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Extra connectivity and the pessimistic diagnosis are two crucial subjects for a multipro-
cessor system’s ability to tolerate and diagnose faulty processor. The pessimistic diagnosis 
strategy is a classic strategy based on the PMC model in which isolates all faulty vertices 
within a set containing at most one fault-free vertex. In this paper, the result that the 
pessimistic diagnosability tp(G) equals the extra connectivity κ1(G) of a regular graph G
under some conditions are shown. Furthermore, the following new results are gotten: the 
pessimistic diagnosability tp(S2

n) = 4n − 9 for split-star networks S2
n; tp(�n) = 2n − 4 for 

Cayley graphs generated by transposition trees �n; tp(�n(�)) = 4n − 11 for Cayley graph 
generated by the 2-tree �n(�); tp(B Pn) = 2n − 2 for the burnt pancake networks B Pn . As 
corollaries, the known results about the extra connectivity and the pessimistic diagnosabil-
ity of many famous networks including the alternating group graphs, the alternating group 
networks, BC networks, the k-ary n-cube networks etc. are obtained directly.

© 2017 Published by Elsevier B.V.

1. Introduction

It is well known that a topological structure of an interconnection network can be modeled by a loopless undirected 
graph G = (V , E), where vertices in V represent the processors and the edges in E represent the communication links. In 
this paper, we use graphs and networks interchangeably. The connectivity κ(G) of a connected graph G is the minimum 
number of vertices removed to get the graph disconnected or trivial. In a multiprocessor system, some processors may fail, 
connectivity is used to determine the reliability and fault tolerance of a network. However, a connectivity is not suitable 
for large-scale processing systems because it is almost impossible for all processors adjacent to, or all links incident to, the 
same processors to fail simultaneously. To compensate for this shortcoming, it seems reasonable to generalize the notion of 
classical connectivity by imposing some conditions or restrictions on the components of G when we delete the set of faulty 
processors. Fábrega and Fiol [17] introduced the extra connectivity of interconnection networks as follows.

Definition 1. A vertex set S ⊆ V (G) is called to be an h-extra vertex cut if G − S is disconnected and every component of 
G − S has at least h + 1 vertices. The h-extra connectivity of G , denoted by κh(G), is defined as the cardinality of a minimum 
h-extra vertex cut, if exists.
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It is obvious that κ0(G) = κ(G) for any graph G that is not a complete graph. The 1-extra connectivity is usually called 
extra connectivity. Regarding the computational complexity of the problem [17], there is no known polynomial-time al-
gorithm for finding κh(G) even for h = 2. The problem of determining the extra connectivity of numerous networks has 
received a great deal of attention in recent years. For a general integer h, Yang and Meng determined the h-extra connec-
tivity of the hypercubes [49] and the folded hypercubes [50], respectively. Chang et al. studied the {2, 3}-extra connectivity 
for the hypercube-like networks [3] and the 3-extra connectivity for the folded hypercubes [4]; Hsieh et al. [29] determined 
the 2-extra connectivity of k-ary n-cubes; Li et al. [35] derived the 3-extra connectivity of the Cayley graphs generated 
by transposition generating trees; Lin et al. obtained the {1, 2, 3}-extra connectivity of the split-star networks [37] and the 
alternating group networks [38], respectively; Guo and Lu [26] studied the h-extra connectivity (1 ≤ h ≤ 3) of bubble-sort 
star graphs and Lü [39] obtained the {2, 3}-extra connectivity of balanced hypercubes etc.

The diagnosis of a system is the process of appraising the faulty processors. A number of models have been proposed 
for diagnosing faulty processors in a network. Preparata et al. [40] first introduced a graph theoretical model, the so-called 
PMC model (i.e., Preparata, Metze and Chien’s model), for system level diagnosis in multiprocessor systems. The pessimistic 
diagnosis strategy proposed by Kavianpour and Friedman [33] is a classic diagnostic model based on the PMC model. In this 
strategy, all faulty processors to be isolated within a set having at most one fault-free processor.

Definition 2. A system is t/t-diagnosable if, provided the number of faulty processors is bounded by t , all faulty pro-
cessors can be isolated within a set of size at most t with at most one fault-free vertex mistaken as a faulty one. The 
pessimistic diagnosability of a system G , denoted by tp(G), is the maximal number of faulty processors so that the system G
is t/t-diagnosable.

The pessimistic diagnosability of many interconnection networks has been explored. Using the pessimistic strategy, Chwa 
and Hakimi [12] characterized the diagnosable systems, and Sullivan [42] gave a polynomial time algorithm for determining 
the diagnosability of a system. Kavianpour and Kim [33] had shown that the hypercubes were (2n −2)/(2n −2)-diagnosable. 
Fan [18] derived the diagnosability of the Möbius cubes using the pessimistic strategy. Wang [47] had shown that the en-
hanced hypercubes were 2n/2n-diagnosable. Wang et al. [48] gave the pessimistic diagnosability of the k-ary n-cubes. Tsai 
in [44] and [45] obtained the pessimistic diagnosability of the alternating group graphs AGn and the hypercube-like net-
works (BC networks), respectively. Recently, the pessimistic diagnosability of the (n, k)-arrangement graphs, the (n, k)-star 
graphs and the balanced hypercubes, the bubble-sort star graphs and augmented k-ary n-cubes were determined in [24]
and [25], respectively. For more results related with the diagnosability, you are referred to see [2,20,27,34,36], etc.

Based on the importance of the extra connectivity and the pessimistic diagnosability and motivated by the recent re-
searches on the extra connectivity and pessimistic diagnosability of some graphs, including some famous networks, our 
object is to propose the relationship between extra connectivity and pessimistic diagnosability of regular graphs with some 
given conditions. In this paper, the result that the pessimistic diagnosability tp(G) equals the extra connectivity κ1(G) of 
a regular graph G under some conditions are shown. Furthermore, the following new results are gotten: the pessimistic 
diagnosability tp(S2

n) = 4n − 9 for split-star networks S2
n; tp(�n) = 2n − 4 for Cayley graphs generated by transposition 

trees �n; tp(�n(�)) = 4n − 11 for Cayley graphs generated by the 2-tree �n(�); tp(B Pn) = 2n − 2 for the burnt pancake 
networks B Pn . As corollaries, the known results about the extra connectivity and the pessimistic diagnosability of many 
famous networks including the alternating group graphs, the alternating group networks, BC networks and the k-ary n-cube 
networks, etc. are obtained directly.

The remainder of this paper is organized as follows. Section 2 introduces necessary definitions and properties of some 
graphs. In Section 3, we determines the equal relationship between extra connectivity and pessimistic diagnosability of 
regular graphs with some given conditions. In Section 4, we concentrates on the applications to some famous networks. The 
pessimistic diagnosability and the extra connectivity of many famous networks, such as the alternating group graph AGn , 
the alternating group network ANn , the k-ary n-cube networks Q k

n , the BC networks Xn , the split-star networks S2
n , the 

Cayley graphs generated by transposition trees �n , the Cayley graphs generated by 2-trees �n(�) and the burnt pancake 
networks B Pn are obtained directly. Finally, our conclusions are given in Section 5.

2. Preliminaries

In this section, we give some terminologies and notations of combinatorial network theory. For notations not defined 
here, the reader is referred to [1].

We use a graph, denoted by G = (V (G), E(G)), to represent an interconnection network, where V (G) is the vertex set 
of G; E(G) is the edge set of G . For a vertex u ∈ V (G), let NG(u) (or N(u) if there is no ambiguity) denote a set of vertices 
in G adjacent to u. For a vertex set U ⊆ V (G), let NG(U ) = ⋃

v∈U
NG(v) − U and G[U ] be the subgraph of G induced by U . If 

|NG(u)| = k for any vertex in G , then G is k-regular. For any two vertices u and v in G , let cn(G; u, v) denote the number 
of vertices who are the neighbors of both u and v , that is, cn(G; u, v) = |NG(u) ∩ NG(v)|. Let cn(G) = max{cn(G; u, v) :
u, v ∈ V (G)}, l(G) = max{cn(G; u, v) : (u, v) ∈ E(G)}. Let |V (G)| be the size of vertex set and |E(G)| be the size of edge set. 
Throughout this paper, all graphs are finite, undirected without loops.
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Let [n] = {1, 2, . . . , n} and 〈n〉 = {−1, −2, . . . , −n, 1, 2, . . . , n}. For a finite group A and a subset S of A such that 1 /∈ S
and S = S−1 (where 1 is the identity element of A), the Cayley graph Cay(A; S) on A with respect to S is defined to have 
vertex set A and edge set {(g, gs)|g ∈ A, s ∈ S}. A Cayley graph is |S|-regular, and is connected if and only if S generates �. 
Moreover, A Cayley graph is |S|-connected if S is a minimal generating set of �.

2.1. The alternating group graphs

Jwo et al. [32] introduced the alternating group graph as an interconnection network topology for computing systems.

Definition 3. Let An be the alternating group of degree n with n ≥ 3. Set S = {(1 2 i), (1 i 2) | 3 ≤ i ≤ n}. The alternating 
group graph, denoted by AGn , is defined as the Cayley graph AGn = Cay(An, S).

It is clear that AG3 is a triangle, AGn is a (2n − 4)-connected and (2n − 4)-regular graph with n!/2 vertices. Each AGn

contains n sub-alternating group graphs AG0
n, AG1

n, . . . , AGn−1
n . For each i ∈ [n], AGi

n is isomorphic to AGn−1. For each vertex 
v ∈ AGi

n , v has exactly two neighbors that are not contained in AGi
n , which are called the extra neighbors of v .

Lemma 1. ([28]) The extra neighbors of every vertex of AGn are in different subgraphs AGi
n for n ≥ 4. For any two different vertices 

u, v, cn(AGn : u, v) = 1 if u and v are adjacent; otherwise, cn(AGn : u, v) ≤ 2.

Lemma 2. ([44]) Let AGn be the n-dimensional alternating group graph for n ≥ 4. If U is a subset of V (AGn) and 2 ≤ |U | ≤ 8n − 25, 
then |N AGn (U )| ≥ 4n − 11.

Lemma 3. ([28]) Let F be a vertex-cut of AGn for n ≥ 5. If |F | ≤ 4n − 11, then AGn − F satisfies one of the following conditions:

(1) AGn − F has two components, one of which is a trivial component.
(2) AGn − F has two components, one of which is an edge. Moreover, if |F | = 4n − 11, F is formed by the neighbor of the edge.

2.2. The alternating group networks

The alternating group network ANn was first proposed by Y. Ji [31] to improve upon the alternating group graph AGn , 
studied by Jwo and others [32].

Definition 4. ([31]) Let An be an alternating group of degree n ≥ 3 and let S = {(1 2 3), (1 3 2), (1 2)(3 i)| 4 ≤ i ≤ n}. The 
alternating group network, denoted by ANn , is defined as the Cayley graph Cay(An, S).

By the definition, we can get some properties about ANn [31]. ANn is a regular graph with n!/2 vertices and n!(n − 1)/4
edges. AN3 is a triangle. AN4 contains four copies of AN3. ANn contains n copies of ANn−1, say AN0

n, AN1
n , . . . , ANn−1

n . For 
each i ∈ [n], ANi

n is isomorphic to ANn−1. By Theorem 1 in [52], ANn is (n − 1)-regular and (n − 1)-connected.

Lemma 4. ([27]) Let ANn be the alternating group network for n ≥ 3 .

(1) Each vertex in ANn has exactly one extra neighbor.
(2) ANn has no 4-cycle and 5-cycle.
(3) Let u and v be any two distinct vertices of ANn, then cn(ANn : u, v) ≤ 1.

Lemma 5. ([53]) Let F be a vertex-cut of ANn for n ≥ 5. If |F | ≤ 2n − 5, then ANn − F satisfies one of the following conditions:

(1) ANn − F has two components, one of which is a trivial component.
(2) ANn − F has two components, one of which is an edge. Moreover, if |F | = 2n − 5, F is formed by the neighbor of the edge.

2.3. BC networks

Definition 5. The 1-dimensional BC network X1 is a complete graph with two vertices. The n-dimensional BC network Xn

is defined as follows: V (Xn) = V (G1) ∪ V (G2) and E(Xn) = E(G1) ∪ E(G2) ∪ M , where G1, G2 ∈ Ln−1, and M is a perfect 
matching between V (G1) and V (G2), where Lk = {Xk : Xk is an k-dimensional BC network}.

Lemma 6. ([19,46,54]) Let G = Xn ∈ Ln for n ≥ 1. Then G is n-regular n-connected and triangle-free. Any two vertices has at most 
two common neighbors in G.
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Lemma 7. ([54]) For any Xn ∈ Ln, let F ⊆ V (Xn) with |F | ≤ 2n − 3 be a vertex-cut of Xn. Then Xn − F has two components, one of 
which is a trivial component.

2.4. The k-ary n-cube networks

Definition 6. The k-ary n-cube, denoted by Q k
n , where k ≥ 2 and n ≥ 1 are integers, is a graph consisting of kn vertices, 

each of these vertices has the form u = un−1un−2 · · · u0, where ui ∈ {0, 1, . . . , k − 1} for 0 ≤ i ≤ n − 1. Two vertices u =
un−1un−2 · · · u0 and v = vn−1 vn−2 · · · v0 in Q k

n are adjacent if and only if there exists an integer j, where 0 ≤ j ≤ n − 1, such 
that u j = v j ± 1(mod k) and ui = vi for every i ∈ {0, 1, . . . , n − 1} \ { j}. In this case, (u, v) is a j-dimensional edge.

For convenience, “(mod k)” does not appear in similar expressions in the remainder of the paper. Note that each vertex 
has degree 2n for k ≥ 3 and has degree n for k = 2. Clearly, Q k

1 is a cycle of length k, Q 2
n is an n-dimensional hypercube, Q k

2
is a k × k wrap-around mesh.

Q k
n can be partitioned over the jth-dimension, for a j ∈ [n − 1], into k disjoint subcubes, denoted by Q k

n−1[0], Q k
n−1[1],

. . . , Q k
n−1[k − 1], by deleting all the j-dimensional edges from Q k

n . For convenience, abbreviate these as Q [0], Q [1], . . . ,
Q [k − 1] if there is no ambiguity. Moreover, Q [i] for 0 ≤ i ≤ k − 1 is isomorphic to the k-ary (n − 1)-cube. For each vertex 
u ∈ V (Q [i]), the neighbor which is not in V (Q [i]) is called the extra neighbor. For i ∈ [k − 1], u ∈ V (Q [i]), the two extra 
neighbors of u are in different subgraphs Q [i + 1] and Q [i − 1], respectively.

Lemma 8. Let Q k
n be a k-ary n-cube, where k ≥ 2 and n ≥ 1 are integers.

(1) ([15]) Q k
n is 2n-regular and 2n-connected for k ≥ 3 and n-regular and n-connected for k = 2.

(2) ([14,22,29]) For any x, y ∈ V (Q k
n ), k ≥ 2,

cn(Q k
n : x, y) =

⎧⎨
⎩

1 if (x, y) ∈ E(Q k
n) and k = 3;

2 if (x, y) /∈ E(Q k
n) and N Q k

n
(x) ∩ N Q k

n
(y) �= ∅;

0 otherwise.

Lemma 9.

(1) ([16]) If F ⊆ V (Q 2
n ) with |F | ≤ 2n − 3 is a vertex cut of Q 2

n for n ≥ 2, then Q 2
n − F has two components, one of which is a trivial 

component.
(2) ([14,22]) If F ⊆ V (Q 3

n ) with |F | ≤ 4n − 4 is a vertex cut of Q 3
n for n ≥ 2, then Q 3

n − F has two components, one of which is a 
trivial component.

(3) ([14,23]) If F ⊆ V (Q k
n ) is a vertex cut of Q k

n with |F | ≤ 4n − 3 for n ≥ 2 and k ≥ 4, then Q k
n − F has two components, one of 

which is a trivial component.

2.5. Split-star networks S2
n

Cheng et al. [8] propose the Split-star networks as alternatives to the star graphs and companion graphs with the 
alternating group graphs.

Definition 7. Given two positive integers n and k with n > k, note that [n] = {1, 2, . . . , n}, and let Pn be a set of n! permu-
tations on [n]. The n-dimensional Split-star network, denoted by S2

n , such that V (S2
n) =Pn , E(S2

n) = {(p, q)| p (resp. q) can be 
obtained from q (resp. p) by either a 2-exchange or a 3-rotation}. Where

(1) A 2-exchange interchanges the symbols in 1st position and 2nd position.
(2) A 3-rotation rotates the symbols in three positions labeled by the vertices of a triangle in which three vertices of the 

triangle are 1, 2 and k for some k ∈ {3, 4, . . . , n}.

Let V n:i
n be the set of all vertices in S2

n with the nth position having value i, i.e., V n:i
n = {p|p = x1x2 · · · xn−1i, x j ∈

{1, 2, . . . , i − 1, i + 1, . . .n} (1 ≤ j ≤ n − 1) are do not care symbols}. The set {V n:i
n |1 ≤ i ≤ n} forms a partition V (S2

n). Let 
S2:i

n denote the subgraph of S2
n induced by V n:i

n , i.e., S2:i
n = S2

n[V n:i
n ]. It is easy to know that S2:i

n is isomorphic to S2
n−1. Every 

vertex v ∈ S2:i
n has exactly two neighbors, called extra neighbors, outside of S2:i

n ; moreover these two neighbors belong to 
different S2: j

n s where j �= i. We call these neighbors as the extra neighbors of v . We call these edges, whose end-vertices 
belong to different subgraphs, as cross edges. Let S2

n,E be a subgraph of S2
n induced by the set of even permutations, in which 

the adjacency rule is precisely the 3-rotation. We know that S2
n,E is the alternating group graph AGn [32]. Let S2

n,O be a 
subgraph of S2

n induced by the set of odd permutations, in which the adjacency rule is precisely the 3-rotation. We have 
that S2 is also isomorphic to AGn and S2 is isomorphic S2 via the 2-exchange φ(a1a2a3 · · ·an) = a2a1a3 · · ·an . Hence, 
n,O n,O n,E
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there are n!
2 matching edges between S2

n,O and S2
n,E . Indeed, the Split-star network S2

n is introduced in [9] which is the 
companion graph of AGn .

Lemma 10. ([7–9]) Let S2
n be the n-dimensional split-star network.

(1) S2
n is (2n − 3)-regular and κ(S2

n) = 2n − 3 for n ≥ 2.
(2) Two extra neighbors of every vertex in S2:i

n are in distinct induced subgraphs and these two extra neighbors are adjacent. For any 
two vertices in the same subgraph S2:i

n , their extra neighbors in other subgraphs are different. There is one to one correspondence 
between the subgraph S2

n,O and the subgraph S2
n,E .

(3) Let x, y be any two vertices of S2
n, then

cn(S2
n : x, y) ≤

⎧⎨
⎩

1 if d(x, y) = 1;
2 if d(x, y) = 2;
0 if d(x, y) ≥ 3.

Lemma 11. ([37]) If F ⊆ V (S2
n) with |F | ≤ 4n − 10 is a vertex cut of S2

n for n ≥ 4, then S2
n − F has two components, one of which is a 

trivial component.

2.6. Cayley graphs generated by transposition trees �n

Note that Pn is a group of all permutations on [n]. For convenience, (i j), which is called a transposition, denotes the 
permutation that swaps the elements at position i and j, that is (i j)p1 p2 . . . pi . . . p j . . . pn = p1 p2 . . . p j . . . pi . . . pn .

Definition 8. Let Pn be symmetric group on [n], and the generating set S to be a set of transpositions. A graph G(S) with 
vertex set [n], where there is an edge between i and j if and only if the transposition (i j) belongs to S , is called the 
transposition generating graph. When G(S) is a tree, we call G(S) a transposition tree. The Cayley graphs Cay(Pn, S) obtained 
by transposition trees are called Cayley graphs generated by transposition trees, denoted by �n .

If G(S) ∼= K1,n−1, Cay(Pn, S) is called the star graph, denoted by Sn . If G(S) ∼= Pn , that is the transposition tree is a 
path Pn with n vertices, then Cay(Pn, S) is called the bubble-sort graph, denoted by Bn .

Let �i
n be the subgraph of �n spanned by vertices corresponding to permutations with i in the last position. Then �n

can be divided into n subgraphs �1
n−1, �2

n−1, · · · , �n
n−1 and each �i

n−1 is isomorphic to �n−1 for i ∈ [n]. For u ∈ V (�i
n−1), 

denoted by u′ = u(1n) the unique neighbor of u outside �i
n−1, called the extra neighbor of u.

Lemma 12. Let �n be the Cayley graphs generated by transposition trees for n ≥ 3.

(1) ([6]) κ(�n) = n − 1.
(2) ([6]) �n has the girth 4 unless �n is the star graph which has girth 6. �n does not have K2,3 as a subgraph.
(3) ([51]) For any two distinct vertices u, v ∈ �n, |N�n (u) ∩ N�n (v)| = 1 if �n = Sn; otherwise |N�n (u) ∩ N�n (v)| ≤ 2.

Lemma 13. ([6,51]) If F ⊆ V (�n) with |F | ≤ 2n − 5 is a vertex cut of �n for n ≥ 4, then �n − F has two components, one of which is 
a trivial component.

2.7. Cayley graphs generated by 2-trees

Definition 9. Let � be the alternating group, the set of even permutations on {1, 2, . . . , n}, and the generating set � to be a 
set of 3-cycles. To get an undirected Cayley graph, we will assume that whenever a 3-cycle (abc) is in �, so is its inverse, 
(acb). Since (abc), (bca) and (cab) represent the same permutation, the set {a, b, c} uniquely represents this 3-cycle and its 
inverse. So we can depict � via a hypergraph with vertex set [n], where a hyperedge of size 3 corresponds to each pair of 
a 3-cycle and its inverse in �.

It is easy to see that the Cayley graph generated by the 3-cycles in � is connected if its corresponding hypergraph H is 
connected. Since an interconnection network needs to be connected, we require H graph to be connected.

In general, this graph may have extra K3’s formed by vertices that do not correspond to a 3-cycle in �. We will avoid 
this possibility by considering a simpler case when H has a tree-like structure. Such a graph is built by the following 
procedure. We start from K3, then repeatedly add a new vertex, joining it to exactly two adjacent vertices of the previous 
graph. Any graph obtained by this procedure is called a 2-tree. If v is a vertex of a 2-tree H with the property that H can 
be generated in such a way that v is the last vertex added, then v is called a leaf of the 2-tree.
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The alternating group graph AGn [31], can be viewed as the Cayley graph generated by the graph having a tree-like (in 
fact, star-like) structure of triangles.

It is easy to prove that if two 2-trees are isomorphic, then the corresponding Cayley graphs will also be isomorphic; 
hence without loss of generality we may assume that vertex n is the tail of the 2-tree. For n ≥ 4, the vertices corresponding 
to even permutations ending with i induce a subgraph �i

n−1(�) that is also a Cayley graph generated by a 2-tree �′ , which 
is obtained by deleting the edges corresponding to the two 3-cycles in � containing n. Thus we obtain the following result 
of the recursive structure of �n(�):

Lemma 14. ([10]) Let �n(�) be a Cayley graph generated by the 2-tree �, �′ = � − {n}, n ≥ 4. Then

(1) �n(�) consists of n vertex-disjoint subgraphs, �1
n−1(�), �2

n−1(�), . . . , �n
n−1(�), each is isomorphic to �n−1(�

′).

(2) �i
n−1(�) has (n − 1)!/2 vertices, and it is (2n − 6)-regular for all i.

(3) There are exactly (n − 2)! independent edges between �i
n−1(�) and � j

n−1(�) for all i �= j.

(4) Each vertex in �i
n−1(�) has exactly two neighbors outside �i

n−1(�); these two outside neighbors are in different �k
n−1(�)’s, and 

there is an edge between them. Thus every vertex forms a triangle with its two outside neighbors.
(5) �n(�) does not contain K4 − e, that is, K4 with an edge deleted, and K2,3 as a subgraph. For any two vertices u and v, |N(u) ∩

N(v)| = 1 if d(u, v) = 1, |N(u) ∩ N(v)| ≤ 2 otherwise.

Lemma 15. ([5]) Let G = �n(�) be a Cayley graph generated by the 2-tree � for n ≥ 4. Then G is maximally connected, i.e., G is 
(2n − 4)-regular and (2n − 4)-connected.

Lemma 16. ([5]) Let G = �n(�) be a Cayley graph generated by the 2-tree � for n ≥ 4, and let T be a set of vertices in G such that 
|T | ≤ 4n − 11. If n ≥ 5, then G − T satisfies one of the following conditions:

(1) G − T is connected.
(2) G − T has two components, one of which is a singleton.
(3) G − T has two components, one of which is a K2. Moreover, |T | = 4n − 11, and the set T is formed by the neighbors of the two 

vertices in the K2.

When n = 4, there are two additional possibilities. In both cases, G − T has two components, one of which is a 4-cycle. The other 
component is either a 4-cycle if |T | = 4 or a path with 3 vertices if |T | = 5.

2.8. Burnt pancake networks B Pn

Gates and Papadimitriou [21] introduced the burnt pancake problem in 1979. Burnt pancake problem relates to the 
construction of networks of parallel processors.

Let n be a positive integer. We use [n] to denote the set {1, 2, . . . , n}. To save space, the negative sign may be placed 
on the top of an expression. Thus, ī = −i. We use 〈n〉 to denote the set [n] ∪ {ī|i ∈ [n]}. A signed permutation of [n] is 
an n-permutation u1u2 · · · un of 〈n〉 such that |u1||u2| · · · |un| taking the absolute value of each element, forms a per-
mutation of [n]. For a signed permutation u = x1x2 · · · xi · · · xn of 〈n〉, the i-th prefix reversal of u, denoted by ui is 
ui = x̄i x̄i−1 · · · x̄1xi+1 · · · xn, 1 ≤ i ≤ n. For example, let u = 12̄43̄5; then u is a signed permutation of [5], u2 = 21̄43̄5, 
u5 = 5̄34̄21̄.

Definition 10. An n-dimensional burnt pancake network B Pn is defined to be an n-regular graph G with n!2n vertices, each 
of which has a unique label from the signed permutation of 〈n〉. Two vertices u and v are adjacent in B Pn if and only if 
ui = v for some unique i (1 ≤ i ≤ n). Such an edge uv is called an i-dimensional edge and v is called the i-neighbor of u. It 
is seen that every vertex has a unique i-neighbor for 1 ≤ i ≤ n.

Lemma 17. ([11,13,30]) An n-dimensional burnt pancake network B Pn has the following combinatorial properties.

(1) B Pn is n-regular with n! × 2n vertices and n! × 2n−1 edges.
(2) κ(B Pn) = n, the girth of B Pn (n ≥ 3) is g(B Pn) = 8.
(3) B Pn can be decomposed into 2n vertex-disjoint subgraphs, denoted B P i

n, by fixing the symbol in the last position n, in which the 
symbol in the nth position is i, where i ∈ [n]. Obviously, B P i

n is isomorphic to B Pn−1. The number of cross edges between any two 
subgraphs, B P i

n and B P j
n (i �= j, i, j ∈ [n]), is |E(i, j)| = (n − 2)! × 2n−2 if i �= j̄; otherwise, |E(i, j)|=0. For a vertex v ∈ V (B P i

n), 
v has exactly one neighbor outside B P i

n, called the extra neighbor of v.

Lemma 18. ([41]) For any subset F ⊆ V (B Pn) with |F | ≤ 2n − 2 is a vertex-cut of B Pn for n ≥ 4, then B Pn − F satisfies one of the 
following conditions.



M.-M. Gu et al. / Theoretical Computer Science 690 (2017) 59–72 65
(1) B Pn − F has two connected components, one of which is a trivial component;
(2) B Pn − F has two connected components, one of which is an edge. Furthermore, F is the neighborhood of this edge with |F | =

2n − 2.

3. Main result

In this section, the relationship between the pessimistic diagnosability under the PMC model and the extra connectivity 
with some restricted conditions will be proposed.

Lemma 19. Let G be a k-regular graph. Let u and v be two distinct vertices in G, if cn(G; u, v) ≤ 2, then |NG({u, v})| ≥ 2k − 2 − l, 
where l = l(G) = max{cn(G; u, v) : (u, v) ∈ E(G)}, i.e., l = l(G) be the maximum number of common neighbors between any two 
adjacent vertices.

Proof. Since cn(G; u, v) ≤ 2, if u is non-adjacent to v , then |NG({u, v})| = |NG(u)| + |NG(v)| − cn(G; u, v) ≥ 2k − 2 ≥
2k − 2 − l. Otherwise, u is adjacent to v , |NG({u, v})| = |NG(u)| − 1 + |NG(v)| − 1 − cn(G; u, v) ≥ 2(k − 1) − l. As a re-
sult, |NG({u, v})| ≥ 2k − 2 − l. �

Tsai and Chen [43] derived the following result which characterizes a graph for t/t-diagnosability.

Lemma 20. ([43]) A graph G is t/t-diagnosable if and only if for each vertex set S ⊆ V (G) with |S| = p, 0 ≤ p ≤ t − 1, G − S has at 
most one trivial component and each nontrivial component C of G − S satisfies |V (C)| ≥ 2(t − p) + 1.

The following result is useful.

Lemma 21. ([18]) Let G be a connected graph and U ⊆ V (G). Then, |NV (G)−U (U )| ≥ κ(G) if |V (G) − U | ≥ κ(G), otherwise, 
|NV (G)−U (U )| = |V (G) − U |.

Theorem 1. Let G be a k-regular k-connected (k ≥ 5) graph with order N. Let U be a subset of V (G) and l = l(G) be the maximum 
number of common neighbors between any two adjacent vertices. Suppose further that all of the following conditions hold:

(1) N ≥ 4k − 2.
(2) cn(G) ≤ 2.
(3) If 2 ≤ |U | ≤ 2(2k − 4 − l), then |NG(U )| ≥ 2k − 2 − l.
(4) Let F ⊆ V (G) be a vertex-cut of G. If |F | ≤ 2k − 3 − l, then G − F has a large component and a small component which is a trivial 

component.

Then, tp(G) = 2k − 2 − l = κ1(G).

Proof. We first prove tp(G) ≤ 2k −2 − l. Suppose tp(G) ≥ 2k −2 − l +1, then G is (2k −2 − l +1)/(2k −2 − l +1)-diagnosable. 
Let (u, v) be an edge of G such that |NG (u) ∩ NG(v)| = l. Let S = NG({u, v}). Then |S| = 2k −2 − l ≤ tp(G) −1. An edge {u, v}
is a connected component of G − S , say C . By Lemma 20, |V (C)| ≥ 2(tp(G) −|S|) +1 ≥ 2[(2k −2 − l +1) −(2k −2 − l)] +1 = 3, 
which is a contradiction. Thus, tp(G) ≤ 2k − 2 − l.

Secondly, we show tp(G) ≥ 2k − 2 − l, i.e., G is (2k − 2 − l)/(2k − 2 − l)-diagnosable. Suppose G is not (2k − 2 − l)/(2k −
2 − l)-diagnosable, by Lemma 20, there exists a vertex set S ⊆ V (G) with |S| = p, 0 ≤ p ≤ 2k −3 − l such that G − S contains 
more than one trivial components or contains a nontrivial component C with |V (C)| ≤ 2(2k − 2 − l − p). The following cases 
should be considered.

Case 1. G − S contains more than one trivial components.
Suppose C1 = {u} and C2 = {v} are two distinct trivial components of G − S . By Condition (2) and Lemma 19, 

|NG({u, v})| ≥ 2k − 2 − l. Note that NG ({u, v}) ⊆ S , this implies that |S| ≥ 2k − 2 − l, which is a contradiction.
Case 2. G − S contains a nontrivial component C with 2 ≤ |V (C)| ≤ 2(2k − 2 − l − p).
Suppose p ≤ 1. Since the connectivity of G is k ≥ 5 > p, G − S is connected. It implies C = G − S . By |V (C)| = |V (G)| −

|S| = N − p ≥ N −1, Condition (1) and l ≤ cn(G) ≤ 2, one has |V (C)| ≥ 4k −3 ≥ 2(2k −2 − l − p) +1 which is a contradiction.
Now consider 2 ≤ p ≤ 2k − 3 − l. Since 2 ≤ |V (C)| ≤ 2(2k − 2 − l − p), so 2 ≤ |V (C)| ≤ 2(2k − 4 − l). By condition (3), 

|NG(V (C))| ≥ 2k − 2 − l. Since C is a connected component of G − S , NG(V (C)) ⊆ S . This implies p = |S| ≥ 2k − 2 − l, which 
is a contradiction for the fact that p = |S| ≤ 2k − 3 − l. Thus, tp(G) ≤ 2k − 2 − l.

Next we prove 2k − 2 − l = κ1(G). Let (u, v) be an edge of G such that |NG (u) ∩ NG(v)| = l. Let S = NG({u, v}). Then 
|S| = 2k − 2 − l. If G − S = {(u, v)}, then |V (G)| = |S| + 2 = 2k − l < 4k − 2 for k ≥ 5 which contradicts with Condition (1). 
If G − S has a trivial component which contains only one vertex, say {x}, then G − S has at least two components: {x} and 
the edge (u, v). By cn(G) ≤ 2, then |S| ≥ 2k − 2 − l + (k − 4) = 3k − 6 − l. Note 3k − 6 − l > 2k − 2 − l for k ≥ 5, it is a 
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contradiction. Thus, G − S has no trivial component, i.e., S is an extra vertex cut of G , which implies κ1(G) ≤ 2k − 2 − l. On 
the other hand, by condition (4), κ1(G) ≥ 2k − 2 − l. Thus, κ1(G) = 2k − 2 − l.

By above discussion, tp(G) = 2k − 2 − l = κ1(G). �
4. Application to some interconnection networks

As applications of Theorem 1, in this section, we determine the pessimistic diagnosability and extra connectivity for some 
well-known interconnection networks, including the alternating group graph AGn , the alternating group network ANn , the 
k-ary n-cube networks Q k

n , BC networks Xn , split-star networks S2
n , Cayley graphs generated by transposition trees �n , 

Cayley graphs generated by 2-trees, burnt pancake networks B Pn .

4.1. Application to the alternating group graphs AGn

Remark 1. It is known that κ1(AGn) = 4n − 11 for n ≥ 5 determined by Lin et al. [38] and tp(AGn) = 4n − 11 obtained by 
Tsai [44]. As a corollary of Theorem 1, we immediately obtain the following result which contains the above result.

Corollary 1. Let AGn be the n-dimensional alternating group graph for n ≥ 5. Then tp(AGn) = 4n − 11 = κ1(AGn).

Proof. Obviously, N = |V (AGn)| = n!
2 , k = 2n − 4 ≥ 6 for n ≥ 5, l = l(AGn) = 1.

Note that N = n!
2 ≥ 4(2n − 4) − 2 for n ≥ 5, Conditions (1) in Theorem 1 holds. Conditions (2) − (4) in Theorem 1 hold by 

Lemmas 1, 2 and 3, respectively. Thus, AGn satisfies all conditions in Theorem 1, tp(AGn) = 4n −11 = κ1(AGn) for n ≥ 5. �
4.2. Application to the alternating group networks

Zhou [53] derived κ1(ANn) = 2n − 5 for n ≥ 4. However, tp(ANn) has not been determined so far. We can deduce the 
result as a corollary of Theorem 1 as following. Notice that for ANn , k = n − 1 and l = 1 in Theorem 1.

Lemma 22. Let ANn be the n-dimensional alternating group network for n ≥ 4. If U is a subset of V (ANn) and 2 ≤ |U | ≤ 2(2k −
4 − l) = 4n − 14, then |N ANn (U )| ≥ 2n − 5.

Proof. The Lemma can be proved by using the induction on n. It is easy to verify that |N AN4 (U )| ≥ 3 for |U | = 2 by 
Lemma 19. We assume that the lemma is true for ANm , where m is an integer with 5 ≤ m ≤ n − 1, we will prove the result 
for ANn .

Recall that ANn is constructed by n disjoint ANn−1’s, denoted by ANi
n for i ∈ [n]. Let Ui = U ∩ V (ANi

n) and ANi
n =

ANn − ANi
n for i ∈ [n]. Without loss of generality, we may assume that |U1| ≥ |U2| ≥ . . . ≥ |Un|. The following cases should 

be considered.
Case 1. |U1| ≤ 1.
In this case, |Ui | ≤ 1 for all i ∈ [n]. Clearly, 2 ≤ |U | ≤ n because of i ≤ n. The Lemma follows if |U | = 2 by Lemma 19. Now 

assume that 3 ≤ |U | ≤ n. Since ANn is (n − 1)-regular and ANi
n is isomorphic to ANn−1, |N ANn (U )| ≥ 3κ(ANi

n) = 3(n − 2) ≥
2n − 5 for n ≥ 7.

Case 2. 2 ≤ |U1| ≤ 4n − 19.
By the inductive hypothesis in AN1

n , |N AN1
n
(U1)| ≥ 2(n − 1) − 5 = 2n − 7. If U = U1, |N ANn (U )| = |N AN1

n
(U1)| +

|N
AN1

n
(U1)| ≥ 2n − 7 + |U1| ≥ 2n − 5. Assume U �= U1 in the following. If |U2| = 1, |N AN2

n
(U2)| = κ(AN2

n) = n − 2. Note 

that AN1
n and AN2

n are vertex disjoint, |N ANn (U )| ≥ |N AN1
n
(U1)| + |N AN2

n
(U2)| ≥ 3n − 9 ≥ 2n − 5 for n ≥ 5. Now consider 

2 ≤ |U2| ≤ |U1| ≤ 4n − 19, by the inductive hypothesis in AN2
n , |N AN2

n
(U2)| ≥ 2(n − 1) − 5 = 2n − 7. Thus, |N ANn (U )| ≥

|N AN1
n
(U1)| + |N AN2

n
(U2)| ≥ 4n − 14 ≥ 2n − 5 for n ≥ 5.

Case 3. 4n − 18 ≤ |U1| ≤ 4n − 14.
Since the connectivity of AN1

n is n − 2, and (n−1)!
2 − |U1| ≥ n − 2 = κ(AN1

n) for n ≥ 5, by Lemma 21, |N AN1
n
(U1)| ≥ n − 2. 

By Lemma 4, |N
AN1

n
(U1)| = |U1|. If U = U1, |N ANn (U )| ≥ |N AN1

n
(U1)| + |N

AN1
n
(U1)| ≥ (n − 2) + 4n − 18 = 5n − 20 ≥ 2n − 5 for 

n ≥ 5. In the following, we assume the case of U �= U1. Note that U �= U1 and |U − U1| ≤ 3, so 1 ≤ |U2| ≤ 3.
If |U2| = 1, recall that ANn is (n − 1)-regular and ANi

n is isomorphic to ANn−1, |N AN2
n
(U2)| = κ(AN2

n) = n − 2. Hence, 
|N ANn (U )| ≥ |N AN1

n
(U1)| + |N AN2

n
(U2)| ≥ 2n − 4 ≥ 2n − 5 for n ≥ 5. Now suppose that 2 ≤ |U2| ≤ 3. Since (n−1)!

2 − |U2| ≥
n − 2 = κ(AN2

n) for n ≥ 5, by Lemma 21, |N AN2
n
(U2)| ≥ n − 2. Thus, |N ANn (U )| ≥ |N AN1

n
(U1)| +|N AN2

n
(U2)| ≥ 2(n − 2) ≥ 2n − 5

for n ≥ 5.
By the above cases, the Lemma holds. �

Corollary 2. Let ANn be the n-dimensional alternating group network for n ≥ 6. Then tp(ANn) = 2n − 5 = κ1(ANn).
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Proof. Note that N = |V (ANn)| = n!
2 ≥ 4(n − 1) − 2 for n ≥ 6, Condition (1) in Theorem 1 holds. Conditions (2)–(4) in 

Theorem 1 hold by Lemmas 4, 5 and 22, respectively. So ANn satisfies all conditions in Theorem 1, and tp(ANn) = 2n − 5 =
κ1(ANn) for n ≥ 6. �
4.3. Application to BC networks

Note that Ln = {Xn : Xn is an n-dimensional BC network}. For a BC network Xn ∈ Ln , the connectivity is k = n ≥ 5, l = 0
and N = |V | = 2n ≥ 4n − 2 for n ≥ 5 in Theorem 1. As a directive corollary of Theorem 1, we can get the result κ1(Xn) =
tp(Xn) = 2n − 2 in which Zhu [54] determined κ1(Xn) = 2n − 2 for n ≥ 4. Fan and Lin [20] obtained tp(Xn) = 2n − 2 for 
n ≥ 4.

Lemma 23. For any Xn ∈ Ln, if U ⊆ V (Xn) with 2 ≤ |U | ≤ 4n − 8 for n ≥ 3, then |N Xn (U )| ≥ 2n − 2.

Proof. We prove the lemma by using introduction on n. If n = 3, 2 ≤ |U | ≤ 4n − 8 = 4, it is not difficult to see that 
|N X3(U )| ≥ 4. Assume that the lemma is true for Xm−1, where m is an integer with 4 ≤ m ≤ n − 1. We consider Xn for n ≥ 4
as follows.

Since Xn is n-regular n-connected triangle-free and C(Xn) = 2, if |U | = 2, then |N Xn (U )| ≥ 2n − 2. Now consider 3 ≤
|U | ≤ 4n − 8. Note that Xn contains two copies of Xn−1, say X1

n−1 and X2
n−1, respectively. Let Ui = U ∩ V (Xi

n−1) for i ∈ {1, 2}. 
Without loss of generality, we may assume that |U1| ≥ |U2|. It implies that 2 ≤ |U1|.

Case 1. 2 ≤ |U1| ≤ 4n − 12. By the inductive hypothesis in X1
n−1, |N X1

n−1
(U1)| ≥ 2n − 4. If |U2| = 0, then U = U1. 

|N Xn (U )| ≥ |N X1
n−1

(U1)| + |N
X1

n−1
(U1)| ≥ (2n − 4) + 2 ≥ 2n − 2. If |U2| = 1, |N X2

n−1
(U2)| = κ(X2

n−1) = n − 1. Thus |N Xn (U )| ≥
|N X1

n−1
(U1)| +|N X2

n−1
(U2)| ≥ (2n − 4) + (n − 1) = 3n − 5 ≥ 2n − 2 for n ≥ 4. Now consider 2 ≤ |U2| ≤ |U1| ≤ 4n − 12 for n ≥ 4, 

so |N X2
n−1

(U2)| ≥ 2n − 4. Thus, |N Xn (U )| ≥ |N X1
n−1

(U1)| + |N X2
n−1

(U2)| ≥ 2(2n − 4) = 4n − 8 ≥ 2n − 2 for n ≥ 4.

Case 2. 4n − 11 ≤ |U1| ≤ 4n − 8.
If U = U1, by definition, |N

X1
n−1

(U1)| = |U1| ≥ 4n − 11. Thus, |N Xn (U )| ≥ |N
X1

n−1
(U1)| ≥ 4n − 11 ≥ 2n − 4 for n ≥ 4. Now 

assume that U �= U1. Since the connectivity of X1
n−1 is n − 1 and |V (X1

n−1)| − (4n − 8) ≥ κ(X1
n−1) = n − 1 for n ≥ 4, by 

Lemma 21, |N X1
n−1

(U1)| ≥ n − 1. Note that U �= U1 and |U − U1| ≤ 3, so 1 ≤ |U2| ≤ 3. If |U2| = 1, |N X2
n−1

(U2)| = κ(X2
n−1) =

n −1. Hence, |N Xn (U )| ≥ |N X1
n−1

(U1)| +|N X2
n−1

(U2)| ≥ 2n −2 for n ≥ 4. Now suppose that 2 ≤ |U2| ≤ 3. Since |V (X2
n−1)| −3 ≥

κ(B2) = n − 1 for n ≥ 4, by Lemma 21, |N X2
n−1

(U2)| ≥ κ(X2
n−1) = n − 1. So |N Xn (U )| ≥ |N X1

n−1
(U1)| + |N X2

n−1
(U2)| ≥ 2n − 2 for 

n ≥ 4.
By the above cases, the proof is completed. �
By Lemmas 6, 7 and 23 and Theorem 1, we obtain the following Corollary 3.

Corollary 3. For any Xn ∈ Ln, tp(Xn) = 2n − 2 = κ1(Xn) for n ≥ 5.

It is not difficult to check that the hypercube Q n , the crossed cube C Q n , the Möbius cubes M Q n , the twisted cubes T Q n

are all n-regular n-connected triangle-free BCs, then the following known result is derived directly.

Corollary 4. ([20]) Every pessimistic diagnosability of the hypercube Q n, the crossed cube C Q n, the Möbius cubes M Q n and the 
twisted cubes T Q n is 2n − 2 for n ≥ 6.

4.4. Application to the k-ary n-cube networks Q k
n

Lemma 24. Let Q k
n be a k-ary n-cube, where k ≥ 2 and n ≥ 1 are integers.

(1) For n ≥ 3, let U be a subset of V (Q 2
n ) with 2 ≤ |U | ≤ 4n − 8. Then |N Q 2

n
(U )| ≥ 2n − 2.

(2) For n ≥ 3, let U be a subset of V (Q 3
n ) and 2 ≤ |U | ≤ 8n − 10, then |N Q 3

n
(U )| ≥ 4n − 3.

(3) For n ≥ 3 and k ≥ 4, let U be a subset of V (Q k
n ) and 2 ≤ |U | ≤ 8n − 8, then |N Q k

n
(U )| ≥ 4n − 2.

Proof. Since the proof for the three cases are similar, we take (2) as an example, the details for (1) and (3) are omitted.
Let Q [0], Q [1], Q [2] represent the three disjoint subcubes obtained from Q 3

n by partition over one dimension. Let Ui =
U ∩ V (Q [i]) and Q [i] = Q 3

n − Q [i] for i ∈ {0, 1, 2}. Without loss of generality, we may assume that |U0| ≥ |U1| ≥ |U2|.
The lemma is proved by the induction on n. When n = 3, it is easy to check |N Q 3

3
(U )| ≥ 9 for 2 ≤ |U | ≤ 8n − 10 = 14. We 

assume that the lemma is true for Q 3 , where m is an integer with 4 ≤ m ≤ n − 1. We consider Q 3
n for n ≥ 4 as follows.
m−1



68 M.-M. Gu et al. / Theoretical Computer Science 690 (2017) 59–72
Case 1. |U0| ≤ 1.
In this case, |Ui | ≤ 1 for all 0 ≤ i ≤ 2. Clearly, 2 ≤ |U | ≤ 3 because of i ≤ 2. The Lemma follows if |U | = 2 by Lemma 19. 

Now assume that |U | = 3. Since Q 3
n is 2n-regular and Q [i] is isomorphic to Q 3

n−1, |N Q 3
n
(U )| ≥ 3κ(Q 3

n−1) = 3(2n −2) ≥ 4n −3
for n ≥ 3.

Case 2. 2 ≤ |U0| ≤ 8n − 18.
By the inductive hypothesis in Q [0], |N Q [0](U0)| ≥ 4(n − 1) − 3 = 4n − 7. If U = U0, then |N Q 3

n
(U )| = |N Q [0](U0)| +

|N Q [0](U0)| ≥ 4n − 7 + 2|U0| ≥ 4n − 7 + 4 = 4n − 3. Assume U �= U0 in the following. Note that |U | ≤ 8n − 10 and |U0| ≥
|U1| ≥ |U2|, |U1| ≤ 4n − 5.

If |U1| = 1, |N Q [1](U1)| = κ(Q [1]) = 2n − 2. Note that Q [0] and Q [1] are vertex disjoint, |N Q 3
n
(U )| ≥ |N Q [0](U0)| +

|N Q [1](U1)| ≥ (4n − 7) + (2n − 2) = 6n − 9 ≥ 4n − 3 for n ≥ 4. Now consider 2 ≤ |U1| ≤ 4n − 5 ≤ 8n − 18 for n ≥ 4, by the 
inductive hypothesis in Q [1], |N Q [1](U1)| ≥ 4(n − 1) − 3 = 4n − 7. Thus, |N Q 3

n
(U )| ≥ |N Q [0](U0)| +|N Q [1](U1)| ≥ 2(4n − 7) =

8n − 14 ≥ 4n − 3 for n ≥ 4.
Case 3. 8n − 17 ≤ |U0| ≤ 8n − 10.
If U = U0, |N Q 3

n
(U )| ≥ |N Q [0](U0)| = 2|U0| ≥ 2(8n − 17) ≥ 4n − 3 for n ≥ 4. In the following, we assume the case of 

U �= U0. Since the connectivity of Q [0] is 2n − 2, note that U �= U0, so 2 ≤ |U0| ≤ 8n − 11. Since |V (Q [0]) − U0| = 3n−1 −
|U0| ≥ 3n−1 − (8n − 11) ≥ 2n − 2 = κ(Q [0]) for n ≥ 4, and by Lemma 21, |N Q [0](U0)| ≥ 2n − 2.

Note that U �= U0 and |U − U0| ≤ 7, so 1 ≤ |U1| ≤ 7.
If |U1| = 1 and |U2| = 0, recall that the connectivity of Q 3

n is 2n and Q [i] is isomorphic to Q k
n−1, |N Q [1](U1)| =

κ(Q [1]) = 2n − 2. Note that each vertex in Q [0] (resp. Q [1]) has an extra neighbor in Q [2]. Hence, |N Q 3
n
(U )| ≥

|N Q [0](U0)| + |N Q [1](U1)| + |N Q [2](U0)| ≥ 4n − 4 + (8n − 17) = 12n − 21 ≥ 4n − 3 for n ≥ 4. If |Ui | = 1 for i = 1, 2, 
|N Q [i](Ui)| = κ(Q [i]) = 2n − 2. Hence, |N Q 3

n
(U )| ≥ |N Q [0](U0)| + |N Q [1](U1)| + |N Q [2](U2)| ≥ 3(2n − 2) = 6n − 6 ≥ 4n − 3

for n ≥ 4. Now suppose that 2 ≤ |U1| ≤ 7. Since 7 < 8n − 17 for n ≥ 4, by the inductive hypothesis in Q [1], |N Q [1](U1)| ≥
4(n − 1) − 3 = 4n − 7. Thus, |N Q 3

n
(U )| ≥ |N Q [0](U0)| + |N Q [1](U1)| ≥ (2n − 2) + (4n − 7) = 6n − 9 ≥ 4n − 3 for n ≥ 4.

The proof is complete. �
Remark 2. Esfahanian [16] obtained κ1(Q 2

n ) = 2n − 2 for n ≥ 3 and Day [14] got κ1(Q 3
n ) = 4n − 3, κ1(Q k

n ) = 4n − 2 for k ≥ 4. 
Kavianpour and Kim [33] proved that tp(Q 2

n ) = 2n − 2 for n ≥ 3 and Wang et al. [48] derived tp(Q 3
n ) ≥ 4n − 3 for n ≥ 4 and 

tp(Q k
n ) ≥ 4n − 2 for k ≥ 4 and n ≥ 4. These results can be gotten directly as corollary of Theorem 1 as following.

Since kn ≥ 4κ(Q k
n ) − 2 for k ≥ 3 and n ≥ 3 (k = 2 and n ≥ 5), Condition (1) in Theorem 1 holds. By Lemmas 8, 9 and 24, 

Conditions (2)–(4) in Theorem 1 holds.

Corollary 5. Let Q k
n be a k-ary n-cube, where k ≥ 2 and n ≥ 1 are integers. Then

(1) tp(Q 2
n ) = 2n − 2 = κ1(Q 2

n ) for n ≥ 5;

(2) tp(Q 3
n ) = 4n − 3 = κ1(Q 3

n ) for n ≥ 3;

(3) tp(Q k
n ) = 4n − 2 = κ1(Q k

n ) for n ≥ 3 and k ≥ 4.

4.5. Application to the split-star networks S2
n

Lin et al. [37] proved κ1(S2
n) = 4n − 9 for n ≥ 4. However, tp(S2

n) has not been determined so far. We can deduce the 
result by Theorem 1 in which for S2

n , k = 2n − 3 and l = 1.

Lemma 25. Let S2
n be the n-dimensional split-star network for n ≥ 4. If U is a subset of V (S2

n) and 2 ≤ |U | ≤ 8n −22, then |N S2
n
(U )| ≥

4n − 9.

Proof. We prove the lemma by using the induction on n. Since S2
4 is constructed by four disjoint triangles S2

3, it is easy to 
verify that |N S2

4
(U )| ≥ 7 for 2 ≤ |U | ≤ 10. By the inductive hypothesis, we assume that the lemma is true for S2

m , where m
is an integer with 5 ≤ m ≤ n − 1. Now we consider S2

n .

Recall that S2
n is constructed by n disjoint S2

n−1s, denoted by S2:i
n for i ∈ [n]. Let Ui = U ∩ V (S2:i

n ) and S2:i
n = S2

n − S2:i
n for 

i ∈ [n]. Without loss of generality, we may assume that |U1| ≥ |U2| ≥ . . . ≥ |Un|. The following cases should be considered.
Case 1. |U1| ≤ 1.

In this case, |Ui | ≤ 1 for all i ∈ [n]. Clearly, 2 ≤ |U | ≤ n because of U =
n⋃

i=1
Ui . If |U | = 2, by Lemma 19, |N S2

n
(U )| ≥

2(2n − 3) − 2 − 1 = 4n − 9, the lemma follows. Now assume that 3 ≤ |U | ≤ n. Since S2
n is (2n − 3)-regular and S2:i

n is 
isomorphic to S2 , |N 2(U )| ≥ 3κ(S2:i

n ) = 3(2n − 5) ≥ 4n − 9 for n ≥ 5.
n−1 Sn
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Case 2. 2 ≤ |U1| ≤ 8n − 30.
By the inductive hypothesis in S2:1

n , |N S1
n
(U1)| ≥ 4(n − 1) − 9 = 4n − 13. Since |U | ≤ 8n − 22 and |U1| ≥ |U2| ≥ . . . ≥ |Un|, 

|U2| ≤ 4n −11. If U = U1, by Lemma 10(2), |N S2
n
(U )| = |N S2:1

n
(U1)| +|N

S2:1
n

(U1)| ≥ 4n −13 +2|U1| ≥ 4n −9. Assume U �= U1 in 

the following. If |U2| = 1, |N S2:1
n

(U1)| = κ(S2:1
n ) = 2n − 5. Note that S2:1

n and S2:2
n are vertex disjoint, |N S2

n
(U )| ≥ |N S2:1

n
(U1)| +

|N S2:2
n

(U2)| ≥ 4n −13 +2n −5 = 6n −18 ≥ 4n −9 for n ≥ 5. Now consider 2 ≤ |U2| ≤ 4n −11. Note that 4n −11 ≤ 8n −30 for 
n ≥ 5, by the inductive hypothesis in S2:2

n , |N S2:2
n

(U2)| ≥ 4(n − 1) − 9 = 4n − 13. Thus, |N S2
n
(U )| ≥ |N S2:1

n
(U1)| + |N S2:2

n
(U2)| ≥

8n − 26 ≥ 4n − 9 for n ≥ 5.
Case 3. 8n − 29 ≤ |U1| ≤ 8n − 22.
By Lemma 10(2), |N

S2:1
n

(U1)| = 2|U1|. If U = U1, |N S2
n
(U )| ≥ |N

S2:1
n

(U1)| = 2|U1| ≥ 16n − 58 ≥ 4n − 9 for n ≥ 5. In the 

following, we assume the case of U �= U1. Since the connectivity of S2:1
n is 2n − 5, and (n − 1)! − |U1| ≥ 2n − 5 = κ(S2:1

n ) for 
n ≥ 5, by Lemma 21, |N S2:1

n
(U1)| ≥ 2n − 5. Note that U �= U1 and |U − U1| ≤ 7, so 1 ≤ |U2| ≤ 7.

If |U2| = 1, recall that S2
n is (2n − 3)-regular and S2:i

n is isomorphic to S2
n−1, |N S2:2

n
(U2)| = κ(S2:2

n ) = 2n − 5. Hence, 
|N S2

n
(U )| ≥ |N

S2:1
n

(U1)| − |U − U1| ≥ 16n − 65 ≥ 4n − 9 for n ≥ 5. Now suppose that 2 ≤ |U2| ≤ 7. Since 7 ≤ 8n − 30 for 

n ≥ 5, by the inductive hypothesis in S2:1
n , |N S2:1

n
(U1)| ≥ 4(n − 1) − 9 = 4n − 13. Thus, |N S2

n
(U )| ≥ |N S2:1

n
(U1)| + |N S2:2

n
(U2)| ≥

(2n − 5) + (4n − 13) = 6n − 18 ≥ 4n − 9 for n ≥ 5.
By the above cases, the lemma holds. �

Corollary 6. Let S2
n be the n-dimensional split-star network for n ≥ 4. Then tp(S2

n) = 4n − 9 = κ1(S2
n).

Proof. To prove the theorem, we only need to verify that S2
n satisfies conditions in Theorem 1. Note that k = 2n − 3 ≥ 5

for n ≥ 4, l = 1, N = |V (S2
n)| = n! ≥ 4(2n − 3) − 2 for n ≥ 4, Condition (1) in Theorem 1 holds. By Lemmas 10 and 25, 

Conditions (2)–(3) in Theorem 1 holds. Condition (4) holds by Lemma 11. S2
n satisfies all conditions in Theorem 1, and thus 

tp(S2
n) = 4n − 9 = κ1(S2

n). �
4.6. Application to the Cayley graphs generated by transposition trees �n

Let �n be Cayley graphs generated by transposition trees. Yang et al. [51] determined κ1(�n) = 2n −4 for n ≥ 3. However, 
tp(�n) has not been known so far. By Theorem 1, we immediately the following result which contains the above result. Note 
that for �n , k = n − 1 and l = 0 in Theorem 1.

Lemma 26. Let �n be Cayley graphs generated by transposition trees for n ≥ 4. If U is a subset of V (�n) and 2 ≤ |U | ≤ 4n − 12, then 
|N�n (U )| ≥ 2n − 4.

Proof. The lemma is proved by induction on n. When n = 4, it is easy to check |N�n (U )| ≥ 4 for 2 ≤ |U | ≤ 4n − 12 = 4. We 
assume that the lemma is true for �m , where m is an integer with 4 ≤ m ≤ n − 1. We consider �n for n ≥ 5 as follows.

Recall that �n can be decomposed into n copies of �′
n−1s, namely �1

n−1, �
2
n−1, . . . , �

n
n−1. Let Ui = U ∩ V (�i

n−1) and 

�i
n−1 = �n − �i

n−1 for i ∈ [n]. Without loss of generality, we may assume that |U1| ≥ |U2| ≥ |U3| ≥ . . . ≥ |Un|.
Case 1. |U1| ≤ 1.
In this case, |Ui | ≤ 1 for all 1 ≤ i ≤ n. Since |U | ≥ 2, it implies |U1| = |U2| = 1. Since �n is (n − 1)-regular and �i

n−1 is 
isomorphic to �n−1, |N�n (U )| ≥ 2κ(�i

n−1) = 2(n − 2) = 2n − 4 for n ≥ 5.
Case 2. 2 ≤ |U1| ≤ 4n − 16.
By the inductive hypothesis in �1

n−1, |N�1
n−1

(U1)| ≥ 2(n − 1) − 4 = 2n − 6. Note that |Ui | ≤ |U1| ≤ 4n − 16 for i ∈
{2, 3, . . . , n}. If |U2| = 1, |N�2

n−1
(U2)| ≥ κ(�2

n−1) = n − 2, so |N�n (U )| ≥ |N�1
n−1

(U1)| + |N�2
n−1

(U2)| ≥ (2n − 6) + (n − 2) =
3n − 8 ≥ 2n − 4 for n ≥ 5. If 2 ≤ |U2| ≤ 4n − 16, by the inductive hypothesis in �2

n−1, |N�2
n−1

(U2)| ≥ 2(n − 1) − 4 = 2n − 6. 
Thus, |N�n (U )| ≥ |N�1

n−1
(U1)| + |N�2

n−1
(U2)| ≥ 2(2n − 6) = 4n − 12 ≥ 2n − 4 for n ≥ 5. Now consider |U2| = 0, then |Ui | = 0

for i ∈ {3, 4, . . . , n}, it implies that U = U1. So |N�n (U )| ≥ |N�1
n−1

(U1)| + |N
�1

n−1
(U1)| ≥ 2n − 6 + |U1| ≥ 2n − 6 + 2 = 2n − 4

for n ≥ 5.
Case 3. 4n − 15 ≤ |U1| ≤ 4n − 12.
If U = U1, by Lemma 12, |N

�1
n−1

(U1)| = |U1| ≥ 4n − 15. Since (n − 1)! − (4n − 12) ≥ n − 2 for n ≥ 5, by Lemma 21, 

|N�1
n−1

(U1)| ≥ κ(�1
n−1) = n − 2. Thus, |N�n (U )| = |N

�1
n−1

(U1)| + |N�1
n−1

(U1)| ≥ 4n − 15 + (n − 2) = 5n − 17 ≥ 2n − 4 for n ≥ 5. 

In the following, we assume that U �= U1. It implies that |U − U1| ≤ 3, so 1 ≤ |U2| ≤ |U | − |U1| ≤ 3.
If |U2| = 1, |N�2

n−1
(U2)| = κ(�2

n−1) = n −2. Recall that |N�1
n−1

(U1)| ≥ n −2. Hence, |N�n (U )| ≥ |N�0
n−1

(U0)| +|N�1
n−1

(U1)| ≥
2n − 4 for n ≥ 5. Now suppose that 2 ≤ |U2| ≤ 3. Since |U2| ≤ 3 ≤ 4n − 16 for n ≥ 5, by the inductive hypothesis in �2

n−1, 
|N�2

n−1
(U2)| ≥ 2(n − 1) − 4 = 2n − 6. Thus, |N�n (U )| ≥ |N�1

n−1
(U1)| + |N�2

n−1
(U2)| ≥ (n − 2) + (2n − 6) = 3n − 8 ≥ 2n − 4 for 

n ≥ 5.
By the above cases, the proof is completed. �
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Corollary 7. Let �n be Cayley graphs generated by transposition trees for n ≥ 6. Then tp(�n) = 2n − 4 = κ1(�n) for n ≥ 6.

Proof. Note that k = n − 1 ≥ 5 and N = |V (�n)| = n! ≥ 4(n − 1) − 2 for n ≥ 6, Condition (1) in Theorem 1 holds. By Lem-
mas 12 and 26, Conditions (2)–(3) in Theorem 1 holds. Condition (4) holds by Lemma 13. Thus, �n satisfies all conditions 
in Theorem 1, tp(�n) = 2n − 4 = κ1(�n) for n ≥ 6. �

Since the star graph and the bubble-sort graph are Cayley graph generated by transposition trees, The following corollary 
is gotten directly from Corollary 7.

Corollary 8. Let Sn and Bn are the star graph and the bubble sort graph, then tp(Sn) = 2n − 4 = κ1(Sn) for n ≥ 6, and tp(Bn) =
2n − 4 = κ1(Bn) for n ≥ 6.

4.7. Application to the Cayley graphs generated by 2-trees �n(�)

Lemma 27. Let �n(�) be a Cayley graph generated by the 2-tree �. For n ≥ 4, let U be a subset of V (�n(�)) and 2 ≤ |U | ≤ 8n − 26. 
Then, |N�n(�)(U )| ≥ 4n − 11.

Proof. The lemma is proved by the induction on n. Since �4(�) is constructed by 4 disjoint triangles, it is easy to verify 
that |N�4(�)(U )| ≥ 5 for 2 ≤ |U | ≤ 7. By the inductive hypothesis, we assume that the lemma is true for �m(�), where m is 
an integer with 5 ≤ m ≤ n − 1.

Note that �n(�) is constructed by n disjoint �n−1(�), denoted by �i
n(�) for i ∈ [n]. Let Ui = U ∩ V (�i

n−1(�)) and 

�i
n−1(�) = �n(�) − �i

n−1(�) for i ∈ [n]. Without loss of generality, we may assume that |U1| ≥ |U2| ≥ . . . ≥ |Un|. The 
following three cases should be considered.

Case 1. |U1| ≤ 1.
In this case, |Ui | ≤ 1 for all i ∈ [n]. Clearly, 2 ≤ |U | ≤ n because of i ≤ n. The Lemma follows if |U | = 2 by Lemma 19. 

Now assume that 3 ≤ |U | ≤ n. Since �n(�) is (2n − 4)-regular and �i
n−1(�) is isomorphic to �n−1(�), |N�n(�)(U )| ≥

3κ(�i
n−1(�)) = 3(2n − 6) ≥ 4n − 11 for n ≥ 5.

Case 2. 2 ≤ |U1| ≤ 8n − 34.
By the inductive hypothesis in �1

n−1(�), |N�1
n−1(�)(U1)| ≥ 4(n − 1) − 11 = 4n − 15. If U = U1, |N�n(�)(U )| =

|N�1
n−1(�)(U1)| + |N

�1
n−1(�)

(U1)| ≥ 4n − 15 + 2|U1| ≥ 4n − 11. Assume U �= U1 in the following. If |U2| = 1, |N�2
n−1(�)(U2)| =

κ(�2
n−1(�)) = 2n − 6. Note that �1

n−1(�) and �2
n−1(�) are vertex disjoint, |N�n(�)(U )| ≥ |N�1

n−1(�)(U1)| + |N�2
n−1(�)(U2)| ≥

4n − 15 + (2n − 6) ≥ 6n − 21 for n ≥ 5. Now consider 2 ≤ |U2| ≤ |U1| ≤ 8n − 34, by the inductive hypothesis in �2
n−1(�), 

|N�2
n−1(�)(U2)| ≥ 4(n − 1) − 11 = 4n − 15. Thus, |N�n(�)(U )| ≥ |N�1

n−1(�)(U1)| + |N�2
n−1(�)(U2)| ≥ 8n − 30 ≥ 4n − 11 for n ≥ 5.

Case 3. 8n − 33 ≤ |U1| ≤ 8n − 26.
By Lemma 14, |N

�1
n−1(�)

(U1)| = 2|U1|. It is clear that the lemma holds if U = U1. In the following, we assume the case 

of U �= U1. Since the connectivity of �1
n−1(�) is 2n − 6, and by Lemma 21, |N�1

n−1(�)(U1)| ≥ 2n − 6. Note that U �= U1 and 
|U − U1| ≤ 7, so 1 ≤ |U2| ≤ 7.

If |U2| = 1, |N�n(�)(U )| ≥ |N�1
n−1(�)(U1)| + |N

�1
n−1(�)

(U1)| − |U − U1| ≥ (2n − 6) + 2|U1| − 7 ≥ 18n − 79 ≥ 4n − 11 for 

n ≥ 5. Now suppose that 2 ≤ |U2| ≤ 7. Since 7 ≤ 8n − 32 for n ≥ 5, by the inductive hypothesis in �2
n−1(�), |N�2

n−1(�)(U2)| ≥
4(n − 1) − 11 = 4n − 15. Thus, |N�n(�)(U )| ≥ |N�1

n−1(�)(U1)| + |N�2
n−1(�)(U2)| ≥ (2n − 6) + (4n − 15) = 6n − 21 ≥ 2n − 5 for 

n ≥ 5.
By the above cases, the lemma holds. �

Corollary 9. Let G = �n(�) be a Cayley graph generated by the 2-tree � for n ≥ 5. Then κ1(G) = 4n − 11 = tp(G).

Proof. Note that k = 2n − 4 ≥ 5 and n!
2 ≥ 4(2n − 4) − 2 for n ≥ 5, Condition (1) in Theorem 1 holds. By Lemmas 14 and 27, 

Conditions (2) and (3) in Theorem 1 holds. Condition (4) holds by |F | ≤ 2k − 3 − l = 2(2n − 4) − 3 − 1 = 4n − 12 < 4n − 11
and Lemma 16. Thus, �n(�) satisfies all conditions in Theorem 1, and so tp(�n(�)) = 4n − 11 = κ1(�n(�)) for n ≥ 5. �
4.8. Application to the burnt pancake networks B Pn

Lemma 28. Let B Pn be the n-dimensional burnt pancake network. For n ≥ 3, let U be a subset of V (B Pn) and 2 ≤ |U | ≤ 4n − 8, then 
|NB Pn (U )| ≥ 2n − 2.

Proof. If |U | = 2, by Lemma 17 and Lemma 19, for any two distinct vertices u and v , so |NB Pn (U )| ≥ 2n − 2.
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Recall that B Pn can be decomposed into 2n copies of B Pn−1’s, namely B P i
n−1, for i ∈ 〈n〉. Let Ui = U ∩ V (B P i

n−1) and 

B P i
n−1 = B Pn − B P i

n−1 for i ∈ 〈n〉. Without loss of generality, we may assume that |U1| ≥ |U2| ≥ |U3| ≥ . . . ≥ |Un| ≥ |Un̄| ≥
|Un−1| ≥ |U 1̄|.

The lemma is proved by using the induction on n. If n = 3, it is easy to check |NB Pn (U )| ≥ 4 for 2 ≤ |U | ≤ 4n − 8 = 4. We 
assume that the lemma is true for B Pm , where m is an integer with 4 ≤ m ≤ n − 1. We consider B Pn for n ≥ 4 as follows.

Case 1. |U1| ≤ 1.
In this case, |Ui | ≤ 1 for all 1 ≤ i ≤ n. Since |U | ≥ 2, it implies that |U1| = |U2| = 1. Since B Pn is n-regular and B P i

n−1 is 
isomorphic to B Pn−1, |NB Pn (U )| ≥ 2κ(B P i

n−1) = 2(n − 1) = 2n − 2 for n ≥ 4.
Case 2. 2 ≤ |U1| ≤ 4n − 12.
By the inductive hypothesis in B P 1

n−1, |NB P 1
n−1

(U1)| ≥ 2(n −1) −2 = 2n −4. Note that |Ui | ≤ |U1| ≤ 4n −12 for i ∈ [n] \{1}. 
If U = U1, |NB Pn (U )| = |NB P 1

n−1
(U1)| +|N

B P 1
n−1

(U1)| ≥ 4n − 12 +|U1| ≥ 4n − 11. Assume U �= U1 in the following. If |U2| = 1, 

|NB P 2
n−1

(U2)| ≥ κ(B P 2
n−1) = n − 1, so |NB Pn (U )| ≥ |NB P 1

n−1
(U1)| + |NB P 2

n−1
(U2)| ≥ (2n − 4) + (n − 1) = 3n − 5 ≥ 2n − 2 for 

n ≥ 4. If 2 ≤ |U2| ≤ 4n − 12, by the inductive hypothesis in B P 2
n−1, |NB P 2

n−1
(U2)| ≥ 2(n − 1) − 2 = 2n − 4. Thus, |NB Pn (U )| ≥

|NB P 1
n−1

(U1)| + |NB P 2
n−1

(U2)| ≥ 2(2n − 4) = 4n − 8 ≥ 2n − 2 for n ≥ 4.

Case 3. 4n − 11 ≤ |U1| ≤ 4n − 8.
Since (n − 1)! − (4n − 8) ≥ n − 1 for n ≥ 5, by Lemma 21, |NB P 1

n−1
(U1)| ≥ κ(B P 1

n−1) = n − 1. If U = U1, by Lemma 17, 
|N

B P 1
n−1

(U1)| = |U1| ≥ 4n − 11. Thus, |NB Pn (U )| = |N
B P 1

n−1
(U1)| + |NB P 1

n−1
(U1)| ≥ 4n − 11 + (n − 1) = 5n − 2 ≥ 2n − 2 for 

n ≥ 4. In the following, we assume that U �= U1. It implies that |U − U1| ≤ 3, so 1 ≤ |U2| ≤ |U | − |U1| ≤ 3.
If |U2| = 1, |NB P 2

n−1
(U2)| = κ(B P 2

n−1) = n − 1. Recall that |NB P 1
n−1

(U1)| ≥ n − 1. Hence, |NB Pn (U )| ≥ |NB P 1
n−1

(U1)| +
|NB P 2

n−1
(U2)| ≥ 2n − 2 for n ≥ 4. Now suppose that 2 ≤ |U2| ≤ 3. Since |U2| ≤ 3 ≤ 4n − 12 for n ≥ 4, by the inductive hypoth-

esis in B P 2
n−1, |NB P 2

n−1
(U2)| ≥ 2(n − 1) − 2 = 2n − 4. Thus, |NB Pn (U )| ≥ |NB P 1

n−1
(U1)| + |NB P 2

n−1
(U2)| ≥ (n − 1) + (2n − 4) =

3n − 5 ≥ 2n − 2 for n ≥ 4.
By the above cases, the proof is completed. �

Remark 3. The extra connectivity of B Pn was obtained by Song et al. [41], κ1(B Pn) = 2n − 2 for n ≥ 4. But tp(B Pn) is not 
known so far. By Theorem 1, we immediately the following result which contains the above result.

Corollary 10. Let B Pn be the n-dimensional burnt pancake network for n ≥ 5. Then tp(B Pn) = 2n − 2 = κ1(B Pn).

Proof. Note that k = n ≥ 5 and N = |V (B Pn)| = n! ≥ 4n − 2 for n ≥ 5, Condition (1) in Theorem 1 holds. By Lemmas 17
and 28, Conditions (2) and (3) in Theorem 1 hold. Condition (4) holds by Lemma 18. B Pn satisfies all conditions in Theo-
rem 1, and so tp(B Pn) = 2n − 2 = κ1(B Pn) for n ≥ 5. �
5. Concluding remarks

This paper establishes the close relationship between these two parameter: the extra connectivity and pessimistic diag-
nosability under the PMC model, by proving tp(G) = κ1(G) for some regular graphs G with some conditions. As applications, 
the pessimistic diagnosability for each of split-star networks S2

n , Cayley graphs generated by transposition trees �n , Cayley 
graph generated by the 2-tree �n(�) and the burnt pancake networks B Pn is gotten. As corollaries, the known results 
about the extra connectivity and the pessimistic diagnosability of many famous networks including the alternating group 
graphs [38,44], the alternating group networks [53], BC networks [54,20] and the k-ary n-cube networks [16,14,33,48] are 
obtained directly. The relationship between tp(G) and κh(G) for some h without the condition cn(G) ≤ 2 needs to be studied 
in the future.
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