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a b s t r a c t

This paper considers the problemofmany-to-many disjoint paths in the hypercubeQn with
f faulty vertices and obtains the following result. For any integer k with 1 ≤ k ≤ n − 1
and any two sets S and T of k fault-free vertices in different partite sets of Qn (n ≥ 2), if
f ≤ 2n−2k−2 and each fault-free vertex has at least two fault-free neighbors, then there
exist k fully disjoint fault-free paths linking S and T which contain at least 2n

− 2f vertices.
A linear algorithm for finding such disjoint paths is also given. This result improves some
known results in a sense.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The n-dimensional hypercube Qn is a graph whose vertex-set consists of all binary vectors of length n, with two vertices
being adjacent whenever the corresponding vectors differ in exactly one coordinate. There is a vast literature on graph-
theoretic properties of hypercubes (e.g., see the comprehensive survey papers on early results [15] and recent results [27])
and their applications in parallel computing (e.g., see [21]).

One of the most central issues in various high-performance communication networks or parallel computing systems is
to find a cycle or a path of some given length in the networks (see [4,11,14,17,23] and the survey paper [29]). It is well
known that there are n internally disjoint paths connecting any two vertices u and v in Qn. However, these paths do not
always contain all vertices. In 2004, Chang et al. [5] showed that for any integer k with 1 ≤ k ≤ n and any two vertices
u and v from different partite sets of Qn, there are k internally disjoint uv-paths in Qn which contain all vertices. In 2007,
Chang et al. [6] further showed that for any integer kwith 1 ≤ k ≤ n− 4 and any two vertices u and v from different partite
sets of Qn (n ≥ 5), there are k internally disjoint uv-paths in Qn which contain all vertices and the difference of lengths of
any two paths is at most two.

Since edge and/or vertex failures are inevitable when a large parallel computer system is put in use, finding disjoint paths
with fault-tolerant routings among vertices has received great research attention recently. In disjoint-path problems, one
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or more source vertices and one or more sink vertices are given to find the paths between them. According to the number
of sources or sinks, there are one-to-one [16], one-to-many [20], and many-to-many [3,8,18,22,24–26,30] disjoint-path
problems.

A path in Qn with f faulty vertices is long if it contains at least 2n
− 2f − 1 vertices. Note that every long path between

vertices u and v has a length of at least 2n
− 2f if d(u, v) is odd, where d(u, v) is the distance between u and v. If all faulty

vertices are in the same bipartite of Qn, then every long fault-free path is the longest one.
Fu [12] showed that there is a long fault-free path in Qn between every two fault-free vertices if f ≤ n − 2. Under the

condition that every vertex has at least two fault-free neighbors, Kueng et al. [19] improved the bound in Fu to 2n − 5.
Recently, Fink et al. [10] improved the bound to 2n− 4 with a weaker condition, and Dvořák et al. [9] further improved it to
n2
10 +

n
2 + 1 when n ≥ 15.

In 2009, Chen [1] considered the problem of many-to-many disjoint paths in the hypercube with faulty vertices and
edges showing that for any integer kwith 1 ≤ k ≤ n−1, and any two sets S and T of k fault-free vertices in different partite
sets in Qn with f faulty vertices and h faulty edges, if f + h ≤ n− k− 1, then there exist k disjoint fault-free paths linking S
and T in Qn which contain at least 2n

− 2f vertices.
Gregor et al. [13] and Chen [2] investigated the many-to-many disjoint paths in hypercubes with only faulty edges. In

this paper, we consider Qn with only faulty vertices and obtain the following result.

Theorem 1.1. Let Qn (n ≥ 2) be an n-dimensional hypercube with f faulty vertices and let k be an integer with 1 ≤ k ≤ n− 1.
If f ≤ 2n− 2k− 2 and each fault-free vertex has at least two fault-free neighbors, then for any two sets S and T of k fault-free
vertices in different partite sets, there exist k disjoint fault-free paths linking S and T in Qn which contain at least 2n

−2f vertices.

Under the condition that each fault-free vertex has at least two fault-free neighbors, our theorem generalizes the result
of Fink et al. Since k ≥ 1, our result also improves the bound obtained by Chen [1] provided that Qn does not contain faulty
edges.

When f ≤ 2n− 2k− 2, a centralized O(2n)-algorithm to find the many-to-many disjoint paths is given, whose running
time is a linear function of the number of the vertices in Qn.

The rest of this paper is organized as follows. Section 2 introduces some notations and lemmas. An overview of the main
proof is provided in Section 3. The proof of our result and constructive algorithms for finding disjoint paths are in Sections 4
and 5. Section 6 concludes.

2. Notations and lemmas

We follow [28] for graph-theoretical terminologies and notations not defined here. Let G = (V , E) be a connected simple
graph, where V = V (G) is the vertex-set and E = E(G) is the edge-set of G. If uv ∈ E(G), u (resp. v) is called a neighbor of v
(resp. u). A uv-path is a sequence of distinct vertices,written as ⟨v0, v1, v2, . . . , vm⟩, where v0 = u, vm = v and vivi+1 ∈ E(G)
for each i = 1, 2, . . . ,m − 1, (m is the length of P). The distance between u and v is the length of the shortest uv-path in
G. For a path P = ⟨v0, v1, . . . , vi, vi+1, . . . , vm⟩, it can also be expressed as P = P(v0, vi) + vivi+1 + P(vi+1, vm), and the
notation P − vivi+1 denotes the subgraph obtained from P by deleting the edge vivi+1. Two paths are disjoint if they have
no vertices in common. Given two disjoint sets S and T of k vertices, if there exist k disjoint paths linking S and T , we call
these paths k disjoint ST-paths.

The n-dimensional hypercube Qn is a graph with 2n vertices, with each vertex denoted by an n-bit binary string x =
x1x2 . . . xn−1xn. Two vertices are adjacent if and only if their strings differ in exactly one bit position. It has been proved that
Qn is a vertex- and edge-transitive bipartite graph.

By definition, for any i ∈ {1, 2, . . . , n},Qn can be expressed as Qn = Li ⊙ Ri, where Li and Ri are two subgraphs of Qn
induced by the vertices with the ith bit position being 0 and 1, respectively, which are isomorphic to Qn−1. We use Ei to
denote the set of edges between Li and Ri. The two end-vertices of an edge in Ei differ in exactly the ith bit position. Without
loss of generality, we write Qn = L ⊙ R. For convenience, for a vertex uL in L, we use uR to denote its unique neighbor in
R. Similarly, for a vertex vR in R, we use vL to denote its unique neighbor in L. Clearly, for any two vertices uL and vL in L,
dL(uL, vL) = dR(uR, vR).

Let F denote the set of faulty vertices in Qn, and f = |F |. When Qn = L ⊙ R, we denote fL = |F ∩ L| and fR = |F ∩ R|. A
subgraph of Qn is fault-free if it contains no vertices from F . For two subsets A and B of V (Qn), let d(A, B) = min{d(x, y) : x ∈
A, y ∈ B}. For clarity, we list the notations that will be used frequently in Table 1.

We first show the following lemma which ensures that Qn has a desired partition.

Lemma 2.1. If f ≤ 2n− 6 and each fault-free vertex of Qn(n ≥ 3) has at least two fault-free neighbors, then there exists some
j ∈ {1, 2, . . . , n} such that each fault-free vertex in Lj (or Rj) has at least two fault-free neighbors in Lj (or Rj).

Proof. Let u be a fault-free vertex inQn. Denote dF (u) as the number of faulty vertices inNQn(u), that is, dF (u) = |NQn(u)∩F |,
then dF (u) ≤ n− 2.
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Table 1
Notations used in this paper.

Symbols Significations

F The faulty vertices in Qn
S, T Two sets of k fault-free vertices
L, R Two different subcubes Qn−1 of Qn
FL, FR The faulty vertices in L, R respectively
SL, SR The vertices of S in L, R respectively
TL, TR The vertices of T in L, R respectively
fL, fR The cardinality of FL, FR respectively
p, q The cardinality of SL, TL respectively
X, Y the different partite sets of Qn
NQn (u) The neighbors of u in Qn
dF (u) The cardinality of the neighbor sets of u in F
WL The set of neighbors in L of vertices of SR
UL (p− q) fault-free vertices in Y ∩ L
UR The neighbors of UL in R
B The vertices in P2, . . . , Pn

It is easy to see that two vertices in Qn(n ≥ 3) have exactly two common neighbors if any. If there are two vertices u and
v such that dF (u) = n− 2 and dF (v) = n− 2, then

f ≥ |(NQn(u) ∪ NQn(v)) ∩ F |
= dF (u)+ dF (v)− |NQn(u) ∩ NQn(v) ∩ F |
≥ 2n− 4− 2
= 2n− 6.

Note that f ≤ 2n − 6. Thus, we have f = 2n − 6 and |NQn(u) ∩ NQn(v) ∩ F | = 2. Furthermore, there are exactly two
vertices u and v such that dF (u) = n − 2 and dF (v) = n − 2. Assume NQn(u) ∩ NQn(v) ∩ F = {x, y}. Then uxvy is a 4-cycle
in Qn. Choose j such that ux, vy ∈ Ej.

If there is at most one vertex u satisfying dF (u) = n− 2, let x ∈ NQn(u) ∩ F . Also choose j such that ux ∈ Ej.
Therefore, the two fault-free vertices of u (or v) are both in Lj or Rj. For other fault-free vertex x, we have dF (x) ≤ n− 3.

Thus x has at least two fault-free neighbors in Lj or Rj to which x belongs to. The result follows. �

In Qn(n ≥ 2) with at most 2n − 4 faulty vertices, Fink et al. [10] showed that for any two fault-free vertices u and v,
there exists a long fault-free path between u and v if and only if the exceptional configurations do not occur. In fact, in
the exceptional configurations, there are some vertices with at most one fault-free neighbor. So under the condition that
every fault-free vertex has at least two fault-free neighbors, the exceptional configurations do not occur. The following three
lemmas will be referred to in our paper.

Lemma 2.2 (Fink et al. [10], 2009). If f ≤ 2n− 4 and each fault-free vertex of Qn(n ≥ 2) has at least two fault-free neighbors
then, for any two distinct fault-free vertices x and ywith distance d, there is a fault-free xy-path containing at least 2n

−2f vertices
if d is odd and 2n

− 2f − 1 vertices if d is even.

Lemma 2.3 (Chen [1], 2009). For any integer k with 1 ≤ k ≤ n−1, if f ≤ n−k−1 then, for any two sets S and T of k fault-free
vertices in different partite sets in Qn (n ≥ 2), there exist k disjoint fault-free ST-paths which contain at least 2n

− 2f vertices.

Lemma 2.4 (Dvořák [7], 2005). Let (x, y) and (u, v) be two disjoint pairs of vertices with odd distance in Qn. If x and y are
adjacent in Qn with n ≥ 3, then there exists a uv-path containing all vertices in Qn − {x, y} unless n = 3, d(u, v) = 1 and
d({x, y}, {u, v}) = 2.

In the proof of Theorem 1.1, we need to construct many-to-many disjoint paths with much vertices in some cases, which
are ensured by the following lemma.

Lemma 2.5. Let x and y be two adjacent vertices of Qn (n ≥ 3). Then, for any integer k with 1 ≤ k ≤ n− 2, and any two sets S
and T of k vertices in different partite sets in Qn − {x, y}, there exist k disjoint ST-paths containing all vertices in Qn − {x, y}.

Proof. We proceed by induction on k. If k = 1, the result is true by Lemma 2.4. We assume that the result holds for any
integer less than k, and consider the case of k (k ≥ 2) andn (≥4). Let {X, Y }be the bipartition ofQn and let S = {s1, s2, . . . , sk}
and T = {t1, t2, . . . , tk} be two sets of k vertices in different partite sets in Qn−{x, y}. Since Qn is vertex-transitive and edge-
transitive, without loss of generality, we may assume x = 00 · · · 0, y = 10 · · · 0, S ∪ {x} ⊆ X, T ∪ {y} ⊆ Y . Let Qn = Lj ⊙ Rj,
then the edge xy belongs to E(Lj) for each dimension j (2 ≤ j ≤ n).

We first note that there exists some j (2 ≤ j ≤ n) such that (S ∪ T ) ∩ Lj ≠ ∅ and (S ∪ T ) ∩ Rj ≠ ∅. Otherwise, for
each j ∈ {2, . . . , n}, the jth bit of all vertices in S ∪ T are the same so that |S ∪ T | ≤ 2, contradicting the assumption that
|S ∪ T | = 2k ≥ 4 since k ≥ 2. Therefore, xy ∈ E(L), (S ∪ T ) ∩ L ≠ ∅ and (S ∪ T ) ∩ R ≠ ∅.
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Fig. 1. Illustrations for the proof of Subcase 1.1 of Lemma 2.5.

Let

SL = S ∩ L, TL = T ∩ L and p = |SL|, q = |TL|,
SR = S ∩ R, TR = T ∩ R.

By the symmetry of S and T , we assume p ≥ q. Then p ≥ 1 and q ≤ k− 1.
Let WL be the set of neighbors in L of vertices of SR. Then |WL| = |SR| = |S| − |SL| = k − p, and WL ⊂ Y since S ⊂ X . If

n = 4, then L ∼= R ∼= Q3. In Q3, we have to consider some exceptional cases by Lemma 2.4. It is easy to see that there exists
a unique vertex u0 ∈ L ∩ Y such that dL(u0, {x, y}) = 2. Set

F =

{u0} if n = 4;
∅ if n ≥ 5.

To avoid the exceptional case, we may assume that F is the faulty vertex.
Note that |Y ∩ V (L)| = 2n−2. For n ≥ 4 and k ≤ n− 2, we have

|Y ∩ V (L)| − |TL ∪WL ∪ {y} ∪ F | ≥ 2n−2
− q− (k− p)− 2

= (2n−2
− k− 2)+ (p− q)

≥ p− q.

This implies that there exists a set UL of (p− q) fault-free vertices in Y ∩ V (L− TL − {y}) such that its neighbor-set UR in R
is not in SR.

If p > q, let

UL = {u1, . . . , up−q} ⊆ Y ∩ V (L− TL − {y}) and
UR = {v1, . . . , vp−q} ⊆ X ∩ V (R− SR) with
uivi ∈ E(Qn) for 1 ≤ i ≤ p− q.

If p = q, let UL = UR = ∅.
We consider two cases: 1 ≤ p ≤ k− 1 and p = k.

Case 1. 1 ≤ p ≤ k− 1.
Let T ′L = TL ∪ UL and S ′R = SR ∪ UR. Then |T ′L| = q+ (p− q) = p = |SL| and |S ′R| = (k− p)+ (p− q) = k− q = |TR|.

Subcase 1.1. n = 4.
In this case, k = 2 and p = 1. First, we consider the case q = 1.Without loss of generality, assume s1, t1 ∈ L. LetM = {v :

v ∈ (S∪T )∩L, d(v, {x, y}) = 2}. We choose a dimension j to partitionQ4 such that xy ∈ E(L), (S∪T )∩L ≠ ∅, (S∪T )∩R ≠ ∅
and |M| is as small as possible.

If |M| ≤ 1, by Lemma 2.4, there is an s1t1 path P1 in L containing all the vertices in L − {x, y}. By Lemma 2.3, there is an
s2t2-path P2 containing all vertices in R. Then paths P1 and P2 are disjoint and contain all vertices in Q4 − {x, y}.

If |M| = 2, then d({s2}, {x, y}) = d({t2}, {x, y}) ≥ 2, and s2 and t2 must be adjacent in R. Otherwise, we can choose
another dimension j to partition Q4 such that xy ∈ E(L), (S ∪ T ) ∩ L ≠ ∅, (S ∪ T ) ∩ R ≠ ∅ and |M| ≤ 1, which contradicts
the minimality of |M| and |M| = 2. Thus, there are only three configurations of S and T (see Fig. 1).

In configuration (a), P1 = ⟨s1, z1, z2, z8, z10, z9, z7, z5, z6, t2⟩ and P2 = ⟨s2, z3, z4, t1⟩ are two disjoint paths satisfying
the requirements (see Fig. 1(a)). In configuration (b), P1 = ⟨s1, z1, z2, t2⟩ and P2 = ⟨s2, z5, z6, z8, z10, z9, z7, z3, z4, t1⟩ are
two disjoint paths satisfying the requirements (see Fig. 1(b)). In configuration (c), P1 = ⟨s1, z1, z2, z8, z6, z5, z7, t2⟩ and
P2 = ⟨s2, z10, z9, z3, z4, t1⟩ are two disjoint paths satisfying the requirements (see Fig. 1(c)).

We now consider q = 0. Note that u1 ≠ u0 and u1 is fault-free. By Lemma 2.4, we obtain s1u1-path PL containing all
vertices in L − {x, y}. By Lemma 2.3, there are two disjoint S ′RTR-paths PR and P2 containing all vertices in R, where PR is a
v1t1-path and P2 is an s2t2-path. Let P1 = PL + u1v1 + PR. Then P1 and P2 are two disjoint ST -paths containing all vertices in
Q4 − {x, y}.
Subcase 1.2. n ≥ 5.

Since p ≤ k − 1, by the induction hypothesis, in L there are p disjoint SLT ′L-paths containing all vertices in L − {x, y},
in which let P1, P2, . . . , Pq be SLTL-paths, and P ′1, P

′

2, . . . , P
′
p−q be SLUL-paths, where P ′i connects one vertex in SL to ui. By
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Fig. 2. An illustration for the proof of Subcase 1.2 of Lemma 2.5.

Lemma 2.3, in R there are k− q disjoint S ′RTR-paths containing all vertices in R, in which let P ′′1 , P ′′2 , . . . , P ′′p−q be URTR-paths,
where P ′′i connects vi to one vertex in TR, and Pp+1, Pp+2, . . . , Pk be SRTR-paths. Let (see Fig. 2)

Pq+i = P ′i + uivi + P ′′i for each i = 1, 2, . . . , p− q.

Then P1, P2, . . . , Pk are k disjoint ST -paths containing all vertices in Qn − {x, y}.
Case 2. p = k.

By the hypothesis of q ≤ k− 1, TR ≠ ∅, say tk ∈ TR. Let S ′ = S − {sk},U ′ = UL − {uk−q} and T ′ = TL ∪ U ′. If n = 4, then
p = k = 2. We can choose s2 such that d({s1, T ′}, {x, y}) ≠ 2. By Lemma 2.4, in L there exists an S ′T ′-path P1 containing all
vertices in L − {x, y}. If n ≥ 5, by the induction hypothesis, there exist k − 1 disjoint S ′T ′-paths containing all vertices in
L − {x, y}. Without loss of generality, assume that P1, P2, . . . , Pq are S ′TL-paths and that P ′i is an S ′U ′-path connecting one
vertex of S ′ to ui for each i ∈ {1, 2, . . . , k− 1− q}.

Assume that sk is in some path connecting si to some vertex t ′ in T ′. Let uL be the neighbor of sk in the path closer to si and
uR be the neighbor of uL in R, and let uR be vk−q. By Lemma 2.3, there are k− q disjoint URTR-paths P ′′1 , P ′′2 , . . . , P ′′k−1−q, P

′′

k−q
that contain all vertices in R, where P ′′i connects vi and tq+i for each i ∈ {1, 2, . . . , k− q}. Let

Pq+i = P ′i + uivi + P ′′i for each i ∈ {1, 2, . . . , k− 1− q}.

If t ′ ∈ TL (say t ′ = t1) and sk in P1 connects s1 to t1 (see Fig. 3(a)), let

P∗1 = P1(sk, t1),
Pk = P1(s1, uL)+ uLuR + P ′′k−q.

Then P∗1 , P2, . . . , Pk−1, Pk are k disjoint ST -paths containing all vertices in Qn − {x, y}.
If t ′ ∈ U ′ (say t ′ = u1) and sk in P ′q+1 connects sq+1 to u1 (see Fig. 3(b)), let

P∗q+1 = P ′q+1(sk, u1)+ u1v1 + P ′′q+1,

Pk = P ′q+1(sq+1, uL)+ uLuR + P ′′k−q.

Then P1, . . . , Pq, P∗q+1, Pq+2, . . . , Pk−1, Pk are k disjoint ST -paths containing all vertices in Qn − {x, y}.
Summing up the above two cases, we complete the proof of the lemma. �

3. Overview of the proofs

The proof proceeds by induction on the dimension n (≥2). The base of induction is already known. The case of n = 2
follows from Fink et al. [10], and the case of k = n− 1 follows from Chen [1].

In induction step, we partition Qn to two subcubes L and Rwith dimension n− 1, such that every fault-free vertex in L(or
R) has at least two fault-free neighbors in the subcube L (or R). With such a partition, the vertices of S ∪ T will distribute in
the two subcubes, so do the faulty vertices. In the proof, we fully utilize the symmetry of L and R and the symmetry of S and
T . Using vertex sets UL and UR as the transitive vertices, we construct the required many-to-many disjoint paths.

In Qn−1, we first use induction to obtain many-to-many disjoint paths, and then we merge the disjoint paths in the two
Qn−1s. Unfortunately, sometimes we cannot use induction directly since there can be one or two excessive faulty vertices
in Qn−1. We have two methods to tackle this problem. One of them is to use the induction by putting the excessive faulty
vertices as temporarily fault-free vertices. After obtaining the disjoint paths, if they contain temporarily fault-free vertices,
we should replace the vertices by fault-free vertices, meanwhile we still preserve the paths containing many vertices. The
other method is to put one or two vertices of S ∪ T as temporarily fault-free, using the induction to obtain k − 1 disjoint
paths and then add a new path connecting the temporarily fault-free vertices in S ∪ T to get the required k disjoint paths.
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Fig. 3. Illustrations for the proof of Case 2 of Lemma 2.5.

4. Proof of theorem

The proof proceeds by induction on n ≥ 2. If k = 1, then f ≤ 2n− 4. The theorem follows from Lemma 2.2. If k = n− 1,
then f = 0. The theorem follows from Lemma 2.3. Thus, the theorem holds for 2 ≤ n ≤ 3. In the following discussion, we
assume n ≥ 4 and 2 ≤ k ≤ n− 2.

Let Qn be an n-dimensional hypercube, {X, Y } be a bipartition of V (Qn), S = {s1, s2, . . . , sk} ⊂ X and T =
{t1, t2, . . . , tk} ⊂ Y be any two sets of k fault-free vertices. Our aim is to construct k disjoint fault-free ST -paths containing
at least 2n

− 2f vertices.
Since k ≥ 2, we have f ≤ 2n− 6. By Lemma 2.1, there exists some j ∈ {1, 2, . . . , n} such that each fault-free vertex in Lj

(or Rj) has at least two fault-free neighbors in Lj (or Rj). When k = n− 2, f ≤ 2, we choose some j ∈ {1, 2, . . . , n} such that
all faulty vertices belong to either Lj or Rj. Let Qn = L⊙ R, where L = Lj and R = Rj.

We construct the required k disjoint ST -paths by considering two cases according to whether S ∪ T is in L (or R) or not,
respectively.
Case 1. S ∪ T ⊆ L or S ∪ T ⊆ R.

In this case, both of the two sets S and T are in L or R. By the symmetry of L and R, we may assume that both S and T are
in L. There are two subcases.
Subcase 1.1. fL ≤ 2n− 2k− 4.

Since fL ≤ 2n− 2k− 4 = 2(n− 1)− 2k− 2 and k ≤ n− 2 = (n− 1)− 1, by the induction hypothesis, in L there are k
disjoint ST -paths

P ′1, P
′

2, . . . , P
′

k (4.1)

containing at least 2n−1
− 2fL vertices. Note that, when n ≥ 4 and f ≤ 2n− 6,

k
i=1

|E(P ′i )| =
k

i=1

|V (P ′i )| − k

≥ 2n−1
− 2fL − k

≥ 2n−1
− 2(2n− 2k− 4)− k

> 2(2n− 6)
≥ 2f .

There is an edge uLvL in some path, say P ′1, such that both uR and vR are fault-free. Since fR ≤ f ≤ 2(n−1)−4, by Lemma 2.2,
in R there is a uRvR-path PR containing at least 2n−1

− 2fR vertices. Let

P1 = P ′1 − uLvL + uLuR + PR + vRvL,
Pi = P ′i for each i ∈ {2, 3, . . . , k}. (4.2)

Then P1, P2, . . . , Pk are k disjoint ST -paths containing at least 2n
− 2f vertices in Qn.

Subcase 1.2. fL = 2n− 2k− 3.
In this case, fR ≤ 1 and all paths in (4.1) contain at most one faulty vertex since f ≤ 2n− 2k− 2. If they contain no faulty

vertex, then paths defined in (4.2) are as required. Assume that some path, say P ′1, contains a faulty vertex w and connects
s1 and t1. Note that, in this case, paths in (4.1) contain at least 2n−1

−2(fL−1) vertices in L. Let uL and vL be two neighbors of
w in P ′1, where uL is in P ′1(s1, w) and vL is in P ′1(w, t1). Then dL(uL, vL) = 2 since Qn contains no triangles, so dR(uR, vR) = 2.
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Fig. 4. An illustration for the proof of Subcase 1.2(c) of the theorem.

If both uR and vR are fault-free then, by Lemma 2.2, there is a fault-free uRvR-path PR containing at least 2n−1
− 2fR − 1

vertices in R. Let

P∗1 = P ′1(s1, uL)+ uLuR + PR + vRvL + P ′1(vL, t1).

Then, replacing P1 in (4.2) by P∗1 yields k disjoint fault-free ST -paths with at least 2n
− 2f vertices in Qn.

Now assume that one of uR and vR is faulty vertex, say uR. Then uR is the only faulty vertex in R since fR ≤ 1.
If uL ≠ s1, let zL be the fault-free neighbor of uL in P ′1(s1, uL) (maybe zL = s1), then zR is fault-free in R, and the distance

between zR and vR is odd. By Lemma 2.2, there is a fault-free zRvR-path PR containing at least 2n−1
− 2fR vertices in R. Let

P∗1 = P ′1(s1, zL)+ zLzR + PR + vRvL + P ′1(vL, t1).

Replacing P1 in (4.2) by P∗1 yields k disjoint fault-free ST -paths with vertices at least

(2n−1
− 2(fL − 1)− |{w, uL}|)+ (2n−1

− 2fR) = 2n
− 2f .

We now assume uL = s1 and that uR is the only faulty vertex in R. Note that uL has at least two fault-free neighbors in L.
(a) If there is a fault-free neighbor zL of uL(= s1) not in P ′i for each i = 1, 2, . . . , k, we consider two vertices zR and vR in

R. They are fault-free in R since uR is the only faulty vertex in R. Since the distance between zL and vL is odd, so is the
distance between zR and vR. By Lemma 2.2, PR is a zRvR-path with at least 2n−1

− 2fR vertices in R. Let

P∗1 = s1zL + zLzR + PR + vRvL + P ′1(vL, t1).

Replacing P1 in (4.2) by P∗1 yields k disjoint fault-free ST -paths with vertices at least

(2n−1
− 2(fL − 1)− |{w}|)+ (2n−1

− 2fR) > 2n
− 2f .

(b) If all the fault-free neighbors of uL(= s1) are in P ′1, then one of them, say zL, is not t1 since uL(= s1) has at least two
fault-free neighbors in L. Clearly, zL ≠ vL since Qn contains no triangles. Let z ′L be the neighbor of zL in P ′1(zL, t1), then z ′R
is fault-free in R. Since both vL and z ′L are in X , the distance between vR and z ′R is even. Let PR be a vRz ′R-path with at least
2n−1
− 2fR − 1 vertices in R, and let

P∗1 = s1zL + P ′1(zL, vL)+ vLvR + PR + z ′Rz
′

L + P ′1(z
′

L, t1).

Replacing P1 in (4.2) by P∗1 yields k disjoint fault-free ST -paths with vertices at least

(2n−1
− 2(fL − 1)− |{w}|)+ (2n−1

− 2fR − 1) = 2n
− 2f .

(c) If there is a fault-free neighbor zL of uL(= s1) that is in some P ′i (i ≠ 1), without loss of generality, assume that zL is in P ′2
and that P ′2 connects s2 and t2 (see Fig. 4). Then zL ≠ s2 since zL ∈ Y and s2 ∈ X . Let z ′L be the neighbor of zL in P ′2(s2, zL)
(maybe z ′L = s2), then z ′R is fault-free in R. Since both vL and z ′L are in X , both vR and z ′R are in Y , and so the distance
between z ′R and vR is even. Let PR be a z ′RvR-path with at least 2n−1

− 2fR − 1 vertices in R, and let

P∗1 = s1zL + P ′2(zL, t2), P∗2 = P ′2(s2, z
′

L)+ z ′Lz
′

R + PR + vRvL + P ′1(vL, t1).

Replacing P1 and P2 in (4.2) by P∗1 and P∗2 yields k disjoint fault-free ST -paths with vertices at least

(2n−1
− 2(fL − 1)− |{w}|)+ (2n−1

− 2fR − 1) = 2n
− 2f .

Summing up the above discussion, the theorem holds for fL = 2n− 2k− 4.
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Subcase 1.3. fL = 2n− 2k− 2.
In this case, fR = 0 since f ≤ 2n − 2k − 2. Let S ′ = S − {sk} and T ′ = T − {tk}. Since fL = f = 2n − 2k − 2 =

2(n− 1)− 2(k− 1)− 2, by the induction hypothesis, in L there are (k− 1) disjoint fault-free S ′T ′-paths

P ′1, P
′

2, . . . , P
′

k−1 (4.3)

containing at least 2n−1
− 2f vertices. Let

K = V (P ′1 ∪ P ′2 ∪ · · · ∪ P ′k−1),
and let sR and tR be neighbors of sk and tk in R, respectively. Since sk and tk are in different partite sets in Qn, dL(sk, tk) is odd,
and so is dR(sR, tR).

If |{sk, tk} ∩ K | = 0, since dR(sR, tR) is odd, by Lemma 2.2, there is an sRtR-path PR containing 2n−1 vertices in R. Let

Pi = P ′i , i = 1, 2, 3, . . . , k− 1,
Pk = sksR + PR + tRtk.

(4.4)

Then P1, . . . , Pk−1, Pk are k disjoint fault-free ST -paths containing at least 2n
− 2f vertices, as required.

If |{sk, tk} ∩ K | = 1, without loss of generality, assume sk ∈ K and tk ∉ K . We can further assume that sk is in P ′1 with two
end-vertices s1 and t1. Let xL be the neighbor of sk in P ′1(s1, sk), and tR be the neighbor of tk in R. Since both xR and tR are in X
and fR = 0, there is a fault-free xRtR-path PR containing 2n−1

− 1 vertices. Let
P∗1 = P ′1(s1, xL)+ xLxR + PR + tRtk
P∗k = P ′1(sk, t1).

Replacing P1 and Pk in (4.4) by P∗1 and P∗k yields k disjoint fault-free ST -paths containing vertices at least

(2n−1
− 2f + |{tk}|)+ (2n−1

− 1) = 2n
− 2f .

The remaining case is |{sk, tk} ∩ K | = 2, which contains two cases.
(a) Both sk and tk are in the same path in (4.3), say P ′1. Let xL and yL be two neighbors of sk and tk in P ′1 but not in the subpath

P ′1(sk, tk), respectively. Since dL(sk, tk) is odd, both dL(xL, yL) and dR(xR, yR) are odd. By Lemma 2.2, there is an xRyR-path
PR containing 2n−1 vertices in R. Let

P∗1 = P ′1(s1, xL)+ xLxR + PR + yRyL + P ′1(yL, t1),
P∗k = P ′1(sk, tk).

Replacing P1 and Pk in (4.4) by P∗1 and P∗k yields k disjoint fault-free ST -paths containing at least 2n
− 2f vertices.

(b) Both sk and tk are in different paths in (4.3). Without loss of generality, suppose that sk is in P ′1, tk is in P ′2 and the two
end-vertices of P ′i are si and ti for i = 1, 2. Let xL be the neighbor of sk in P ′1(s1, sk), and yL be the neighbor of tk in
P ′2(tk, t2). Since dL(sk, tk) is odd, both dL(xL, yL) and dR(xR, yR) are odd. By Lemma 2.2, there is an xRyR-path PR containing
2n−1 vertices in R. Let

P∗1 = P ′1(s1, xL)+ xLxR + PR + yRyL + P ′2(yL, t2),
P∗2 = P ′2(s2, tk),
P∗k = P ′1(sk, t1).

Replacing P1, P2 and Pk in (4.4) by P∗1 , P∗2 and P∗k yields k disjoint fault-free ST -paths containing at least 2n
− 2f vertices.

Summing up the above discussion, the theorem holds when S ∪ T ⊆ L or S ∪ T ⊆ R.
Case 2. (S ∪ T ) ∩ L ≠ ∅ and (S ∪ T ) ∩ R ≠ ∅.

Let (see Fig. 5)
SL = S ∩ L, TL = T ∩ L and p = |SL|, q = |TL|,
SR = S ∩ R, TR = T ∩ R.

By the symmetry of L and R, we assume fL ≤ fR. By the symmetry of S and T , assume that p ≥ q.
LetWL be the set of neighbors of vertices of SR in L. Then WL ⊂ Y since S ⊂ X . For n ≥ 4 and k ≥ 2, we have
|Y ∩ V (L)| − |TL ∪WL ∪ F | ≥ 2n−2

− q− (k− p)− f
≥ 2n−2

− q− (k− p)− (2n− 2k− 3)
= (2n−2

− 2n+ k+ 3)+ (p− q)
> p− q.

This implies that there is a set UL of (p − q) fault-free vertices in Y ∩ V (L − TL) such that its neighbor-set UR in R is in
X ∩ V (R− SR) and is fault-free. If p > q, let

UL = {u1, u2, . . . , up−q} and UR = {v1, v2, . . . , vp−q}, (4.5)
be any two such vertex-sets, where uivi ∈ E(Qn) for each i = 1, 2, . . . , p− q. If p = q, let UL = UR = ∅. There are two cases.
One is 1 ≤ q ≤ k− 1 or q = 0 and fR ≤ 2n− 2k− 4, and the other one is q = 0 and fR ≥ 2n− 2k− 3.
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Fig. 5. An illustration for the proof of Case 2 of the theorem.

Subcase 2.1. 1 ≤ q ≤ k− 1 or q = 0 and fR ≤ 2n− 2k− 4.
Since fL ≤ fR, then fL ≤ 1

2 f ≤
1
2 (2n− 2k− 2) ≤ 2(n− 1)− 2k− 2 for k ≤ n− 3 and fL ≤ fR = 0 for k = n− 2. By the

induction hypothesis, in L there are p(≤ k) disjoint fault-free paths

P ′1, . . . , P
′

p−q, Pp−q+1, . . . , Pp

connecting SL and TL ∪ UL and containing at least 2n−1
− 2fL vertices, where P ′i connects some vertex in SL to the vertex ui in

UL for each i = 1, 2, . . . , p− q, provided that p > q.
If q ≥ 1, then fR ≤ f ≤ 2n− 2k− 2 ≤ 2(n− 1)− 2(k− q)− 2 and k− q ≤ k− 1 ≤ n− 2. If q = 0 and fR ≤ 2n− 2k− 4,

then fR ≤ 2(n−1)−2k−2, k ≤ n−2. In any case, by the induction hypothesis, in R there are k− q disjoint fault-free paths

P ′′1 , . . . , P ′′p−q, Pp+1, . . . , Pk

connecting SR ∪ UR and TR and containing at least 2n−1
− 2fR vertices, where P ′′i connects the vertex vi in UR to some vertex

in TR for each i = 1, 2, . . . , p− q, provided that p > q. Let (see Fig. 2)

Pi = P ′i + uivi + P ′′i , i = 1, 2, . . . , p− q.

Then the k paths P1, P2, . . . , Pp−q, Pp−q+1, . . . , Pp, Pp+1, . . . , Pk satisfy our requirements.
Subcase 2.2. q = 0 and fR ≥ 2n− 2k− 3.

In this case, TR = T and fL ≤ 1. We can write (4.5) as

UL = {u1, u2, . . . , up} and UR = {v1, v2, . . . , vp}. (4.6)

Since fL ≤ 1 < 2(n − 1) − 2(n − 3) − 2 and fL = 0 for k = n − 2, by the induction hypothesis, in L there are p(≤ k)
disjoint fault-free SLUL-paths

P ′1, P
′

2, . . . , P
′

p (4.7)

containing at least 2n−1
− 2fL vertices. Without loss of generality, assume that P ′i connects si to ui for each i = 1, 2, . . . , p

(see Fig. 6).
Since fR ≤ 2n− 2k− 2 = 2(n− 1)− 2(k− 1)− 2, by the induction hypothesis, in R there are k− 1 disjoint fault-free

paths

P ′′2 , . . . , P ′′p , Pp+1, . . . , Pk (4.8)

connecting SR ∪ UR − {v1} and T − {t1} and containing at least 2n−1
− 2fR vertices in R, where P ′′i connects the vertex vi in

UR and some vertex in T − {t1} for each i = 2, 3, . . . , p (see Fig. 6). Then

P1 = P ′1,
Pi = P ′i + uivi + P ′′i , i = 2, 3, . . . , p
Pi, i = p+ 1, . . . , k

(4.9)

are k disjoint fault-free paths between S and (T − {t1}) ∪ {u1} containing at least 2n
− 2f vertices in Qn. Without loss of

generality, assume that Pi connects si to ti for each i = 2, 3, . . . , k and P1 connects s1 to u1 (see Fig. 6). Let

B = V (P2 ∪ · · · ∪ Pk).

Note if p = 1, P ′i in (4.7) and P ′′i in (4.8) are empty for i ≥ 2. Since each vertex in T has a unique neighbor in L, we can choose
t1 ∈ T such that s1t1 ∉ E(Qn) when p = 1.
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Fig. 6. An illustration for the proof of Subcase 2.2 of the theorem.

We consider two subcases according to whether t1 is in B or not.
Subcase 2.2a. t1 ∉ B.

Let tL be the neighbor of t1 in L. Suppose that tL is fault-free.
Assume tL ∈ S, say tL = s1. By our assumption s1t1 ∉ E(Qn) if p = 1, and so p ≥ 2. We put tL as a temporarily faulty

vertex. Let S ′ = SL−{s1} and U ′ = UL−{u1}. Then L contains at most two faulty vertices; p−1 disjoint fault-free S ′U ′-paths
P ′2, . . . , P

′
p shown in (4.7) contain at least 2n−1

− 2(fL+ 1) vertices; P2, P3, . . . , Pk in (4.9) are k− 1 disjoint paths containing
at least 2n

− 2f − 2 vertices. Together with the path P1 = s1t1, we obtain k paths satisfying the requirements.
Assume now tL ∉ S. Since fL ≤ 1, we have |FL ∪ (UL − {u1})| ≤ k ≤ n − 3. Thus, tL has at least a fault-free neighbor

z ∈ V (L) − (UL − {u1}). Since z ∈ Y , we can choose u1 of UL as z in (4.6). We put tL as a temporarily faulty vertex. Then
L contains at most two faulty vertices. The p disjoint fault-free SLUL-paths shown in (4.7) contain at least 2n−1

− 2(fL + 1)
vertices. Let

P∗1 = P1 + u1tL + tLt1.

Replacing P1 in (4.9) by P∗1 yields k disjoint fault-free ST -paths in Qn. Note that t1 and tL are two new vertices. Then the k
paths P∗1 , P2, . . . , Pk satisfy our requirements.

Now suppose that tL is a faulty vertex. Then tL is the only faulty vertex in L. Take a fault-free neighbor, say wR of t1 in R.
Then its neighbor wL in L is fault-free and in Y . If wR ∉ B, then choose u1 = wL ∈ UL in (4.6). Let

P∗1 = P1 + u1wR + wRt1.

Replacing P1 in (4.9) by P∗1 yields k disjoint fault-free ST -paths in Qn, as required. Assume that wR is in some Pi(2 ≤ i ≤ k),
say in P2(s2, t2). Then wR ≠ t2 since wR and t2 are in different partite sets. Let uR be the neighbor of wR in P2(wR, t2) and uL
be the neighbor of uR in L. Then uL ∈ X .

Assume uL ∈ S, say uL = s1. If p = 1, we can choose another wR such that uL ≠ s1. So assume p ≥ 2. We put s1 as a
temporarily faulty vertex. Let S ′ = SL−{s1} and U ′ = UL−{u1}. Then L contains at most two faulty vertices; there are p− 1
disjoint fault-free S ′U ′-paths P ′2, . . . , P

′
p containing at least 2n−1

− 2(fL+ 1) vertices; P2, P3, . . . , Pk in (4.9) are k− 1 disjoint
paths containing at least 2n

− 2f − 2 vertices. Let

P1 = s1uR + P2(uR, t2),
P∗2 = P2(s2, wR)+ wRt1.

Thus P1, P∗2 , P3, . . . , Pk are k disjoint fault-free ST -paths in Qn, where t1 and s1 are two new vertices, as required.
Assume now uL ∉ S. Choose a fault-free neighbor zL of uL in L such that it is not any ui in UL for 2 ≤ i ≤ p. Then zL ∈ Y .

So choose u1 = zL ∈ UL in (4.6). We put uL as a temporarily faulty vertex. Then L contains at most two faulty vertices. The k
disjoint fault-free SUL-paths shown in (4.7) contain at least 2n−1

− 2(fL + 1) vertices. Let

P∗1 = P1 + zLuL + uLuR + P2(uR, t2),
P∗2 = P2(s2, wR)+ wRt1.

Replacing P1 and P2 in (4.9) by P∗1 and P∗2 yields k disjoint fault-free ST -paths in Qn, where t1 and uL are two new vertices, as
required.
Subcase 2.2b. t1 ∈ B.

In this case, without loss of generality, we assume t1 is in P2 that connects s2 to t2. Let uR and vR be two neighbors of t1 in
P2 and let uL and vL be two neighbors of uR and vR in L, respectively. Then both uL and vL are in Y . Without loss of generality,
assume that vR is in P2(s2, t1) and uR is in P2(t1, t2).
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Fig. 7. Illustrations for the proof of Subcase 2.2b of the theorem.

If uL is fault-free, then choose u1 = uL in UL in (4.6). Let

P∗1 = P2(s2, t1),
P∗2 = P1 + uLuR + P2(uR, t2).

Replacing P1 and P2 in (4.9) by P∗1 and P∗2 yields k disjoint fault-free ST -paths in Qn, as required.
Assume now that uL is faulty vertex. Since f ≤ 2n− 2k− 2, fR = 2n− 2k− 3. If d(uR, t2) > 1, we can choose t2 instead

of t1, which contradicts the assumption that uL is a faulty vertex. Thus we have d(uR, t2) = 1.
Let t2L be the neighbor of t2 in L. Then we have uLt2L ∈ E(Qn).
Assume t2L ∈ SL, say t2L = s1 (see Fig. 7(a)). By the assumption s1t1 ∉ E(Qn) if p = 1. Thus assume p > 1. Let S ′ = S−{s1}

and U ′ = UL − {u1}. Applying Lemma 2.5 and choosing xy to be uLt2L, there are p− 1 (≤ k) disjoint S ′U ′-paths

P ′2, . . . , P
′

p (4.10)

that contain all vertices in L − {uL, t2L}, say P ′i connects si to ui for each i = 2, 3, . . . , p. Combining (4.8) with (4.10), we
obtain k− 1 disjoint fault-free paths between S ′ and T − {t1}

Pi = P ′i + uivi + P ′′i , i = 2, 3, . . . , p
Pi, i = p+ 1, . . . , k (4.11)

that contain at least (2n−1
− 2)+ (2n−1

− 2fR) = 2n
− 2f vertices in Qn. Let

P1 = s1t2 and P∗2 = P2(s2, t1).

Then the paths P1, P∗2 , P3, . . . , Pk satisfy the requirements.
Assume now t2L ∉ SL. Let z ∈ NQn(t2L) ∩ L − {uL} − U ′ (see Fig. 7(b)). Choose u1 = z in UL in (4.6). Applying Lemma 2.5

and choosing xy to be uLt2L, there are p (≤ k) disjoint SLUL-paths

P ′1, P
′

2, . . . , P
′

p (4.12)

that contain all vertices in L − {uL, t2L}, say P ′i connects si to ui for each i = 1, 2, . . . , p. Combining (4.8) with (4.12), we
obtain k disjoint fault-free paths between S and (T − {t1}) ∪ {u1}

P1 = P ′1,
Pi = P ′i + uivi + P ′′i , i = 2, 3, . . . , p
Pi, i = p+ 1, . . . , k (defined in (4.8))

(4.13)

that contain at least (2n−1
− 2)+ (2n−1

− 2fR) = 2n
− 2f vertices in Qn. Let

P∗1 = P1 + u1t2L + t2Lt2 and P∗2 = P2(s2, t1).

Replacing P1 and P2 in (4.13) by P∗1 and P∗2 yields k disjoint fault-free ST -paths in Qn. We remove one vertex uR from paths in
(4.11) and add one vertex t2L to obtain new paths. Thus, these paths still contain at least 2n

− 2f vertices in Qn, as required.
The theorem follows.

5. A constructive algorithm for disjoint paths

In this section, we propose an effective algorithm to find the many-to-many disjoint paths in faulty hypercubes. Before
offering our algorithm, we first recall several existing algorithms.
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Theorem 5.1 (See Fink et al. [10], Dvořák et al. [9]). Let Qn (n ≥ 2) be an n-dimensional hypercubewith faulty vertex set F of size
atmost 2n−4 and every vertex in Qn has at least two fault-free neighbors, then there exists an O(2n)-algorithm LongP(u, v, F , n)
to find a long fault-free path connecting u and v.

Theorem 5.2. For any integer k with 1 ≤ k ≤ n− 1 and for any two sets S and T of k fault-free vertices in different partite sets
in Qn (n ≥ 2), there exists an O(2n) algorithm MDPChen(S, T , n) to find k disjoint fault-free ST-paths which contain all vertices
in Qn.

Proof. Let T (n) be the maximum time to implement MDPChen(S, T , n). We have T (n) ≤ T (n− 1)+ O(2n−1) in Case 1, and
T (n) ≤ 2T (n− 1)+ O(1) in other Cases (See Chen [1]). Note that T (2) = O(1). Thus T (n) ≤ O(2n). �

As Lemma 2.5 establishes the existence of disjoint paths with much vertices, the procedure MDPE is the method to find
such paths. This is the following theorem.

Theorem 5.3. Let x and y be two adjacent vertices of Qn (n ≥ 3), Then, for any integer k with 1 ≤ k ≤ n− 2, and any two sets
S and T of k vertices in different partite sets in Qn − {x, y}, there exists an O(2n)-algorithm MDPE(S, T , xy, n) to find k disjoint
ST-paths containing all vertices in Qn − {x, y}.

Proof. Let T (n) be the maximum time to run procedure MDPE(S, T , xy, n). In the constructive proof of Lemma 2.5, we
implement MDPE in the subcube L, and call procedure MDPChen in R. By Theorem 5.2, we have T (n) ≤ T (n− 1)+ O(2n−1).
Note that T (3) = O(1). Thus T (n) ≤ O(2n). �

Algorithm 1 MDPMain(S, T , F , n)
Input: S = {s1, s2, . . . , sk}, T = {t1, t2, . . . , tk}, F , n.
Output: (P1, P2, . . . , Pk)
1: if k = n− 1 then
2: (P1, P2, . . . , Pk)← MDPChen(S, T , n);
3: end if
4: Choose some proper j ∈ {1, 2, . . . , n} to partition Qn as Lj ⊙ Rj , L← Lj , R← Rj;
5: if S ∪ T ⊆ L or S ∪ T ⊆ R, say the former one then
6: (P1, P2, . . . , Pk)← MDP1(S, T , F , n);
7: else // (S ∪ T ) ∩ L ≠ ∅ and (S ∪ T ) ∩ R ≠ ∅
8: (P1, P2, . . . , Pk)← MDP2(S, T , F , n);
9: end if

Algorithm 2 MDP1(S, T , F , n)
Input: S = {s1, s2, . . . , sk}, T = {t1, t2, . . . , tk} such that S ∪ T ⊆ L, F , n.
Output: (P1, P2, . . . , Pk)
1: if fL ≤ 2n− 2k− 4 then
2: (P ′1, P

′
2, . . . , P

′
k)← MDPMain(S, T , FL, n− 1);

3: Choose zR and vR in R, PR ← LongP(zR, vR, FR, n− 1), Merge;
4: else if fL = 2n− 2k− 3 then
5: Choose a faulty vertex w to be temporarily fault-free, (P ′1, P

′
2, . . . , P

′
k)← MDPMain(S, T , FL, n− 1);

6: Choose zR and vR in R, PR ← LongP(zR, vR, FR, n− 1), Merge;
7: else // fL = 2n− 2k− 2
8: (P ′1, P

′
2, . . . , P

′
k−1)← MDPMain(S − {sk}, T − {tk}, FL, n− 1);

9: Choose xR and yR in R, PR ← LongP(xR, yR, FR, n− 1), Merge;
10: end if

Theorem 5.4. Let Qn (n ≥ 2) be an n-dimensional hypercube with faulty vertex set F of size f , and let k be an integer with
1 ≤ k ≤ n− 1. If f ≤ 2n− 2k− 2 and each fault-free vertex has at least two fault-free neighbors then, for any two sets S and
T of k fault-free vertices in different partite sets, there exists an O(2n)-algorithm MDPMain(S, T , F , n) to construct the k disjoint
fault-free paths linking S and T in Qn which contain at least 2n

− 2f vertices.

Proof. We offer an efficient algorithm, MDPMain(Algorithm 1), to find many-to-many disjoint paths in hypercubes with
faulty vertices. In implementing MDPMain, it may be called procedure MDPChen (Theorem 5.2), MDP1 (Algorithm 2) or MDP2
(Algorithm 3).

After obtaining the disjoint paths in L and R, one needs to incorporate the paths and avoid some temporarily fault-free
vertices at the same time. We call this procedure Merge.

Now we analyze the time complexity of algorithm MDPMain. Let T (n) be the maximum time to run procedure
MDPMain(S, T , F , n). Then T (2) = O(1).

If k = n− 1, implement MDPChen in Qn. By Theorem 5.2, we have

T (n) ≤ O(2n). (5.14)



X.-J. Li et al. / Discrete Applied Mathematics ( ) – 13

Algorithm 3 MDP2(S, T , F , n)
Input: S = {s1, s2, . . . , sk}, T = {t1, t2, . . . , tk} such that (S ∪ T ) ∩ L ≠ ∅ and (S ∪ T ) ∩ R ≠ ∅, F , n.
Output: (P1, P2, . . . , Pk)
1: SL ← S ∩ L, TL ← T ∩ L, p← |SL|, q← |TL|, SR ← S ∩ R, TR ← T ∩ R;
2: Choose L and R such that fL ≤ fR , Choose S and T such that p ≥ q, Find proper vertex set UL and UR;
3: if 1 ≤ q ≤ k− 1 or q = 0 and fR ≤ 2n− 2k− 4 then
4: (P ′1, . . . , P

′
p−q, Pp−q+1, . . . , Pp)← MDPMain(SL, TL ∪ UL, FL, n− 1);

5: (P ′′1 , . . . , P ′′p−q, Pp+1, . . . , Pk)← MDPMain(SR ∪ UR, TR), Merge;
6: else // q = 0 and fR ≥ 2n− 2k− 3
7: if p = 1 then
8: Choose t1 in T such that s1t1 ∉ E(Qn);
9: end if

10: (P ′′2 , . . . , P ′′p , Pp+1, . . . , Pk)← MDPMain(SR ∪ UR − {v1}, T − {t1}, FR, n− 1);
11: B← V (P ′′2 , . . . , P ′′p , Pp+1, . . . , Pk);
12: if t1 /∈ B then
13: tL ← N(t1) ∩ L;
14: if tL is fault-free then
15: if tL ∈ S, say tL = s1; then
16: S′ ← SL − {s1},U ′ ← UL − {u1}, (P ′2, . . . , P

′
p)← MDPMain(S′,U ′, FL ∪ {tL}, n− 1),

17: P1 ← s1t1 , Merge;
18: else // tL /∈ S
19: (P ′1, . . . , P

′
p)← MDPMain(SL,UL, FL ∪ {tL}, n− 1), P1 ← P ′1 + u1tL + tLt1 , Merge;

20: end if
21: else // tL is a faulty vertex;
22: Choose a fault-free vertex wR in N(t1) ∩ R, wL ← N(wR) ∩ L;
23: if wR /∈ B then
24: u1 ← wL , (P ′1, P

′
2, . . . , Pp)← MDPMain(SL,UL, FL, n− 1), P1 ← P ′1 + u1tL + tLt1 , Merge;

25: else // wR ∈ B, say wR ∈ P2(s2, t2)
26: uR ← N(wR) ∩ P2(wR, t2), uL ← uR ∩ L;
27: if uL ∈ S, say uL = s1 then
28: S′ ← SL − {s1},U ′ ← UL − {u1}, (P ′1, P

′
2, . . . , Pp)← MDPMain(S′,U ′, FL ∪ {s1}, n− 1);

29: Merge, P1 ← s1uR + P2(uR, t2), P2 ← P2(s2, wR)+ wRt1;
30: else // uL /∈ S ;
31: Choose a fault-free vertex u1 in N(uL) ∩ L,
32: (P ′1, P

′
2, . . . , Pp)← MDPMain(SL,UL, FL ∪ {uL}, n− 1), Merge;

33: P1 ← P1 + zLuL + uLuR + P2(uR, t2), P2 ← P2(s2, wR)+ wRt1;
34: end if
35: end if
36: end if
37: else // t1 ∈ B, Say t1 ∈ P2
38: uR ← N(t1) ∩ P2(t1, t2), vR ← N(t1) ∩ P2(s2, t1);
39: uL ← N(uR) ∩ L, vL ← N(vR) ∩ L;
40: if uL is fault-free then
41: u1 ← uL , (P ′1, P

′
2, . . . , Pp)← MDPMain(SL,UL, FL, n− 1), Merge;

42: P1 ← P2(s2, t1), P2 ← P1 + uLuR + P2(uR, t2);
43: else // uL is fault vertex, d(uR, t2) = 1.
44: t2L ← t2 ∩ L;
45: if t2L ∈ SL then
46: S′ ← S − {s1},U ′ ← UL − {u1};
47: (P ′2, . . . , P

′
p)← MDPE(S′,U ′, uLt2L, n− 1) ; // Using Lemma2.5

48: Merge, P1 ← s1t1, P2 ← P2(s2, t1);
49: else // t2L ∉ SL
50: Choose u1 ← NQn (t2L) ∩ L− {uL} − U ′;
51: (P ′1, P

′
2, . . . , P

′
p)← MDPE(S′,U ′, uLt2L, n− 1); // Using Lemma2.5

52: Merge, P1 ← P1 + u1t2L + t2Lt2, P2 ← P2(s2, t1);
53: end if
54: end if
55: end if
56: end if

We take O(n) time to partition Qn in a suitable way. If MDP1 (Algorithm 2) is implemented, then MDPMain in L takes time
T (n− 1); choosing two proper vertices in the paths of L takes time O(n); LongP in R takes time O(2n−1). Thus

T (n) ≤ O(n)+ T (n− 1)+ O(n)+ O(2n−1). (5.15)

If MDP2 (Algorithm 3) is implemented, then in Subcase 2.1 and Subcase 2.2a,

T (n) ≤ 2T (n− 1)+ O(n); (5.16)

in Subcase 2.2b, MDPMain in L takes time T (n− 1); MDPE in R takes time O(2n−1). Thus

T (n) ≤ T (n− 1)+ O(n)+ O(2n−1). (5.17)

Then by (5.14)–(5.17), we have T (n) ≤ O(2n). �
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Weshould point out thatLongP cannot solve kdisjoint-path problemwith k ≥ 2 andMDPChendoes notwork if f ≥ n−k.
Comparing to this, our algorithm is an effective procedure to find many-to-many disjoint paths in hypercubes with more
faulty vertices.

When f ≤ 2n − 2k − 2, our algorithm can solve k disjoint-path problem. The total running time is bounded by O(2n),
which is a linear function of the number of the vertices in Qn. Since our algorithm is a centralized one, when n is very large,
our algorithm cannot find the many-to-many disjoint paths in a reasonable amount of time. It could be possible to modify
our algorithm to a distributed one and find the many-to-many paths in a relatively short time.

When the number of faulty vertices exceeds 2n− 2k− 2, our algorithm may not find the many-to-many disjoint paths.
The total number and distribution of the faulty verticeswill affect the running time of our algorithm. But under the condition
that f ≤ 2n− 2k− 2, this effect is not significant.

6. Conclusion

In this paper, we consider the problem of many-to-many disjoint paths in the hypercube Qn with f faulty vertices. We
prove that for any integer kwith 1 ≤ k ≤ n−1 and any two sets S and T of k fault-free vertices in different parts ofQn (n ≥ 3),
if f ≤ 2n− 2k− 2 and each fault-free vertex has at least two fault-free neighbors, then there exist k fully disjoint fault-free
paths linking S and T which contain at least 2n

− 2f vertices. Weakening the condition that each fault-free vertex has at
least two fault-free neighbors is an interesting future research question. We also purpose a centralized O(2n)-algorithm for
finding many-to-many disjoint paths in Qn, whose running time is not greatly affected by the faulty vertices. When n is very
large, our algorithm cannot find the paths required in a reasonable time. It could be possible to modify our algorithm to a
distributed one and find the paths in a relatively less time.
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