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Abstract This paper considers the edge-connectivity and the restricted edge-connectivity of replacement prod-

uct graphs, gives some bounds on edge-connectivity and restricted edge-connectivity of replacement product

graphs and determines the exact values for some special graphs. In particular, the authors further confirm that

under certain conditions, the replacement product of two Cayley graphs is also a Cayley graph, and give a

necessary and sufficient condition for such Cayley graphs to have maximum restricted edge-connectivity. Based

on these results, we construct a Cayley graph with degree d whose restricted edge-connectivity is equal to d+ s

for given odd integer d and integer s with d � 5 and 1 � s � d− 3, which answers a problem proposed ten years

ago.
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1 Introduction

Throughout this paper, we follow [35] for graph-theoretical terminologies and notation not defined here.

Specially, G = (V,E) is a simple connected undirected graph, where V = V (G) is the vertex-set of G and

E = E(G) is the edge-set of G; dG(x) is the degree of a vertex x in G, the number of edges incident with

x in G; δ(G) = min{dG(x) : x ∈ V (G)} is the minimum degree of G; ξ(G) = min{dG(x) + dG(y) − 2 :

xy ∈ E(G)} is the minimum edge-degree of G.

The connectivity κ(G) (resp. edge-connectivity λ(G)) of G is defined as the minimum number of

vertices (resp. edges) whose removal results in disconnected. The well-known Whitney inequality states

that κ(G) � λ(G) � δ(G) for any graph G. In this paper, we are interested in the edge-connectivity

λ(G).

It is well known that when the underlying topology of an interconnection network is modeled by

a connected graph G = (V,E), where V is the set of processors and E is the set of communication

links in the network, the edge-connectivity λ(G) of G is an important measurement for reliability and

fault tolerance of the network since the larger λ(G) is, the more reliable the network is. However,

when computing λ(G), one implicitly assumes that all edges incident with the same vertex may fail
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simultaneously. Consequently, this measurement is inaccurate for large-scale processing systems in which

some subsets of system links cannot fail at the same time in real applications.

To overcome the shortcomings of edge-connectivity, Esfahanian and Hakimi [5] proposed the concept

of the restricted edge-connectivity λ′(G) of a graph G, which is the minimum number of edges whose

removal results in disconnected and no isolated vertices, and gave the following result.

Theorem 1.1 (See [5]). λ(G) � λ′(G) � ξ(G) for any graph G of order n (� 4) except for a star

K1,n−1.

A graph G is vertex-transitive if for any two vertices x and y in G, there is a σ ∈ Aut (G) such that

y = σ(x), where Aut (G) is the automorphism group of G. Clearly, ξ(G) = 2d− 2 for a vertex-transitive

connected graph G with degree d. Xu et al. obtained the following results.

Theorem 1.2 (See [37]). Let G be a vertex-transitive connected graph with order n (� 4) and degree

d (� 2). Then

(a) λ′(G) = ξ(G) = 2d− 2 if n is odd or G contains no triangles;

(b) there exists an integer m (� 2) such that d � λ′(G) = n
m � 2d− 3 otherwise.

Theorem 1.3 (See [18]). For any given integers d and s with d � 3 and 0 � s � d − 3, there is a

connected vertex-transitive graph G with degree d and λ′(G) = d+ s if and only if either d is odd or s is

even.

In [18], for any odd integer d (� 3) and any integer s with 0 � s � d−3, Li and Xu constructed a vertex-

transitive graph G with degree d and λ′(G) = d+ s = 1
2 n. Note that the condition “d � λ′(G) � 2d− 3”

implies λ′(G) = d if d = 3. By Theorem 1.2, if a vertex-transitive graph G is not λ′-optimal, then

d � λ′(G) � n
2 . Thus, a quite natural problem is proposed as follows (see [36, Conjecture 1]).

Problem 1.4. Given an odd integer d (� 5) and any integer s with 1 � s � d − 3, whether or not

there is a vertex-transitive graph G with order n and degree d such that λ′(G) = d+ s < 1
2 n.

In this paper, we answer this question confirmedly by constructing a Cayley graph, which is the

replacement product of two Cayley graphs.

We will discuss the restricted edge-connectivity of a replacement product graph in this paper. The

rest of this paper is organized as follows. In Section 2, we give some definitions with related results.

In Section 3, we establish the bounds on the edge-connectivity for a replacement product graph and

determine exact values under some special conditions. In Section 4, we give the lower and upper bounds on

restricted edge-connectivity for replacement product graphs and determine exact values under some given

conditions. In Section 5, we focus on Cayley graphs and further confirm that under certain conditions,

the replacement product of two Cayley graphs is still a Cayley graph, and give a necessary and sufficient

condition for such Cayley graphs to have maximum restricted edge-connectivity. Based on these results,

we construct a Cayley graph to answer Problem 1.4 confirmedly. A conclusion is presented in Section 6.

2 Preliminaries

We first introduce the concept of the restricted edge-connectivity, which was proposed by Esfahanian and

Hakimi [5], and we state here slightly different from theirs.

Let G be a non-trivial connected graph and F ⊂ E(G). If G − F is disconnected and contains no

isolated vertices, then S is called a restricted edge-cut of G. The restricted edge-connectivity of G,

denoted by λ′(G), is defined as the minimum cardinality over all restricted edge-cuts of G. Esfahanian

and Hakimi [5] proved λ′(G) is well-defined for any connected graph G of order n (� 4) except for a star

K1,n−1. A graph G is λ′-connected if λ′(G) exists, and a restricted edge-cut F is a λ′-cut if |F | = λ′(G).

A λ′-connected graph is λ′-optimal if λ′(G) = ξ(G), and not λ′-optimal otherwise. It is clear that if G is

a δ-regular and λ′-optimal graph of order n, then λ(G) = δ(G) = δ and n � 4.

The restricted edge-connectivity provides a more accurate measure of fault-tolerance of networks than

the edge-connectivity (see [4, 5]). Thus, determining the value of λ′ for some special classes of graphs or
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characterizing λ′-optimal graphs have received considerable attention in the literature (see, for example,

[5, 11, 12, 20, 23, 24, 31–33]).

Let Γ be a finite group, and let S be a subset of Γ not containing the identity element of Γ. The Cayley

graph CΓ(S) is the graph having vertex-set Γ and edge-set {xy : x−1y ∈ S, x, y ∈ Γ}.
Generally speaking, CΓ(S) is a digraph. The following result is well-known (see, for example, [34]).

Lemma 2.1. Cayley graphs are vertex-transitive and the Cartesian product of Cayley graphs is a

Cayley graph.

If S = S−1, then CΓ(S) is an undirected graph. We are interested in undirected graphs in this paper.

We now introduce two classes of Cayley graphs. Because of their excellent features, they are the most

popular, versatile and efficient topological structures of interconnection networks (see, for example, [34]).

Example 2.2. A circulant graph G(n;±S), where S = {s1, s2, . . . , sk} ⊆ {1, 2, . . . , � 1
2n�} with s1 <

s2 < . . . < sk and n � 3, has vertex-set V = {0, 1, . . . , n − 1} and edge-set E = {ij : |j − i| ≡
si (mod n) for some si ∈ S}.

Clearly, G(n;±1) is a cycle Cn and G(n;±{1, 2, . . . , � 1
2n�}) is a complete graph Kn. The two graphs

shown in Figure 1 are G(8;±{1, 3}) and G(8;±{1, 3, 4}).
Note that the identity element of the ring group Zn (n � 2) is just the zero element, and the inverse

of any i ∈ Zn is n− i. If let S ⊆ {1, 2, . . . , n− 1} and S−1 = S, then Cayley graph CZn(S) is a circulant

graph G(n;S) if n � 3, and CZ2(S) = K2. Thus, circulant graphs are vertex-transitive by Lemma 2.1.

Li and Li [19] showed that G(n;±S) is λ′-optimal and λ′(G(n;±S)) = 4k − 2 if k � 2 and sk < n
2 .

Example 2.3. The hypercube Qn has the vertex-set consisting of 2n binary strings of length n, two

vertices being linked by an edge if and only if they differ in exactly one position. Hypercubes Q1, Q2, Q3

and Q4 are shown in Figure 2.

It is easy to see that the hypercube Qn is Cartesian products K2 × K2 × · · · × K2 of n complete

graph K2. Let (Z2)
n = Z2 × Z2 × · · · × Z2 and

e0 = 0 · · · 0︸ ︷︷ ︸
n

and ei = 0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · ·0︸ ︷︷ ︸
n−i

for each i = 1, 2, . . . , n. (2.1)

Then e0 is the identity element of (Z2)
n and, by Lemma 2.1, Qn is a Cayley graph C(Z2)n(S) and so is

vertex-transitive, where S = {e1, e2, . . . , en}, each of which is self-inverse and, hence, S = S−1.

Esfahanian [4] showed that the hypercube Qn is λ′-optimal, i.e., λ′(Qn) = 2n− 2 for n � 2.

Now, we introduce the replacement product. There are several equivalent definitions of the replacement

product proposed by Hoory et al. [13] and Reingold et al. [28]. Here, we adopt the definition proposed by

Hoory et al. [13]. Let G1 be a δ1-regular graph on n vertices and G2 be a δ2-regular graph on δ1 vertices.

For every vertex x ∈ V (G1), we label on all edges incident with x, say e1x, e
2
x, . . . , e

δ1
x .

Definition 2.4. Let G1 be a δ1-regular graph on n vertices and G2 be a δ2-regular graph on δ1
vertices. The replacement product of G1 and G2 is a graph, denoted by G1 R©G2, where V (G1 R©G2)

= V (G1)× V (G2), two distinct vertices (x, i) and (y, j), where x, y ∈ V (G1) and i, j ∈ V (G2), are linked

by an edge in G1 R©G2 if and only if either x = y and ij ∈ E(G2), or xy ∈ E(G1) and eix = xy = ejy.

0

4

7 1

6 2

5 3

0

4

7 1

6 2

5 3

Figure 1 (a) G(8;±{1, 3}); (b) G(8;±{1, 3, 4})
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Figure 2 The n-cubes Q1, Q2, Q3 and Q4
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Figure 3 K4 R©C3

Figure 3 shows the replacement product of K4 and C3 with given labelling of edges around vertices

of K4.

By Definition 2.4, we can obtain the following proposition.

Proposition 2.5. G1 R©G2 is (δ2+1)-regular and has n δ1 vertices. Moreover, the vertex-set of G1 R©G2

can be partitioned into {X1, X2, . . . , Xn} such that G[Xi] ∼= G2 for each i ∈ In.

The inflation or inflated graph of G is a graph obtained from G by replacing each vertex x by a complete

graph KdG(x) and joining each edge to a different vertex of KdG(x). Inflation graphs have been studied

in [3,6,7,14,21,27]. Clearly, if G is n-regular then G R©Kn is the inflation graph of G. In special, Liu and

Zhang [21] showed that Qn R©Kn is a Cayley graph.

The lexicographic product G1[G2] of two graphs G1 and G2 is a graph with vertex-set V (G1)× V (G2),

and in which two vertices (x, i) and (y, j) are adjacent if and only if either x = y and ij ∈ E(G2) or

xy ∈ E(G1), without the condition “eix = xy = ejy”. Thus, the replacement product graph G1 R©G2 is a

subgraph of the lexicographic product graph G1[G2]. In special, Li et al. [17] showed that G1[G2] is a

Cayley graph if G1 and G2 are Cayley graphs.

The replacement product of two graphs is an important constructing method, which can obtain a larger

graph from two smaller graphs, and so it has been widely used to address many fundamental problems in

such areas as graph theory, combinatorics, probability, group theory, in the study of expander graphs and
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Figure 4 The cube-connected cycle CCC(3) = Q3 R©C3

graph-based coding schemes [1, 2, 10, 13, 15, 16, 28]. The replacement product has been also used in the

designing of an interconnection networks. For example, the well-known n-dimensional cube-connected

cycle CCCn is a replacement product Qn R©Cn, where Qn is a hypercube and Cn is a cycle of length n

(see [26]). The graph shown in Figure 4 is Q3 R©C3 = CCC3. In addition, n-dimensional hierarchical

hypercube is a replacement product Q2n R©Qn (see [22]).

For simplicity, when a replacement product graph G1 R©G2 is mentioned, if no otherwise specified, we

always assume that G1 is a δ1-regular graph with n vertices and G2 is a δ2-regular graph with δ1 vertices.

Moreover, we simply write κi = κ(Gi), λi = λ(Gi) and δi = δ(Gi) for each i = 1, 2, and write xG2 for

{x} ×G2 for any x ∈ V (G1), and let In = {1, 2, . . . , n}.
In this paper, we also need some notation. For a subset X ⊂ V (G), use G[X ] to denote the subgraph

of G induced by X . For two disjoint subsets X and Y in V (G), use [X,Y ] to denote the set of edges

between X and Y in G. In particular, EG(X) = [X,X] and let dG(X) = |EG(X)|, where X = V (G) \X .

For a λ′-connected graph G, there is certainly a subset X ⊂ V (G) with |X | � 2 such that EG(X) is a

λ′-cut and, both G[X ] and G[X ] are connected. Such an X is called a λ′-fragment of G. A λ′-fragment

X of G with minimum cardinality is called a λ′-atom of G. The λ′-atom has been successfully used in

the study of restricted edge-connectivity of graphs (see, for example, [23, 25, 30, 37]).

3 Edge-connectivity of G1 R©G2

In this section, we investigate the edge-connectivity of replacement product graph G1 R©G2. By Defini-

tion 2.4, it is easy to see that if G1 and G2 are connected, then G1 R©G2 is also connected. We now

establish the upper and lower bounds on the edge-connectivity for replacement product graphs.

Theorem 3.1. If both G1 and G2 are connected, then

min{λ1, λ2} � λ(G1 R©G2) � min{λ1, δ2 + 1}. (3.1)

Furthermore,

min{λ1, λ2 + 1} � λ(G1 R©G2) if κ1 � 2. (3.2)

Proof. Let G = G1 R©G2. Clearly,

λ(G) � δ(G) = δ2 + 1. (3.3)
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Let S ⊂ V (G1) and EG1(S) be a λ1-cut of G1, and T = {(x, i) : x ∈ S, i ∈ V (G2)}. Then EG(T )

is an edge-cut of G. Since there is an edge xy in G1 if and only if there is exactly one edge between

V (xG2) and V (yG2) in G, xy ∈ EG1(S) if and only if there are two vertices i and j of G2 such that

((x, i), (y, j)) ∈ EG(T ). Therefore, |EG(T )| = |EG1(S)| = λ1 and

λ(G) � |EG(T )| = λ1. (3.4)

Combining (3.3) with (3.4), we establish the upper bound on λ(G1 R©G2) in (3.1). We now show the

lower bound in (3.1).

Let F be a λ-cut in G. Then there are two λ-fragments associated with F in G, say, X and X. Let

{V1, V2, . . . , Vn} be a partition of V (G) satisfied property in Proposition 2.5.

Assume for each i ∈ In, either Vi ⊂ X or Vi ⊂ X. Let Y = {i : Vi ⊂ X, i ∈ In}. Then Y ⊂ V (G1),

EG1(Y ) is an edge-cut of G1 and |EG1(Y )| = |F |, and so

λ(G) = |F | = |EG1(Y )| � λ1. (3.5)

Assume now that there exists some i ∈ In such that Vi ∩X �= ∅ and Vi ∩X �= ∅. Then
λ(G) = |F | � |[Vi ∩X,Vi ∩X]| � λ(G[Vi]) = λ(G2) = λ2. (3.6)

Combining (3.5) with (3.6), we establish the lower bound on λ(G1 R©G2) in (3.1).

To prove (3.2), let (x, i) be any vertex of Vx ∩X and (x, j) be any vertex of Vx ∩X. Since G[Vx] ∼= G2

and G2 is λ2-connected, there exist λ2 edge-disjoint paths P1, P2, . . . , Pλ2 between (x, i) and (x, j) in

G[Vx] ⊂ G. Let (y, k) ∈ NG((x, i)) and (z, �) ∈ NG((x, j)), where {y, z} ⊆ NG1(x). Since κ1 � 2, there

exist at least two internally vertex-disjoint paths between y and z in G1, one of them avoids x. By the

connectedness ofG2, there exists a path Q between (y, k) and (z, �) in G that avoids the vertices of Vx. Let

P0 = 〈(x, i), Q, (x, j)〉. Thus, P0, P1, P2, . . . , Pλ2 are λ2 + 1 edge-disjoint paths between (x, i) and (x, j).

Since (x, i) ∈ Vx ∩X and (x, j) ∈ Vx ∩X, it is easy to find |E(Pi) ∩ F | � 1 for each i ∈ {0, 1, 2, . . . , λ2}
and so λ(G) = |F | � λ2 + 1 as required.

Combining the Whitney’s inequality κ(G) � λ(G) � δ(G) with Theorem 3.1, we obtain the following

results immediately.

Corollary 3.2. Suppose that both G1 and G2 are connected. Then

(a) λ(G1 R©G2) = 1 if λ1 = 1;

(b) λ(G1 R©G2) = λ1 if λ2 � λ1;

(c) λ(G1 R©G2) = λ1 if κ1 � 2 and λ2 � λ1 − 1;

(d) λ(G1 R©G2) = min{λ1, δ2 + 1} if κ1 � 2 and λ2 = δ2.

Lemma 3.3. λ(G) � 1
2Δ(G) for any connected graph that contains cut-vertices.

Proof. Suppose that x is a cut-vertex of G and G − x has k components, where k � 2. Then λ(G) �
1
k |N(x)| � 1

2Δ(G).

Corollary 3.4. λ(G R©Kn) = λ(G) for any n-regular connected graph G.

Proof. Clearly, λ(G) � δ(G) = n and λ(Kn) = δ(Kn) = n−1. If κ(G) � 2, then λ(G R©Kn) = λ(G) by

Theorem 3.1. If κ(G) = 1, by Lemma 3.3, then λ(G) � n
2 < n and so λ(Kn) � λ(G). By Corollary 3.2(b),

the result follows.

Corollary 3.5. λ(G R©Cn) = min{λ(G), 3} for any 2-connected n-regular graph G.

Example 3.6. λ(K4 R©C3) = λ(K4) = 3, and λ(CCCn) = λ(Qn R©Cn) = min{λ(Qn), 3} = min{n, 3}
= 3 if n � 3.

Remark 3.7. We conclude this section with a remark on Theorem 3.1. The condition “κ1 � 2” in (3.2)

is necessary. For example, two graphs G1 and G2 are shown in Figure 5. It is easy to see that κ1 = 1,

λ1 = 4, and λ2 = δ2 = 2, G1 R©G2 is 3-regular, and λ(G1 R©G2) = 2 < min{4, 3} = min{λ1, λ2 +1}, which
contradicts to the lower bound on λ(G1 R©G2) given in (3.2).
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Figure 5 Two graphs G1 and G2 in Remark 3.7

4 Restricted edge-connectivity of G1 R©G2

In this section, we investigate the restricted edge-connectivity of the replacement product of two regular

graphs.

Theorem 4.1. If both G1 and G2 are connected, then λ′(G1 R©G2) � min{λ1, 2δ2}.
Proof. Let G = G1 R©G2. Since G is (δ2 + 1)-regular and δ2 + 1 � 2, it is easy to see that G is

λ′-connected. By Theorem 1.1,

λ′(G) � ξ(G) = 2δ2. (4.1)

Let X ⊂ V (G1) such that [X,X]G1 be a λ1-cut of G1. Then G1[X ] and G1[X ] are both connected. Let

Y = {(x, i) : x ∈ X, i ∈ V (G2)}. Then G[Y ] and G[Y ] are connected, and |Y | � |V (G2)| = δ1 � 2,

|Y | � |V (G2)| = δ1 � 2. Hence, [Y, Y ]G is a restricted edge-cut of G. There is an edge xy in G1 if and

only if there is exactly one edge between V (xG2) and V (yG2) in G, so xy ∈ [X,X]G1 if and only if there

are two vertices i and j of G2 such that ((x, i), (y, j)) ∈ [Y, Y ]G. Therefore, |[Y, Y ]G| = |[X,X]G1 | = λ1

and

λ′(G) � |[Y, Y ]G| = λ1. (4.2)

Combining (4.1) with (4.2), the result follows.

Theorem 4.2. λ′(G R©Kn) = λ(G) for any n-regular connected graph G.

Proof. By Corollary 3.4, λ(G R©Kn) = λ(G). By Theorem 4.1, λ′(G R©Kn) � λ(G), and so

λ(G) = λ(G R©Kn) � λ′(G R©Kn) � λ(G).

The result follows.

For δ1 � 3, Theorem 4.2 shows that λ′(G1 R©G2) = λ(G1). In the following discussion, we always

assume δ1 � 4.

Lemma 4.3. Suppose that both G1 and G2 are connected and δ1 � 4, F is a λ′-cut of G1 R©G2 and

{X1, X2, . . . , Xn} is a partition of V (G1 R©G2) satisfying property in Proposition 2.5. If there is some

i ∈ In such that G[Xi] is disconnected in G− F , then

λ′(G1 R©G2) � min{κ1 + λ2 − 1, 2λ2, λ
′
2 + 2}. (4.3)

Proof. Let G = G1 R©G2. Since F is a λ′-cut of G, there is some X ⊂ V (G) with |X | � 2 such that

F = EG(X). Without loss of generality we assume |X | � |X |.
If there exist two distinct j, k ∈ In such that G[Xj ] and G[Xk] are disconnected in G− F , then

|F | � λ(G[Xj ]) + λ(G[Xk]) = 2λ2. (4.4)

Now assume that there exists exactly one integer, say j ∈ In, such that G[Xj ] is disconnected in G−F .

Then Xj ∩X �= ∅ and Xj ∩X �= ∅. Consider the following two cases.

Case 1. X ⊂ Xj . In this case, X = (V (G) \Xj) ∪ (Xj \X). Thus

|F | = |[X,X]| = |[X, (V (G) \Xj)]|+ |[X,Xj \X ]| = |X |+ |[X,Xj \X ]|.
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If |X | = δ1 − 1, then |[X,Xj \X ]| = δ2, and so |F | = δ1 − 1 + δ2 � 2δ2 � 2λ2. If 2 � |X | � δ1 − 2, then

[X,Xj \X ] is a restricted edge-cut of G[Xj ], and so |F | � |X |+ λ′(G[Xj ]) � λ′
2 + 2. Hence, in this case,

|F | � min{2λ2, λ
′
2 + 2}. (4.5)

Case 2. X � Xj . Since |X | � |X |, X � Xj. Equivalently, there exist at least two sets Xk and X�

other than Xj such that Xk ⊂ X and X� ⊂ X. Since κ(G1 − u) � κ1 − 1 � 0 for any vertex u ∈ V (G1),

there are at least κ1 − 1 internally vertex-disjoint paths between any two distinct vertices x and y in

G1 − u. By the definition of G, it is easy to see that there are at least κ1 − 1 internally vertex-disjoint

paths P1, P2, . . . , Pκ1−1 between Xk and X� in G −Xj . Let F ′ = F \ [Xj ∩X,Xj ∩X ]. Since Xk ⊂ X

and X� ⊂ X, |E(Pi) ∩ F ′| � 1 for each i ∈ {1, 2, . . . , κ1 − 1} and |F ′| � κ1 − 1. Thus, we have

|F | = |[X,X]| = |F ′|+ |[Xj ∩X,Xj ∩X]| � κ1 − 1 + λ(G[Xj ]) = κ1 + λ2 − 1,

i.e.,

|F | � κ1 + λ2 − 1. (4.6)

Note that if κ1 = 1, then |F | � |[Xj ∩X,Xj ∩X ]| � λ2 and so (4.6) also holds.

By (4.4)–(4.6), the inequality (4.3) is established.

Theorem 4.4. Suppose that both G1 and G2 are connected and δ1 � 4. Then

min{λ1, κ1 + λ2 − 1, 2λ2, λ
′
2 + 2} � λ′(G1 R©G2) � min{λ1, 2δ2}. (4.7)

Furthermore, if κ1 � λ1 − λ2 + 1 (or κ1 � λ2 + 1) and G2 is λ′-optimal, then

λ′(G1 R©G2) = min{λ1, 2δ2}. (4.8)

Proof. Let G = G1 R©G2. By Theorem 4.1, we only need to show the lower bound on λ′(G1 R©G2)

in (4.7). To the end, let {X1, X2, . . . , Xn} be a partition of V (G) satisfying property in Proposition 2.5

and F be a λ′-cut of G. There is some X ⊂ V (G) with |X | � 2 such that F = EG(X). Without loss of

generality we assume |X | � |X |.
By Lemma 4.3, we only need to show that λ′(G) � λ1 if G[Xi] is connected in G− F for each i ∈ In.

In this case, either Xi ⊂ X or Xi ⊂ X for each i ∈ In. Thus, we can assume F = EG(Y × V (G2)),

where Y ⊂ V (G1). By the definition of G, |F | = |EG(Y × V (G2))| = |EG1(Y )|. Since |EG1(Y )| � λ1, we

have |F | � λ1, and so the lower bound on λ′(G1 R©G2) in (4.7) is established.

We now show the equality (4.8). If κ1 � λ1 − λ2 + 1 (or κ1 � λ2 + 1) and G2 is λ′-optimal, then

λ′
2 = ξ(G2) = 2δ2 − 2, and so λ2 = δ2. Thus, we have κ1 + λ2 − 1 � λ1 (or κ1 + λ2 − 1 � 2λ2), and so

min{λ1, κ1 + λ2 − 1, 2λ2, λ
′
2 + 2} = min{λ1, 2δ2}. (4.9)

Comparing (4.7) with (4.9), the equality (4.8) is established.

Note that if G2 is λ′-optimal then δ1 = |V (G2)| � 4, and so λ′(G1 R©G2) is well-defined. By Theo-

rem 4.4, we obtain the following corollary immediately.

Corollary 4.5. Assume G1 and G2 are connected. If κ1 = λ1 and G2 is λ′-optimal, then

λ′(G1 R©G2) = min{λ1, 2δ2}.

A connected graph G is super-λ if every λ-cut isolates a vertex in G. It is clear that G is super-λ if

and only if λ′(G) > λ(G). By Theorem 4.4, we obtain the following results immediately.

Theorem 4.6. Suppose that G1 and G2 are two connected graphs. If κ1 � λ1 − λ2 + 1 � 2 (or

κ1 � λ2 + 1) and G2 is λ′-optimal, then

(a) G1 R©G2 is λ′-optimal if and only if λ1 � 2δ2;

(b) G1 R©G2 is super-λ if and only if λ1 > δ2 + 1.
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Proof. Let G = G1 R©G2. Clearly, ξ(G) = 2δ2, and λ2 = δ2 � 2 since G2 is λ′-optimal.

Since κ1 � λ1 − λ2 + 1 (or κ1 � λ2 + 1) and G2 is λ′-optimal, by Theorem 4.4 we have that

λ′(G) = min{λ1, 2δ2}. (4.10)

Thus, G is λ′-optimal if and only if λ′(G) = ξ(G) = 2δ2, i.e., λ1 � 2δ2 from (4.10).

Since κ1 � 2 and λ2 = δ2, by Corollary 3.2(d) we have that

λ(G) = min{λ1, δ2 + 1}. (4.11)

Note 2δ2 > δ2 +1 for δ2 � 2. It follows that G is super-λ if and only if λ′(G) > λ(G), that is λ1 > δ2 +1

from (4.11).

Corollary 4.7. Assume G1 and G2 are two connected graphs with δ1 � 4. If κ1 = λ1 � 2 and G2 is

λ′-optimal, then

(a) G1 R©G2 is λ′-optimal if and only if λ1 � 2δ2;

(b) G1 R©G2 is super-λ if and only if λ1 > δ2 + 1.

Corollary 4.8. λ′(G R©Cn) = min{λ(G), 4} if G is an n-regular graph and κ(G) � 3.

Example 4.9. By Corollary 4.8, it is easy to see that λ′(K4 R©C3) = min{λ(K4), 4} = min{3, 4} = 3,

and

λ′(CCCn) = λ′(Qn R©Cn) = min{λ(Qn), 4} = min{n, 4} =

{
3, if n = 3,

4, if n � 4.

5 Replacement product of Cayley graphs

In this section, we investigate the restricted edge-connectivity of the replacement product of two Cayley

graphs by a semidirect product of two groups. We will further confirm that under certain conditions on

the underlying groups and generating sets, the replacement product of two Cayley graphs is indeed a

Cayley graph. Using this result, we will give a necessary and sufficient condition for such Cayley graphs

to be λ′-optimal. Based on this condition, we will construct an example to answer Problem 1.4.

We first recall the notion of semidirect product of two groups. Let A = (A, ◦) and B = (B, ∗) be two

finite groups. A group homomorphism from A to B is a mapping φ : A → B satisfying φ(a◦b) = φ(a)∗φ(b).
Let eA and eB be identities in A and B, respectively, throughout this section. Group homomorphisms

have two important and useful properties.

Proposition 5.1. Let A and B be two finite groups, and φ be a group homomorphism from A to B.

Then

(a) φ(eA) = eB;

(b) φ(a−1) = (φ(a))−1 for any a ∈ A.

An action of B on A is a group homomorphism φ : B → Aut(A) defined by φ(b) = φb and φ(b1b2) =

φ(b1)φ(b2) = φb1φb2 .

The orbit of a ∈ A under the action φ of B is expressed as aB = {φb(a) ∈ A : b ∈ B}.
Example 5.2. Let A = (Z2)

n, B = Zn, and let ei be an element in A defined in (2.1) for each

i = 0, 1, . . . , n.

The action φ of B on A is defined as follows. For each a = a1a2 . . . an ∈ A,

φi(a) = a1−ia2−i . . . an−i (modn) for each i = 0, . . . , n− 1 ∈ B.

For example, if a = e1, then φi(e1) = ei+1 for each i = 0, 1, . . . , n − 1. Under φ the orbit eB1 =

{e1, e2, . . . , en}.
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We now introduce the concept of the semidirect product of two finite groups following Robison [29].

The (external) semidirect product A �φ B of groups A and B with respect to φ is the group with set

A×B = {(a, b) : a ∈ A, b ∈ B} and the binary operation “∗” subject to

(a1, b1) ∗ (a2, b2) = (a1φb1(a2), b1b2) for any a1, a2 ∈ A and b1, b2 ∈ B.

The identity is (eA, eB). Since φb ∈ Aut(A) is an automorphism on A, by Proposition 5.1(a) we have

φb(a) = eA ⇔ a = eA for any a ∈ A and b ∈ B. (5.1)

By (5.1), it is easy to verify that the inverse (a, b)−1 of (a, b) is (φb−1(a−1), b−1), i.e.,

(a, b)−1 = (φb−1(a−1), b−1).

It is also easy to check that the set {(a, eB) : a ∈ A} forms a normal subgroup of A �φ B isomorphic

to A, and the set {(eA, b) : b ∈ B} forms a subgroup of A�φB isomorphic to B. Thus, A�φB ∼= A�B,

a semidirect product of two subgroups A and B of a group Γ, where A is normal.

The direct product A × B is a special case of A �φ B, in which the action φ(b) is the identity auto-

morphism of A for any b ∈ B, and so (a1, b1) ∗ (a2, b2) = (a1a2, b1b2). Thus the semidirect product is a

generalization of the direct product of two groups.

Many groups can be expressed as a semidirect product of two groups. For example, using the semidirect

product, Feng [8] and Ganesan [9] determined the automorphism groups of some Cayley graphs generated

by transposition sets; Zhou [38] determined the full automorphism group of the alternating group graph.

The semidirect product of groups is also used to prove that some networks are Cayley graphs. For

example, using the semidirect product, Zhou et al. [39] showed that the dual-cube DCn is a Cayley graph

C(Γ×Γ)�φZ2
(S), where Γ = (Z2)

n, the action φ : Z2 → Aut(Γ× Γ) is defined by

φi(α, β) =

{
(α, β), if i = 0,

(β, α), if i = 1,

and S = {(e0, e1, 0), . . . , (e0, en, 0), (e0, e0, 1)}.
Assumption 5.3. Let A and B be two groups with generating sets SA and SB, respectively, |SA| =
|B| � 2, φ be such an action of B on A that SA = xB for some x ∈ SA, and S = {(eA, b) : b ∈
SB} ∪ {(x, eB)}.
Theorem 5.4. Under Assumption 5.3, S generates A �φ B. Moreover, if SB = S−1

B and x = x−1,

then S = S−1 and CA�φB(S) is a replacement product of CA(SA) and CB(SB).

Remark 5.5. Before proving this result, we make some remarks on the theorem.

(a) Since Cayley graphs under our discussion are undirected, by the definition of Cayley graphs, it is

clear that the conditions “SA = S−1
A , SB = S−1

B and S = S−1” are necessary to guarantee that Cayley

graphs CA(SA), CB(SB) and CA�φB(S) are undirected. By Proposition 5.1(b) for any action φ of B

on A, (x, eB)
−1 = (φeB (x

−1), eB) = (x−1, eB). Thus, the condition “S = S−1” means that

{(eA, b) : b ∈ SB} ∪ {(x, eB)} = ({(eA, b) : b ∈ SB} ∪ {(x, eB)})−1

= {(eA, b−1) : b ∈ SB} ∪ {(x−1, eB)},
which implies that the condition “S = S−1” is equivalent to the condition “SB = S−1

B and x = x−1”.

Furthermore, since SA = xB under the action φ, for any a ∈ SA, there is some b ∈ B such that

a = φb(x). By Proposition 5.1(b), we have

x = x−1 ⇔ a = φb(x) = φb(x
−1) = (φb(x))

−1 = a−1 for any a ∈ SA.

(b) The original and simple statement of Theorem 5.4 is due to Alon et al. [1, Theorem 2.3] (as a special

case of zig-zag products without proof), and a comparatively complete statement is given by Hoory et

al. [13, Theorem 11.22] without the conditions “x = x−1 and SB = S−1
B ”, and with an unperfect proof.

We give a complete proof here.
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Proof of Theorem 5.4. By the explanation in Remark 5.5(a), we only need to prove that S generates

A�φ B and CA�φB(S) is a replacement product of CA(SA) and CB(SB).

We first show that S generates A �φ B. To the end, we only need to show that any (a, b) ∈ A �φ B

can be expressed as products of a sequence of elements of S.

By the hypothesis, SA is a generating set of A and is the orbit xB of some x ∈ SA under the action φ

of B on A. Since (a, b) = (a, eB) ∗ (eA, b), it can be written as a product of elements from the set

{(sa, eB) : sa ∈ SA} ∪ {(eA, sb) : sb ∈ SB}. Since SA = xB , for sa ∈ SA there is some b ∈ B such that

sa = φb(x), where b can be expressed as products of a sequence of elements of SB since SB is a generating

set of B by the hypothesis. Also since for any b ∈ B and φb(x) ∈ SA,

(sa, eB) = (φb(x), eB) = (eA, b) ∗ (x, eB) ∗ (eA, b−1),

the element (sa, eB) can be expressed as products of a sequence of elements of S. This implies that S

generates the group A�φ B.

We now show that CA�φB(S) is a replacement product of CA(SA) and CB(SB). By Remark 5.5, under

Assumption 5.3, Cayley graphs CA(SA), CB(SB) and CA�φB(S) are well-defined and undirected, and so

satisfy the requirements in Definition 2.4.

Let (y, i) and (z, j) be two distinct vertices in CA�φB(S), where y, z ∈ A = V (CA(SA)) and i, j ∈ B =

V (CB(SB)). Since CA�φB(S) is a Cayley graph, we have that

(y, i)(z, j) ∈ E(CA�φB(S)) ⇔ (y, i)−1 ∗ (z, j)
= (φi−1(y−1), i−1) ∗ (z, j)
= (φi−1(y−1)φi−1 (z), i−1j)

= (φi−1(y−1z), i−1j)

∈ S = {(eA, b) : b ∈ SB} ∪ {(x, eB)}. (5.2)

If (φi−1(y−1z), i−1j) ∈ {(eA, b) : b ∈ SB}, then y = z by (5.1), and ij ∈ E(CB(SB)), which means that

the edge (y, i)(y, j) of CA�φB(S) is an edge in CA(SA)�CB(SB).

If (φi−1(y−1z), i−1j) = (x, eB), then i = j and φi−1 (y−1z) = x. Since φi−1φi = φ(i−1)φ(i) = φ(i−1i)

= φ(eB) is the identity automorphism ofA, we have φ−1
i−1 = φi. Thus, y

−1z = φ−1
i−1 (x) = φi(x) ∈ xB = SA,

i.e., z = yφi(x) and yz ∈ E(CA(SA)). Therefore, if we use eiy and eiz to label the edge yz ∈ CA(SA) for

each (y, i)(z, i) ∈ E(CA�φB(S)), i.e., yz = eiy = eiz, then the edge (y, i)(z, i) of CA�φB(S) is an edge in

CA(SA)�CB(SB).

It follows that the structure of CA�φB(S) satisfies the requirements of Definition 2.4, and so CA�φB(S)

is a replacement product of CA(SA) and CB(SB).

Example 5.6. Let A = (Z2)
n and B = Zn. Then eA = e0 and eB = 0. Let SA = {e1, e2, . . . , en},

where ei is defined in (2.1), and e−1
i = ei for each i ∈ {1, 2, . . . , n}, and let SB = ±{s1, s2, . . . , sk}. The

Cayley graph CA(SA) is a hypercube Qn by Example 2.3 and the Cayley graph CB(SB) is a circulant

graph G(n,±S) by Example 2.2. Let φ be the action of B on A defined in Example 5.2. Then SA is the

orbit eB1 of e1 ∈ SA under φ. Let S = {(eA, s) : s ∈ SB} ∪ {(e1, eB)}. Then S = S−1. By Theorem 5.4,

S generates A�φ B, and CA�φB(S) is a replacement product of CA(SA) and CB(SB).

In special, if SB = {1, n− 1}, then S = {(e0, 1), (e0, n− 1), (e1, 0)}. The Cayley graph C(Z2)n�φZn
(S)

= Qn�Cn = CCCn. The cube-connected cycle CCC(3), shown on the right-hand side in Figure 4, is a

replacement product of Q3 and C3, and is the Cayley graph CZ3
2�φZ3

({(000, 1), (000, 2), (100, 0)}).
A graph G is κ-optimal if κ(G) = δ(G). The following theorem presents a necessary and sufficient

condition for a Cayley graph CA�φB(S) to be λ
′-optimal if CA(SA) is κ-optimal and CB(SB) is λ

′-optimal.

Theorem 5.7. Under Assumption 5.3, let S = {(eA, s) : s ∈ SB} ∪ {(x, eB)} and S = S−1. If Cayley

graph CA(SA) is κ-optimal and Cayley graph CB(SB) is λ′-optimal, then Cayley graph CA�φB(S) is

λ′-optimal ⇔ |SA| � 2|SB|.
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Proof. By Theorem 5.4, CA�φB(S) is a replacement product of CA(SA) and CB(SB). Since CA(SA)

is κ-optimal, κ(CA(SA)) = λ(CA(SA)) = δ(CA(SA)) = |SA| � 2. Also since CB(SB) is λ′-optimal, by

Corollary 4.7(a), CA�φB(S) is λ
′-optimal if and only if |SA| � 2|SB|.

Example 5.8. By Example 5.6, the cube-connected cycle CCCn = Qn�Cn is 3-regular, ξ(CCCn) = 4,

|SQn | = n � 2 and |SCn | = 2. Then

|SA| =
{
3 < 4 = 2|SB|, if n = 3,

n � 4 = 2|SB|, if n � 4.

By Example 4.9 and Theorem 5.7, CCCn is{
not λ′-optimal (λ′ = λ = 3 < 4 = ξ) if n = 3;

λ′-optimal (i.e., λ′ = 4 = ξ) if n � 4.

Theorem 5.9. Let A = (Z2)
n and B = Zn, SA = {e1, e2, . . . , en}, where ei is defined in (2.1),

SB = ±{s1, s2, . . . , sk} with k � 2 and sk < n
2 , φ be the action of B on A defined in Example 5.2. Let

G = CA�φB(S) with order υ(G), where S = {(e0, s) : s ∈ SB} ∪ {(e1, 0)}. If n
2 < |SB| < n− 1, then G is

not λ′-optimal, λ(G) < λ′(G) = n < υ(G)
2 for n � 3, and G[X ] ∼= CB(SB) for any λ′-atom X of G.

Proof. By Example 2.3, CA(SA) ∼= Qn, by Example 2.2 CB(SB) ∼= G(n;SB), and by Theorem 5.4 the

Cayley graph G = CA�φB(S) is a replacement product of Qn and G(n;SB). Since k � 2 and sk < n
2 ,

G(n;SB) is λ′-optimal by Example 2.2. Since Qn is κ-optimal and |SA| = n < 2|SB|, G is not λ′-
optimal by Theorem 5.7. By Corollary 4.5, λ′(G) = min{n, 2|SB|} = n. Since G is vertex-transitive and

|SB| < n − 1, we have λ(G) = δ(G) = |S| = |SB| + 1 < n = λ′(G). Note that υ(G) = n · 2n and that

k � 2 implies n � 5. It follows that

λ(G) < λ′(G) = n =
n 2n

2n
=

υ(G)

2n
<

υ(G)

2
for n � 3.

We now show the second conclusion. Let X be a λ′-atom of G and F = EG(X). Then |X | � υ(G)
2

and F is a λ′-cut of G. We need to prove G[X ] ∼= CB(SB). We first note that

|F | = λ′(G) = n < 2|SB| = 4k. (5.3)

Let {X1, X2, . . . , Xn} be a partition of V (G) satisfied property in Proposition 2.5. Then G[Xi] ∼=
CB(SB) for each i ∈ I2n . If there exists some j ∈ I2n such that G[Xj ] is disconnected in G− F then, by

Lemma 4.3 and Example 2.2,

|F | � min{κ(CA(SA)) + λ(CB(SB))− 1, 2λ(CB(SB)), λ
′(CB(SB)) + 2}

= min{n+ 2k − 1, 4k} = 4k,

which contradicts with (5.3). It follows that G[Xi] is connected in G− F , i.e., either Xi ⊂ X or Xi ⊂ X

for each i ∈ I2n .

If both X and X contain at least two sets of X1, X2, . . . , X2n , then, by comparing the structure of G

with that of Qn, it is easy to see that the subset of edges in Qn corresponding to F is a restricted edge-cut

of Qn. Hence, by Example 2.3, |F | � λ′(Qn) = 2n − 2 > n = λ′(G) = |F |, a contradiction. Namely,

X = Xi or X = Xi for some i ∈ I2n .

Since |X | � υ(G)
2 , we have X = Xi and X = V (G) \ Xi for some i ∈ I2n . Thus every λ′-cut of G

isolates a subgraph which is isomorphic to CB(SB). In other words, G[X ] ∼= G[Xi] ∼= CB(SB) for each

i ∈ I2n .

Remark 5.10. We make some remarks on the conditions in Theorem 5.9.

The condition “k � 2” is necessary. In fact, if k = 1, then CB(SB) is a cycle Cn. By Example 5.8,

CCCn is

{
not λ′-optimal and λ′ = λ = 3 if n = 3;

λ′-optimal if n � 4.
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The condition “|SB| > n
2 ” is necessary. Theorem 5.7 means that CA�φB(S) is

not λ′-optimal ⇔ |SA| < 2|SB|, i.e., |SB| > 1

2
|SA| = 1

2
n.

The condition “|SB| < n − 1” is also necessary. In fact, if |SB| = n − 1 then G(n;SB) is a complete

graph Kn by Example 2.2. Thus, λ(G) = n = λ′(G), which contradicts with our conclusion.

The following theorem gives a straight answer to Problem 1.4.

Theorem 5.11. For a given odd integer d (� 5) and any integer s with 1 � s � d − 3, there is a

Cayley graph G with degree d such that λ′(G) = d+ s < 1
2 υ(G).

Proof. In Theorem 5.9, letting n = d + s and k = d−1
2 , then |SB | = d − 1 and G = C

Z
d+s
2 �φZd+s

(S)

is a Cayley graph. Since 1 � s � d − 3, we have d+s
2 < |SB| < d + s − 1. By Theorem 5.9, G is not

λ′-optimal, and

λ(G) = d < λ′(G) = d+ s <
(d+ s) · 2d+s

2
=

υ(G)

2
.

The theorem follows.

6 Conclusion

In this paper, we investigate the restricted edge-connectivity of replacement product of two graphs. By

means of the semidirect product of two groups, we further confirm that under certain conditions, the

replacement product of two Cayley graphs is also a Cayley graph, and give a necessary and sufficient

condition for such Cayley graphs to have maximum restricted edge-connectivity. Based on these results,

for given odd integer d and integer s with d � 5 and 1 � s � d − 3, we construct a Cayley graph with

degree d whose restricted edge-connectivity is equal to d+s, which answers a problem proposed ten years

ago.

In the proof of this result, the replacement product of graphs plays a key role. Thus, further properties

of replacement products deserve further research.
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