅} and J0 = J X ∩ J Y .

Since X �= ∅ and Y �= ∅, we have | J X | ≥ 1 and | J Y | ≥ 1. We choose such t ∈ {1, n} that | J X | is as large as possible, say 
t = 1.

First assume | J0| ≥ 3. For i ∈ J0, we have δ(Xi) ≥ 1 and δ(Yi) ≥ 1 since δ(X) ≥ 2 and δ(Y ) ≥ 2, and each vertex in B1:i
n

only has one neighbor not in B1:i
n by Lemma 4.1. It follows that Fi is a 1-edge-cut of B1:i

n for i ∈ J0. By Lemma 4.3, we have 
that

|Fi | ≥ λ1(Bn−1) = 2(n − 3) for i ∈ J0, (4.3)

and so

|F | ≥
∑

i∈ J0

|Fi | ≥ | J0|2(n − 3) ≥ 6(n − 3).

The inequality (4.1) follows.
Now assume | J0| ≤ 2. Let a = | J X \ J0| and b = | J Y \ J0|. Then 2a ≤ n since |X | ≤ |Y |. Since any i ∈ In not in J X is 

certainly in J Y , a + b = n − | J0| ≥ n − 2.
Assume a ≥ 1 and j1 ∈ J X \ J0, j2 ∈ J Y \ J0. By Lemma 4.1 there are (n − 2)! independent edges between B1: j1

n and B1: j2
n , 

and so there are (ab(n − 2) !) independent edges between ∪ j1∈ J X \ J0 B1: j1
n and ∪ j2∈ J Y \ J0 B1: j2

n . It follows that for n ≥ 5,

|F | ≥ ab(n − 2) ! ≥ a(n − 2 − a)(n − 2) !
≥ (n − 2 − 1)(n − 2) ! ≥ 6(n − 3).

The inequality (4.1) follows.
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Fig. 5. The neighbors of a B3 in a B5.

Next assume a = 0. Then 1 ≤ | J X | = | J0| ≤ 2 and | J Y | = n. We first show that

Yi contains a B3 as a subgraph for each i ∈ In. (4.4)

To this end, for i ∈ In , let Ki be the set of the n-th digits of vertices in Xi , that is, Ki = {pn : ix2 · · · xn−1 pn ∈ Xi, pn ∈
In \{i}, x j ∈ In \{i, pn}, 2 ≤ j ≤ n −1}. Let K ′

i = In \(Ki ∪{i}). By choice of t and | J X | ≤ 2, we have |Ki| ≤ 2 and |K ′
i | = (n −1) −

|Ki | ≥ n − 3 ≥ 2. Thus, for fixed i ∈ In and pn ∈ K ′
i , the subgraph induced by {ix2 · · · xn−1 pn : x j ∈ In \ {i, pn}, 2 ≤ j ≤ n − 1}

is isomorphic to a Bn−2 and is contained in Yi , which implies that Yi contains a B3 since n ≥ 5, and so the assertion (4.4)
holds. Thus, for any i ∈ J X , if Xi contains a B3, then Fi is a B3-edge-cut of B1:i

n by the assertion (4.4). By the induction 
hypothesis (4.2), we have that

|Fi | ≥ 6(n − 4) if Xi contains a B3 as a subgraph for each i ∈ J X . (4.5)

We consider two cases according as | J X | = 1 and | J X | = 2.

Case 1. | J X | = 1.

Without loss of generality, assume that J0 = J X = {1}, and so X1 = X ∩ V (B1:1
n ). By the hypothesis of F , X1 contains 

a B3, |X1| ≥ 6, and each vertex in X1 has one neighbor not in B1:1
n . Combining these facts with the assumption (4.5), we 

have that

|F | ≥ |F1| + |X1| ≥ 6(n − 4) + 6 = 6(n − 3).

Case 2. | J X | = 2.

Without loss of generality, assume J X = {1, 2}, and so X1 = X ∩ V (B1:1
n ) and X2 = X ∩ V (B1:2

n ). By the hypothesis of F , 
X = X1 ∪ X2 contains a B3. By the structure of 6-cycles in Bn , if neither X1 nor X2 contains a B3, then there is a vertex 
in the B3 whose the first digit is different from 1 and 2, which implies | J X | ≥ 3, a contradiction. Thus, without loss of 
generality, assume that X1 contains a B3. By the assumptions (4.5) and (4.3), for n ≥ 6 we have that

|F | ≥ |F1| + |F2| ≥ 6(n − 4) + 2(n − 3) ≥ 6(n − 3). (4.6)

Now assume n = 5. Then the vertices of B3 in X1 must have forms 1x2x3x4 p5 or 1p2x3x4x5, where p2 and p5 are fixed. 
Since |Ki | ≤ 2 for each i ∈ In , the vertices of B3 in X1 have the former form. Without loss of generality, say p5 = 5. Then 
the vertex-set of B3 and the neighbors of X1 not in B1:1

5 are shown in Fig. 5, where four neighbors are in B1:3
5 ∪ B1:4

5 . This 
shows that no matter how x2x3x4 p5 is chosen, we always have 

∑5
j=3 F1 j ≥ 2 × 2 = 4. It follows that

|F | ≥ |F1| + |F2| +
n∑

j=3

F1 j ≥ 6(n − 4) + 2(n − 3) + 4 > 6(n − 3).

The inequality (4.1) follows. By induction principles, the theorem follows. �
5. Conclusions

In this paper, we investigate the h-embedded connectivity ζh and h-embedded edge-connectivity ηh in the hypercube Q n , 
the star graph Sn and the bubble-sort graph Bn . We determine that ζh(Q n) = 2h(n − h) for h ≤ n − 2, ηh(Q n) = 2h(n − h)

for h ≤ n − 1, ζh(Sn) = ηh(Sn) = h!(n − h) for 1 ≤ h ≤ n − 1, and η3(Bn) = 6(n − 3) for n ≥ 4. These results can provide 
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more accurate measurements for fault tolerance of the system when the graphs are used to model the topological structure 
of large-scale parallel processing systems. The value of ζh(Bn) for h ≥ 3 and the value of ηh(Bn) for h ≥ 4 deserve further 
research.
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