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a b s t r a c t

This paper gives an approximate result related to Seymour’s Second Neighborhood conjec-
ture, that is, for anym-free digraph G, there exists a vertex v ∈ V (G) and a real number λm
such that d++(v) ≥ λmd+(v), and λm → 1 while m → +∞. This result generalizes and
improves some known results in a sense.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this article, all digraphs are finite, simple and digonless. As usual, for a vertex v of the digraph G, we denote
by N+

G (v) the set of out-neighbors of v, N++

G (v) the set of vertices at distance 2 from v. Let d+

G (v) = |N+

G (v)| (the out-degree
of v) and d++

G (v) = |N++

G (v)|. We will omit the subscript if the digraph is clear from the context.
In 1990, Seymour [3] proposed the following conjecture.

Conjecture 1.1 (Seymour’s Second Neighborhood Conjecture). For any digraph G, there exists a vertex v in G such that d++(v) ≥

d+(v).

We call the vertex v in Conjecture 1.1 a Seymour vertex. In 1996, Fisher [5] showed that any tournament has a Seymour
vertex. In 2001, Kaneko and Locke [8] showed that any digraph with the minimum outdegree less than 7 has a Seymour
vertex. In 2007, Fidler and Yuster [4] proved that any tournament minus a star or a sub-tournament, and any digraph Gwith
minimum degree |V (G)| − 2 have Seymour vertices. In 2008, Hamidoune [7] proved that any vertex-transitive digraph has
a Seymour vertex. In 2013, Lladó [10] proved that any digraph with large connectivity has a Seymour vertex. In 2016, Cohn
et al. [2] gave a probabilistic statement about Seymour’s conjecture and proved that almost surely there are a large number of
Seymour vertices in random tournaments and even more in general random digraphs. For a general digraph, Conjecture 1.1
is still open.

Another approach to Conjecture 1.1 is to determinate themaximum value of λ such that there is a vertex v in G satisfying
d++(v) ≥ λ d+(v) for any digraph G. In 2003, Chen, Shen and Yuster [1] gave λ = 0.657298 · · · , which is the unique real
root of the polynomial 2x3 + x2 − 1. Furthermore, they improved this bound to 0.67815 · · · mentioned in the end of the
article [1].
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A digraph G is called to bem-free if G contains no directed cycles of Gwith length at mostm. In 2010, Zhang and Zhou [11]
showed that for any 3-free digraph G, there exists a vertex v in G such that d++(v) ≥ λ d+(v), where λ = 0.6751 · · · is the
only real root in the interval (0, 1) of the polynomial x3 + 3x2 − x − 1. In this paper, we consider general m-free digraphs
and obtain the following result.

Theorem 1.2. Let m be an arbitrarily fixed integer with m ≥ 3 and G be an m-free digraph, then there exists a vertex v in G such
that d++(v) ≥ λmd+(v), where λm is the only real root in the interval (0, 1) of the polynomial

gm(x) = 2x3 − (m − 3)x2 + (2m − 4)x − (m − 1). (1.1)

Furthermore, λm is increasing with m, and λm → 1 while m → +∞.

Since G is simple and digonless, G is 2-free. Whenm = 2, the polynomial defined in (1.1) is exactly 2x3 + x2 − 1, and our
result can be considered to be a generalization of Chen et al.’s result. Whenm = 3, λ3 = 0.6823 · · · , which improves Zhang
et al.’s value on λ3. Whenm = 4, λ4 = 0.7007 · · · . From Theorem 1.2, we immediately get the following corollary.

Corollary 1.3. For every ε > 0, there is a positive integer m such that every m-free digraph contains a vertex v with
d++(v) ≥ (1 − ε) d+(v).

The first conclusion in Theorem 1.2 is our main result. The proof proceeds by induction on the number of vertices. In the
induction step, we assume to the contrary that d++(v) < λmd+(v) for any vertex v in G, where λm is the unique real root of
gm(x) in the interval (0, 1). Then we show that the assumption leads to a contradiction. To this end, we need the following
lemmas.

Lemma 1.4. For m ≥ 3, the polynomial gm(x) defined in (1.1) is strictly increasing and has a unique real root in the interval
(0, 1).

Proof. Since gm(x) = 2x3 − (m − 3)x2 + (2m − 4)x − (m − 1), we have

g ′

m(x) = 6x2 − 2(m − 3)x + (2m − 4) = 6x2 + 2x + (2m − 4)(1 − x).

Clearly, g ′
m(x) > 0 whenm ≥ 3 and x ∈ (0, 1), which implies gm(x) is strictly increasing in [0, 1]. Since gm(0) = −m+ 1 < 0

and gm(1) = 2 > 0, it follows that there is a unique real root in the interval (0, 1) of the polynomial. ■

Lemma 1.5 (Hamburger et al. [6]). If one can delete t edges from a digraph G to make it acyclic, then there exists a vertex v in G
such that d+(v) ≤

√
2t.

Lemma 1.6 (Liang and Xu [9]). If an m-free digraph G is obtained from a tournament by deleting t edges, then one can delete
from G additional t/(m − 2) edges so that the resulting digraph is acyclic.

Combining Lemma 1.5 with Lemma 1.6, we can easily get the following lemma.

Lemma 1.7. If an m-free digraph G is obtained from a tournament by deleting t edges, then there exists a vertex v in G such that
d+(v) ≤

√
2t/(m − 2).

Proof. From Lemma 1.6, anm-free digraphG is obtained from a tournament by deleting t edges, thenwe can delete t/(m−2)
edges from G to make it acyclic. From Lemma 1.5, there exists a vertex v in G such that d+(v) ≤

√
2t/(m − 2). ■

2. Proof of Theorem 1.2

We first prove the first conclusion by induction on the number of vertices. Theorem 1.2 is trivial for any digraph with 1
or 2 vertices. Assume that Theorem 1.2 holds for all digraphs with less than n vertices. Let G be an m-free digraph with n
vertices, n ≥ 3 andm ≥ 3. Assume to the contrary that d++(v) < λmd+(v) for any vertex v in G, where λm is the unique real
root of gm(x) in the interval (0, 1). Our purpose is to show that the assumption leads to a contradiction.

Let u be a vertex in Gwith minimum out-degree. Let A = N+(u), B = N++(u), a = |A| and b = |B|. By our assumption, we
have

b = d++(u) < λmd+(u) = λma. (2.1)

For any two disjoint subsets X, Y ⊆ V (G), let E(X, Y ) denote the edges from X to Y and e(X, Y ) = |E(X, Y )|. Since G is
simple and digonless, we have that

e(X, Y ) + e(Y , X) ≤ |X | · |Y |.
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For simplicity, for any subset S ⊆ V (G), use S to denote the subgraph of G induced by S. By the definitions of A and B, we
have ∑

v∈A

d+

G (v) = |E(A)| + e(A, B). (2.2)

By the choice of u, d+(v) ≥ d+(u) = a for any v ∈ V (G), and so∑
v∈A

d+

G (v) ≥ |A| · d+(u) = a2. (2.3)

Since |E(A)| ≤ a(a − 1)/2, we have

e(A, B) =

∑
v∈A

d+

G (v) − |E(A)| ≥ a2 − a(a − 1)/2 = a(a + 1)/2.

It follows that there exists v ∈ A such that e(v, B) ≥ e(A, B)/a ≥ (a + 1)/2. Since b = |B| ≥ e(v, B) for any v ∈ A, it follows
that λma > b ≥ e(v, B) ≥ (a + 1)/2 > a/2, which implies

λm > 1/2. (2.4)

The subgraph A can be obtained from a tournament of order a by deleting t edges. Let θ = t/a2. Since 0 ≤ t ≤ a(a−1)/2,
we have 0 ≤ θ ≤ (a − 1)/2a < 1/2 and

|E(A)| = a(a − 1)/2 − t = (1/2 − θ )a2 − a/2 < (1/2 − θ ) a2. (2.5)

Combining (2.2), (2.3) with (2.5), we have that

e(A, B) =

∑
v∈A

d+

G (v) − |E(A)| > a2 − (1/2 − θ )a2 = (1/2 + θ ) a2. (2.6)

Since G is m-free, it follows that the subgraph A ism-free. From Lemma 1.7, there is a vertex w0 ∈ A such that

d+

A (w0) ≤

√
2t/(m − 2) = a

√
2θ/(m − 2). (2.7)

Let d+

B (w0) = |N+

B (w0)|, then d+

B (w0) ≤ |B| = b. Since d+

A (w0) + d+

B (w0) = d+

G (w0), it follows from (2.1) that
d+

A (w0) = d+

G (w0) − d+

B (w0) ≥ d+

G (w0) − b ≥ a − λma = (1 − λm) a, that is,

d+

A (w0) ≥ (1 − λm) a. (2.8)

Combining (2.7) with (2.8), we have
√
2θ/(m − 2)a > (1 − λm) a, that is,

θ > (m − 2)(1 − λm)2/2. (2.9)

Since A is m-free and |A| = a < n, by induction hypothesis there is a vertex w1 ∈ A such that |N++

A (w1)| ≥ λm|N+

A (w1)|,
where λm is the unique real root of gm(x) in the interval (0, 1).

Let X = N+

A (w1), Y = N+

B (w1) and |Y | = d. It follows from (2.1) that

d = |Y | ≤ |B| = b < λm a. (2.10)

By the induction hypothesis,|A − X | ≥ |N++

A (w1)| ≥ λm|X |, that is, (1 + λm)|X | ≤ |A| = a. By (2.4) λm > 1
2 , we have

|X | ≤
a

1 + λm
<

2a
3

.

By the choice of u, we have d+

G (w1) ≥ d+

G (u) = a, and so

d = |Y | = |N+

G (w1)| − |X | > a −
2a
3

=
a
3
. (2.11)

Combining (2.10) with (2.11), we have

a/3 < d < λm a. (2.12)

For any y ∈ Y , use d+

V−A−Y (y) to denote the number of out-neighbors of y in G not in A ∪ Y . Since d++

G (w1) < λmd+

G (w1)
and d++

A (w1) ≥ λmd+

A (w1), we have

d+

V−A−Y (y) ≤ d++

G (w1) − d++

A (w1) < λmd+

G (w1) − λmd+

A (w1) = λm d.
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Noting that d+

G (y) ≥ d+

G (u) = a and
∑

y∈Yd
+

Y (y) = |E(Y )| ≤ d(d − 1)/2, we obtain

e(Y , A) =

∑
y∈Y

|N+

A (y)|

≥

∑
y∈Y

(a − d+

V−A−Y (y) − d+

Y (y))

> (a − λmd) d −

∑
y∈Y

d+

Y (y)

≥ (a − λmd) d − d(d − 1)/2
> (a − λmd − d/2) d,

that is

e(Y , A) > (a − λmd − d/2)d. (2.13)

Combining (2.1), (2.6), (2.9) with (2.13), we have

λma2 ≥ ab
≥ e(A, B) + e(B, A)
≥ e(A, B) + e(Y , A)
> (1/2 + θ ) a2 + (a − λmd − d/2) d
> [1/2 + (m − 2)(1 − λm)2/2] a2 + (a − λmd − d/2) d
= −(λm + 1/2)d2 + ad + [1/2 + (m − 2)(1 − λm)2/2] a2,

that is,

λma2 > −(λm + 1/2) d2 + ad + [1/2 + (m − 2)(1 − λm)2/2] a2, (2.14)

where a/3 < d < λma (see (2.12)). For a/3 ≤ z ≤ λm a, let the function

f (z) = −(λm + 1/2)z2 + az + [1/2 + (m − 2)(1 − λm)2/2] a2.

Since f (z) is a quadratic function with a negative leading coefficient, the following inequality holds.

f (z) ≥ min{f (a/3), f (λma)} for any z ∈ [a/3, λma]. (2.15)

Combining (2.14) with (2.15), we have

λma2 > f (d) ≥ min{f (a/3), f (λma)}. (2.16)

We first note that, since

f (λma) =
a2[−2λ3

m + (m − 3)λ2
m − (2m − 6)λm + (m − 1)]

2
,

if λma2 > f (λma), then

λma2 >
a2[−2λ3

m + (m − 3)λ2
m − (2m − 6)λm + (m − 1)]

2
,

that is

gm(λm) = 2λ3
m − (m − 3)λ2

m + (2m − 4)λm − (m − 1) > 0.

This fact shows that λm is not a root of the polynomial gm(x), which contradicts our assumption on λm.
It follows that λma2 ≤ f (λma), and so λma2 > f (a/3) by (2.16). Since

f (a/3) =
a2[9(m − 2)λ2

m − (18m − 34)λm + (9m − 4)]
18

we have

λma2 >
a2[9(m − 2)λ2

m − (18m − 34)λm + (9m − 4)]
18

.

Simplifying this inequality, we obtain

9(m − 2)λ2
m − (18m − 16)λm + (9m − 4) < 0.

This implies

λm >
9m − 8 −

√
54m − 8

9(m − 2)
. (2.17)
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Nowwe show (2.17) is a contradiction to that λm is the only root in the interval (0, 1) of the polynomial gm(x). We rewrite
the polynomial gm(x) as

gm(x) =
1
9
(p(x) − q(x)), (2.18)

where

p(x) = 18x3 + 9x2 − 20x + 5,
q(x) = 9(m − 2)x2 − (18m − 16)x + (9m − 4).

The polynomial q(x) has a real root

ϕm =
9m − 8 −

√
54m − 8

9(m − 2)
, (2.19)

that is

q(ϕm) = 0. (2.20)

Comparing (2.17) with (2.19), we have

λm ≥ ϕm for m ≥ 3. (2.21)

Since

ϕm = 1 +
10 −

√
54m − 8

9(m − 2)

= 1 +
108 − 54m

9(m − 2)(10 +
√
54m − 8)

= 1 −
6

10 +
√
54m − 8

,

it is easy to see that ϕm is strictly increasing withm for m ≥ 3. Thus we have

ϕm ≥ ϕ3 = 1 −
6

10 +
√
154

> 1 −
3
10

=
7
10

. (2.22)

A simple calculation gives us that p(x) is a strictly increasing function for x > 7
10 and p( 7

10 ) = 1.584 > 0. Noting that
gm(x) is a strictly increasing function over the interval [0, 1], and by (2.18), (2.20)– (2.22), we have

gm(λm) > gm(ϕm) =
1
9
[p(ϕm) − q(ϕm)] =

1
9
p(ϕm) >

1
9
p
(

7
10

)
> 0.

This fact shows that λm is not a root of the polynomial gm(x), a contradiction to our assumption, and so the first conclusion
follows.

We now prove the second conclusion. Since gm(x) = 2x3 − (m − 3)x2 + (2m − 4)x − (m − 1), gm(λm) = 0 and

gm+1(x) = 2x3 − (m − 2)x2 + (2m − 2)x − m
= 2x3 − (m − 3)x2 + (2m − 4)x − (m − 1) − x2 + 2x − 1
= gm(x) − (1 − x)2,

for anym ≥ 3 we have

gm+1(λm) = gm(λm) − (1 − λm)2 = −(1 − λm)2 < 0 = gm+1(λm+1).

Since gm(x) is strictly increasing in the interval (0, 1) for any m ≥ 3 by Lemma 1.4, it follows that λm < λm+1, which
implies that λm is increasing withm.

We rewrite gm(x) as

gm(x) = 2x(x2 − 1) + 2x2 − (m − 1)(1 − x)2.

It is easy to check that µm =

√
m−1

√
m−1+

√
2

∈ (0, 1) is a real root of the polynomial 2x2 − (m − 1)(1 − x)2. It follows that
gm(µm) = 2µm(µ2

m − 1) < 0 = gm(λm). Since gm(x) is strictly increasing in the interval (0, 1) by Lemma 1.4, we have

0 < µm < λm < 1.

Since limm→+∞µm = limm→+∞

√
m−1

√
m−1+

√
2

= 1, it follows that limm→+∞λm = 1.
The proof of Theorem 1.2 is complete.
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