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Concern about fault tolerance in the design of interconnection networks has raised interest 
in the study of graphs such that deleting some vertices increases the diameter only 
moderately. For an interconnection network G , the (ω − 1)-fault diameter Dω(G) is the 
maximum diameter of a subgraph obtained by deleting fewer than ω vertices of G , and 
the ω-wide diameter dω(G) is the least � such that any two vertices are joined by ω
internally-disjoint paths of length at most �. The enhanced hypercube Q n,k is a variant of 
the well-known n-dimensional hypercube Q n in which an edge is added from each vertex 
xn, . . . , x1 to the vertex obtained by complementing xk, . . . , x1. Yang, Chang, Pai, and Chan 
gave an upper bound for dn+1(Q n,k) and Dn+1(Q n,k) and posed the problem of finding the 
wide diameter and fault diameter of Q n,k . By constructing internally disjoint paths between 
any two vertices in the enhanced hypercube, for n ≥ 3 and 2 ≤ k ≤ n we prove that 
Dω(Q n,k) = dω(Q n,k) = d(Q n,k) for 1 ≤ ω < n − � k

2 �; Dω(Q n,k) = dω(Q n,k) = d(Q n,k) + 1

for n − � k
2 � ≤ ω ≤ n + 1, where d(Q n,k) is the diameter of Q n,k . These results mean that 

interconnection networks modeled by enhanced hypercubes are extremely robust.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is conveniently represented by an undirected graph. The vertices (or edges) of the graph 
represent the nodes (or links) of the network. Throughout this paper, vertex and node, edge and link, graph and network 
are used interchangeably. Reliability and efficiency are important criteria in the design of interconnection networks. In the 
study of fault-tolerance and transmission delay of networks, wide diameter and fault diameter are important parameters 
that have been studied by many researchers. They combine connectivity with diameter to measure simultaneously the 
fault-tolerance and efficiency of parallel processing computer networks. These parameters were studied by several authors 
for some Cartesian product graphs [7,27,28] and for the hypercube and its variants [3,5,10,12,19–21].

Let u and v be two vertices in a network G . A u, v-path is a path with endpoints u and v . The distance between u and v , 
denoted by d(u, v), is the minimum length (number of edges) of a u, v-path. The diameter of G , denoted by d(G), is the 
maximum distance between vertices. The connectivity κ(G) is the minimum number of vertices whose removal results in a 
disconnected or 1-vertex network. We say that G is ω-connected when 1 ≤ ω ≤ κ(G).
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Failures are inevitable when a network is put in use. Therefore, it is important to consider faulty networks. By the 
definition of the connectivity, if G is a ω-connected graph then removal of fewer than ω vertices from G still keeps the 
resulting graph connected. The (ω − 1)-fault diameter of a graph G , denoted by Dω(G), is the maximum diameter among 
subgraphs obtained from G by deleting fewer than ω vertices; it measures the worst-case effect on the diameter when 
vertex faults occur. Note that Dω(G) is well-defined if and only if G is ω-connected. Moreover,

d(G) = D1(G) ≤ D2(G) ≤ · · · ≤ Dk−1(G) ≤ Dk(G).

The problem we are interested in is to determine the precise value of Dω(G) or derive the relations between Dω(G) and 
d(G) for a given ω connected graph G . The answer to this problem is quite important for some applications in a real-time 
system. Generally speaking, this is a quite difficult problem. However, the precise values of Dω(G) have been determined 
for some well-known networks G (see, for example, Section 13.6 in the text-book [26]).

By Menger’s Theorem [17], in a ω-connected network there exist ω internally disjoint paths joining any two vertices 
(internally disjoint means that the only shared vertices are the endpoints). Given a ω-connected graph G , fix ω with 1 ≤
ω ≤ k. The ω-wide diameter of G , denoted by dω(G), is the least � such that for any u, v ∈ V (G) there exist ω internally 
disjoint u, v-paths of length at most �. Throughout this paper, we abuse terminology by writing “disjoint paths” to mean 
“internally disjoint paths”. Note that d1(G) is just the diameter d(G) of G . From the definition,

d(G) = d1(G) ≤ d2(G) ≤ · · · ≤ dk−1(G) ≤ dk(G).

An ideal interconnection network has connectivity as large as possible and diameter as small as possible. The wide diam-
eter dω(G) combines connectivity κ(G) with diameter d(G), where 1 ≤ ω ≤ κ(G). Hence dω(G) is a more suitable parameter 
than κ(G) and d(G) to measure fault-tolerance and efficiency of parallel processing computer networks. Determining the 
precise value of dω(G) is significant for a given graph and an integer ω with 1 ≤ ω ≤ κ(G). However, Hsu [9] proved that 
this problem is NP-complete.

From the definitions, it follows that Dω(G) ≤ dω(G) when G is ω-connected. Equality holds for some well-known net-
works [6,14].

As a topology for an interconnection network of a multiprocessor system, the hypercube is a widely used and well-known 
model, since it possesses many attractive properties such as regularity, symmetry, logarithmic diameter, high connectivity, 
recursive construction, ease of bisection, and relatively low link complexity [13,18,25]. We study an important variant of the 
hypercube Q n , the enhanced hypercube Q n,k proposed by Tzeng and Wei [22]; it has a smaller diameter, improved mean 
node distance and cost efficiency when compared to the hypercube; its properties have been studied in [2,15,23,24,29]. For 
2 ≤ k ≤ n, the n-dimensional enhanced hypercube Q n,k is obtained from the hypercube Q n in which an edge is added from 
each vertex to the vertex obtained by complementing its last k bits. As a special case of the enhanced hypercube, the folded 
hypercube F Q n was studied in [11,30,31]. We give the basic properties of Q n,k in Section 2.

It was shown by Liu [15] that κ(Q n,k) = n + 1. Thus, the wide diameter dω(Q n,k) and the fault diameter Dω(Q n,k) are 
well-defined when ω ≤ n + 1. Yang, Chang, Pai, and Chan [29] gave an upper bound for dn+1(Q n,k) and Dn+1(Q n,k), and 
they posed the problem of finding the wide diameter and fault diameter of Q n,k . In this paper, for n ≥ 3 and 2 ≤ k ≤ n, we 
prove

Dω(Q n,k) = dω(Q n,k) =
{

d(Q n,k) for 1 ≤ ω < n − � k
2 �;

d(Q n,k) + 1 for n − � k
2 � ≤ ω ≤ n + 1.

The special case k = n (folded hypercube) was obtain earlier by Simó and Yebra [20], along with the same values for edge 
deletions. For enhanced hypercubes also, our arguments yield the same values for edge deletions as for vertex deletions.

To prove this result, in Section 3 we explicitly construct disjoint paths of bounded length joining any two vertices in Q n,k . 
The proofs of our main results are in Section 4.

2. Properties of Q n,k

Let xn · · · x1 be an n-bit binary string. We call the rightmost bit the first bit and the leftmost bit the nth bit. For simplicity 
we use ai to mean that the bit a is repeated i times; for example, 01302 = 011100. The Hamming distance between strings 
u and v , denoted by H(u, v), is the number of positions where the two strings differ.

The n-dimensional hypercube Q n is the graph whose vertices are the n-bit binary strings and whose edges are the pairs 
of vertices differing in exactly one position. An edge of Q n is a j-dimensional edge if the two endpoints differ in the jth 
position. For 1 ≤ j ≤ n, let E j denote the set of j-dimensional edges in Q n .

As a variant of the hypercube, the n-dimensional folded hypercube F Q n , proposed first by El-Amawy and Latifi [1], is 
obtained from the hypercube Q n by making each vertex u adjacent to its complementary vertex, denoted ū and obtained 
from u by subtracting each bit from 1. Such an edge is often called a complementary edge.

As we have defined, the enhanced hypercube Q n,k for 2 ≤ k ≤ n is obtained from the hypercube Q n by adding the 
edge uv whenever u and v are related by u = xn · · · x1 and v = xn · · · xk+1 x̄k x̄k−1 · · · x̄1, that is, the k bits xk, · · · , x1 are com-
plemented. Such an edge is called a k-complementary edge. For convenience, we use E0 to denote the set of k-complementary 
edges. Thus E(Q n,k) = E(Q n) ∪ E0. When k = n, we have Q n,n = F Q n; hence the enhanced hypercube is a generalization 
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Fig. 1. Enhanced hypercubes Q 3,3 and Q 4,3.

of the folded hypercube. The graphs shown in Fig. 1 are Q 3,3 and Q 4,3, where the hypercube edges and 3-complementary 
edges are represented by solid lines and dashed lines, respectively.

A graph G is vertex-transitive if for any u, v ∈ V (G) there is some σ ∈ Aut(G), the automorphism group of G , such 
that σ(u) = v; it is edge-transitive if for any xy, uv ∈ E(G) there is some σ ∈ Aut(G) such that {σ(x), σ(y)} = {u, v}. The 
hypercube Q n and folded hypercube F Q n are vertex-transitive and edge-transitive, and the enhanced hypercube Q n,k is 
vertex-transitive but not edge-transitive when k < n [16,25,29].

The Cartesian product G�H of graphs G and H is the graph with vertex set V (G) × V (H), in which vertices (u, v)

and (u′, v ′) are adjacent whenever uu′ ∈ E(G) and v = v ′ , or u = u′ and v v ′ ∈ E(H). By the definition of Q n,k , we have 
Q n,k = Q n−k�F Q k . Although Q n,k is not edge-transitive when 2 ≤ k < n, we have the following properties.

Proposition 1. Permuting the first k positions and/or permuting the last n − k positions in the names of the vertices of Q n,k does not 
change the graph.

Proof. Exchanging the ith bit and jth bit among the first k or among the last n − k preserves the adjacency relation, 
since the number of coordinates in which two vertices differ is not changed by exchanging such coordinates. An arbitrary 
permutation is obtained by a succession of such exchanges. �
Proposition 2. Given u, v ∈ V (Q n,k), let r and s be the numbers of positions in which u and v differ among the first k and last n − k
positions, respectively. The distance between u and v is computed by d(u, v) = s + min{r, k − r + 1}.

Proof. The distance is the minimum number of steps to change u into v . All steps change one bit, except that 
a k-complementary edge changes the first k bits. If no k-complementary edge is used, then the number of steps is at 
least the Hamming distance, and this suffices. For this reason, a shortest path uses at most one k-complementary edge. 
If a k-complementary edge is used, then the k − r positions in which u and v agree among the first k must be changed 
individually. �

Proposition 2 immediately yields d(Q n,k) = (n −k) +
 k
2 �, which equals n −� k

2 �. This was observed by Tzeng and Wei [22], 
along with an algorithm for finding shortest paths joining vertices. Note that if u and v differ in more than 
 k

2 � positions 
among the first k, then every shortest u, v-path contains exactly one k-complementary edge.

3. Construction of paths

Many properties of interconnection networks were investigated by different construction methods of paths [4,8]. In this 
section we will prove our main results by constructing disjoint paths of bounded length joining any two vertices in Q n,k .

Let P be a path u0 → u1 → ·· · → u�−1 → u� from the vertex u0 to a vertex u� in Q n,k . The path P traverses the edges 
u0u1, u1u2, . . . , u�−1u� . Since the edge u j−1u j is in Ed j for some d j ∈ {0, 1, . . . , n}, and every vertex is incident with exactly 
one edge in Ed j , we can represent the path P from u0 by the list (d1, . . . , d�), where d j indicates the type of the edge 

joining u j−1 and u j . For example, in Q 5,3 the path originating from 00000 determined by (2, 0, 5) is 00000 2−→ 00010 0−→
00101

5−→ 10101. Note that the length of a path determined by a list I is the number of elements in I .
We use the following two lemmas to construct disjoint paths. A proper segment of a list is a string of consecutive elements 

that is not the full list. A proper initial segment is a proper segment containing the first element of a list. For example, the 
� − 1 proper initial segments of (d1, d2, . . . , d�) are listed as follows: (d1), (d1, d2), . . ., (d1, d2, . . . , d�−1).

Lemma 1. No two cyclic permutations of a list of distinct elements have a common proper initial segment.
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Table 1
Two cases for r < d(Q n,k).

Case Condition I

A i ≤ k − i (1, . . . , i,k + 1, . . . ,k + j)
B i > k − i (0, i + 1, . . . ,k,k + 1, . . . ,k + j)

Proof. Let I1 = (d1, d2, . . . , d�) and I j = (d j, . . . , d�, d1, . . . , d j−1) for 2 ≤ j ≤ �.
Consider j and j′ with 1 ≤ j′ < j ≤ �. A proper initial segment of I j for j ≥ 2 contains d j and not d j−1, but this is 

not true for any initial segment of I j′ , since when d j is not the first element, d j−1 also occurs in any initial segment 
containing d j . Therefore, I j and I j′ have no common proper initial segment. �
Lemma 2. Let S be a set of � distinct elements of {0, 1, . . . , n}. Let I1, . . . , Im be orderings of S such that no two have a common proper 
initial segment. If some element of {0, 1, . . . , k} is not in S, then for any vertex u in Q n,k, the lists I1, . . . , Im determine disjoint paths 
to a single vertex.

Proof. Let S = {d1, . . . , d�} and [k] = {1, . . . , k}. If 0 /∈ S , then each path reaches the vertex v that differs from u in the 
positions of S . If 0 ∈ S , then each path reaches the vertex v that differs from u in the positions of ([k] − S) ∪ (S −{0} −[k]).

If two subsets of S both contain 0 or both omit 0, then they produce paths to the same vertex only if they are the 
same set. If 0 ∈ T ⊆ S and 0 /∈ T ′ ⊆ S , then T and T ′ produce paths to the same vertex only if they agree outside [k] and 
intersect [k] in complementary subsets. By the hypothesis that 0, 1, . . . , k are not all present in S , this cannot occur.

Therefore, the paths from u determined by I j and I j′ have a common internal vertex if and only if they have a common 
proper initial segment. �
Lemma 3. Let I = (d1, . . . , d�) with all di distinct and in {0, 1, . . . , n}. If some element of {0, 1, . . . , k} is not in I , then for any vertex 
u in Q n,k, the � cyclic permutations of I determine disjoint paths to a single vertex.

Proof. The conclusion follows immediately from Lemmas 1 and 2. �
When G is the complete graph Kn with n ≥ 3, we have Dω(G) = 1 but dω(G) = 2 for 2 ≤ ω ≤ n − 1. Since Q 2,2 = K4, we 

consider Q n,k with n ≥ 3 and 2 ≤ k ≤ n.

Theorem 1. For any two distinct vertices u and v in Q n,k with n ≥ 3 and 2 ≤ k ≤ n, there exist n + 1 disjoint u, v-paths of length at 
most d(Q n,k) + 1, such that at least n − � k

2 � − 1 of the paths have length at most d(Q n,k).

Proof. The vertex transitivity of Q n,k and Proposition 1 allow us to assume u = 0n and v = 0n−k− j1 j0k−i1i , where 0 ≤ i ≤ k
and 0 ≤ j ≤ n − k. We will construct the desired paths. Let r = min{i + j, k − i + j + 1}. Recall that d(Q n,k) = n − � k

2 �. 
We consider two cases according to the relationship between r and d(Q n,k).

Case 1: r < d(Q n,k). We first specify a list I of length r, in two cases (Table 1). Note that r = i + j when i ≤ k − i and 
r = k − i + j + 1 when i > k − i.

Not all of 0, 1, . . . , k appear in I , since having 0 requires i > k/2 (Case B), and then also having 1 requires i = 0, a con-
tradiction. Hence Lemma 3 applies, so the r cyclic permutations of I determine r disjoint u, v-paths of length r.

The remaining n − r + 1 paths, with length r + 2, are specified by adding one of {0, 1, . . . , n} − I at both the beginning 
and the end of I . Let I ′ be the list obtained by adding h, and let P be the path from u determined by I ′ .

If h > k or if h ∈ [k] and 0 /∈ I , then u and v agree in position h, and P is the only path in the constructed set containing 
vertices that differ from them in position h. Furthermore, all internal vertices of P differ from u and v in position h.

If h = 0, then i ≤ k − i (Case A). All internal vertices of P differ from u and v in positions k and k − 1, and no other path 
has any such vertices.

If h ∈ [k] and 0 ∈ I , then 1 ≤ h ≤ i (Case B). The first vertex of P after u differs from u only in position h. The next 
vertex disagrees with u on all of positions 1, . . . , i except h, and this remains true of all other internal vertices of P , 
because I contains no element of {1, . . . , i}. All the other paths in the construction have no vertices satisfying either of 
these conditions.

Since r < d(Q n,k), all the paths have length at most d(Q n,k) + 1; in fact, all have length at most d(Q n,k) unless r =
d(Q n,k) − 1. In this case there are r paths of length r, which suffices since r = d(Q n,k) − 1 = n − � k

2 � − 1.

Case 2: r ≥ d(Q n,k). Let s = d(Q n,k). Since r = min{i + j, k − i + j + 1}, we have i + j ≥ s and k − i + j + 1 ≥ s, so 
k + 2 j + 1 ≥ 2s. If j ≤ n − k − 1, then 2n − k − 1 ≥ 2s = 2n − 2� k

2 �, which is impossible. Hence j = n − k. With j = n − k, 
we have i ≥ 
 k

2 � and k + 1 − i ≥ 
 k
2 �, so 
 k

2 � ≤ i ≤ � k
2 � + 1. When i = 
 k

2 �, we have r = i + j; when i = � k
2 � + 1, we have 

r = k − i + j + 1. Both cases apply when k is odd. In either case, r = n − � k � = d(Q n,k), and we define three lists (Table 2).
2
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Table 2
Two cases for j = n − k and 
 k

2 � ≤ i ≤ � k
2 � + 1.

Case i I J I ′

A 
 k
2 � (1, . . . , i,k + 1, . . . ,n) (k + 1, . . . ,n) (0, i + 1, . . . ,k)

B � k
2 � + 1 (0, i + 1, . . . ,k,k + 1, . . . ,n) (k + 1, . . . ,n) (1, . . . , i)

Since j = n − k, in each case I has length r. By Lemma 3, the cyclic permutations of I yield r disjoint u, v-paths of 
length r. Since r = n − � k

2 � = d(Q n,k), this yields enough paths of length at most d(Q n,k). Let T = {i + 1, . . . , k} in Case A, 
T = {1, . . . , i} in Case B. Every vertex in each of these paths is constant in the positions of T (all-0 or all-1), and in fact all-0
in Case A.

Since r = n − � k
2 �, we only need to find � k

2 � + 1 more paths of length at most d(Q n,k) + 1. Note that I ′ has length 
� k

2 � + 1. Form � k
2 � + 1 lists by inserting J after the first element of each cyclic permutation of I ′ . The first and last lists are 

(0, J , i + 1, . . . , k) and (k, J , 0, i + 1, . . . , k − 1) in Case A, (1, J , 2, . . . , i) and (i, J , 1, . . . , i − 1) in Case B. Each of these lists 
has length n − 
 k

2 � + 1, which is at most d(Q n,k) + 1.
Each of these lists is an ordering of a single set of elements. By an argument like that of Lemma 1, they have no common 

proper initial segments. Since they also do not contain all of {0, 1, . . . , k}, by Lemma 2 these paths are disjoint.
In Case A, each internal vertex on each of these paths is not all 0 in the positions of T . In Case B, each internal vertex 

on each of these paths has between 1 and |T | − 1 nonzero positions in T . Hence these paths are disjoint from the earlier 
paths. �
4. Consequences

From Theorem 1 and the definition of wide diameter, we immediately obtain an upper bound on dω(Q n,k).

Corollary 1. If n ≥ 3 and 2 ≤ k ≤ n, then

dω(Q n,k) ≤
{

d(Q n,k) for 1 ≤ ω < n − � k
2 �,

d(Q n,k) + 1 for n − � k
2 � ≤ ω ≤ n + 1.

Proof. When ω < n −� k
2 �, Theorem 1 provides at least ω disjoint paths with length at most d(Q n,k) joining any two vertices 

in Q n,k . When ω ≤ n + 1, it provides at least ω such paths with length at most d(Q n,k) + 1. �
We next give a lower bound on the fault diameter Dω(Q n,k).

Lemma 4. Fix n ≥ 3. If 2 ≤ k ≤ n and n − � k
2 � ≤ ω ≤ n + 1, then

Dω(Q n,k) ≥ d(Q n,k) + 1.

Proof. Since Dω(G) is nondecreasing in ω, proving Dn−� k
2 �(Q n,k) ≥ d(Q n,k) + 1 is sufficient. Let u = 0n and v = 1n−k0k−i1i , 

where i = 
 k
2 � − 1. Note that v has 1s in n − � k

2 � − 1 positions. Let W be the set of neighbors of u whose single 1 occurs 
in a position where v has a 1, so |W | = n − � k

2 � − 1. On any u, v-path in Q n,k − W , the neighbor of u has a single 1 in a 
position among i + 1, . . . , k or is 0n−k1k .

By Proposition 2, the distance between v and a neighbor u′ of u not in W is n − k + min{i + 1, k − i}. Since i = 
 k
2 � − 1, 

the distance is n − � k
2 �, which equals d(Q n,k). Hence every u, v-path in Q n,k − W has length at least d(Q n,k) + 1. �

Theorem 2. For 3 ≤ n and 2 ≤ k ≤ n,

Dω(Q n,k) = dω(Q n,k) =
{

d(Q n,k) for 1 ≤ ω < n − � k
2 �;

d(Q n,k) + 1 for n − � k
2 � ≤ ω ≤ n + 1.

Proof. Since d(Q n,k) ≤ Dω(Q n,k) ≤ dω(Q n,k) for 1 ≤ ω ≤ n + 1, Corollary 1 yields Dω(Q n,k) = dω(Q n,k) = d(Q n,k) for 1 ≤
ω < n − � k

2 �.

For n − � k
2 � ≤ ω ≤ n + 1, Corollary 1 and Lemma 4 yield Dω(Q n,k) = dω(Q n,k) = d(Q n,k) + 1. �
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5. Conclusions

The enhanced hypercube Q n,k is a generalization of the hypercube Q n and the folded hypercube F Q n since Q n,0 = Q n

and Q n,n = F Q n . In this paper, we investigate the vulnerability of the diameter d(Q n,k) of the enhanced hypercubes by 
considering the fault diameter Dω(Q n,k) and the wide diameter dω(Q n,k). For n ≥ 3 and 2 ≤ k ≤ n we prove that Dω(Q n,k) =
dω(Q n,k), which is equal to d(Q n,k) when 1 ≤ ω < n − � k

2 �, and equal to d(Q n,k) + 1 when n − � k
2 � ≤ ω ≤ n + 1. These 

results can provide more accurate measurements for fault tolerance of the system when the graphs are used to model the 
topological structure of large-scale parallel processing systems. We will further investigate the fault diameter of Q n,k with 
hybrid vertex and edge faults.
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