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1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems.
An interconnection network can be modeled by a graph in which vertices correspond to processors and edges correspond
to communication links.

Let G be a connected graph. A subset T C V(G), if any, is called an h-vertex-cut, if G — T is disconnected and has the
minimum degree at least h. The h-super connectivity Ks(h)(G) of G is defined as the minimum cardinality over all h-vertex-
cuts of G. Similarly, a subset F C E(G), if any, is called an h-edge-cut, if G — F is disconnected and has the minimum degree
at least h. The h-super edge-connectivity Agh)(G) of G is defined as the minimum cardinality over all h-edge-cuts of G.

The h-super connectivity and h-super edge-connectivity are important measure of fault tolerance of networks and have
been received considerable attention in the literature (see, for example, [6-8] and references cited therein).

For the n-dimensional star graph S;, Li and Xu [7] proved that Ks(h)(sn) = xg’”(sn) =+ 1D!(n—h—-1) for any h with
0 <h <n-—2. As a generalization of S;, the (n, k)-star graph S, where 2 <k <n—1, when 0 <h <n —k, Li and Xu [6,8]
determined that

kP (Sp) =n+hk—2)—1 (11)
and

(m—h—-1)(h+1) forh<min{k—2,5—1},

n—k+1)(k—1) otherwise. (1.2)

A (Spi) = {
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Fig. 1. A (4, 2)-star graph S4 and its 2-split graph Si_z, which is isomorphic to a star S4.

When n—k+1 <h <n -2, in this paper, we prove that
(h+D!n—h-1)
n—k)!
by using an (n — k)!-split graph of S x.
The rest of the paper is organized as follows. In Section 2, we give definitions of a star graph S, an (n, k)-star graph

Spk and an (n — k)!-split graph of Sk, and some lemmas used in our proofs. The proof of our main result is in Section 3.
Conclusions are in Section 4.

h h
ik (Sni) = 2 (Sni) =

2. Definitions and lemmas

For a given integer n with n>2, let I, ={1,2,...,n}, I, ={2,...,n}. For k € I, let P(n, k) be the set of k-arrangements
on Iy, that is, P(n,k) ={p1p2...px: Pi € In,pi #pj,1 <i# j<k}. P(n,n) will be shorted as P(n). Clearly, [P(n, k)| =
(nf—'k), Usually, if u =p1p2...px € P(n, k), we call p; the i-digit of u for each i € Ij. For simplicity, we write upyi...pn for
P =DP1D2...PkPk+1---Pn € P(n), where u is called the prefix of p and py41...pyn is called the suffix of p.

Definition 2.1. (Akers and Krishnamurthy, 1989 [1]) An n-dimensional star graph S, is a graph with vertex-set P(n), a vertex
p=Dpi1P2-..Pi-...pn being linked a vertex q if and only if g =p;p>...pi—1P1Pi+1...Pn for some i e I;.

Lemma 2.2. (Li and Xu, 2014 [7]) k™ (Sn) = 2P (Sn) = (h + 1)\ —h — 1) forany hwithO <h <n — 2.

Definition 2.3. (Chiang et al, 1995 [3]) An (n,k)-star graph S, is a graph with vertex-set P(n,k), a vertex p =
p1pP2...Di...pk being linked a vertex q if and only if q is

(8) pip2---Pi—1P1Pi+1 - Pk, Where i € I} (swap p1 with p;), or
(b) pip2p3---pr, where pj € In\ {pi: i€} (replace p1 by p)).

The vertices of type (a) are referred to as swap-neighbors of the vertex p and the edges between them are referred to as
swap-edges or i-edges. The vertices of type (b) are referred to as unswap-neighbors of the vertex p and the edges between
them are referred to as unswap-edges. Clearly, every vertex in Sy i has (k—1) swap-neighbors and (n —k) unswap-neighbors.

By definitions, it is clear that S, 1 = Kj, a complete graph with n vertices, and S; ,—1 = Sy

Definition 2.4. Let G be a graph and t be a positive integer. A t-split graph G' of G is a graph obtained from G by replacing
each vertex x by a set V, of t independent vertices, and replacing each edge e = xy by a perfect matching E. between Vy
and V.

Fig. 1 shows a (4, 2)-star graph S4 and its 2-split graph Sﬁqz, which is isomorphic to a star Sa.
Lemma 2.5. Let G be a connected graph and G! be a t-split graph of G. Then k™ (G*) < tx ™ (G) and A (Gt) <t 2P (G).

Proof. Assume that T is a minimum h-vertex-cut and F is a minimum h-edge-cut in G. Then Ks(h)(G) =|T| and Agh)(G) =
[Fl.Let T ={Vy,: ueT}and F! =(E.: e € F}. Then |T!|=¢|T| and |F| =¢|F|.
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Since G — T (resp. G — F) is disconnected, then G¢ — T (resp. G' — F!) also is disconnected. Furthermore, it is easy to
see that (G — T)" =G' — T* (resp. (G — F)! =G' — F!).

Because T (resp. F) is an h-vertex-cut (resp. h-edge-cut) in G, each vertex in G — T (resp. G — F) has at least h neighbors
in G—T (resp. G — F), and so each vertex in (G — T)! (resp. (G — F)!) also has h neighbors in (G — T)! (resp. (G — F)!),
which implies that T! is an h-vertex-cut (resp. F¢ is an h-edge-cut) in G'. Thus, we have

h h
kP GH < =T =tk (6),
h h
WP < |F =t IF| =t (©)

as required.

Lemma 2.6. For any k with 2 <k <n — 1, there is an (n — k)!-split graph of Sy, x that is isomorphic to a star graph S,.

Proof. Define an (n — k)!-split graph Sg"k_k)! of Sy k as follows.
For a vertex u =p1pz...pk in Sy, it is replaced by (n — k)! vertices

Vy=A{upky1-.-Pn € P(M): pryi € In\ {p1,..., pr}for1 <i<n—kj.

For an edge uv in Sy, let X =upyy1...pn € Vy, and define a matching E,, between V, and V, as follows.

If uv is an i-edge in S, for some i € I}, then v = p;py... pi—1P1Pi+1--- Pk- Let Eyy be the set of edges that link two
vertices x € V, and y € V, with the same suffix.

If uv is an unswap-edge in Sy, then v = pyyjpaps--- pi for some pyyjeIn\ {pi: i< Ix}. Let Eyy be the set of edges
that link two vertices x € V,, and y € V, with suffixes differing in exactly the (k + j)-digit.

Clearly, Sr(:l:k)! has vertex-set P(n), a vertex x is adjacent to a vertex y if and only if the label of y can be obtained

. .. Coge . . - (n—k)!
from the label of x by swapping the first digit and the i-digit for some i € I;,. Therefore, by Definition 2.1, Sk

graph S;,. The Lemma follows.

is a star

3. Main results

In this section, we present our main results, that is, we determine the h-super connectivity and h-super edge connectivity

of the (n, k)-star graph Sy, . Since Sy 1 = Ky, for which Ks(h) and )\gh) do not exist for any h with 1 <h <n —1, we only

consider the case of k > 2 in the following discussion.

Lemma3l.For2<k<n-—1landn—k<h<n-2,

(h+1D)!n—h-1)
n—k)!

. h h
min{A{" (Snx), k" (Sni)} >

Proof. For2<k<n—1and n—k<h <n—2, by Lemma 2.5, Lemma 2.6 and Lemma 2.2, we immediately have that
I h —k)! h
kP (Sna) (= k) = kP (ST =k (Sp) = (h+ DI —h — 1)
h h —k)! h
WP (Sni =101 = AP (ST =2 (S = (h+ D1 —h = 1)

as required.

Lemma3.2.For2<k<n—landn—k<h<n-2,

(h+D!n—h-1)
n—k)!

h h
max{A"” (Spi)s kP (S} <

Proof. Since n —k<h,n—1—h <k —1. Let X be the set of k-arrangements on I, whose the last (n — 1 — h) digits are
12---(n—1—h). Then |X| = ((Zf,g,' Let H be the subgraph of S, induced by X. Sincen>k+1, h+1—(m—k) <h and H
isan (h+1,h+1— (n —k))-star graph. Let T be the set of neighbors of X in S,y — X and F be the set of edges between X
and T. Since all the vertices with the last (n—1 —h) digits 12---(n—1—h) are in X, all the vertices in T are swap-neighbors
of X and no two vertices in X share a common swap-neighbor in T, that is, |F| =|T]|.

For a vertex of H, since it has h neighbors in X, it has exactly (n — 1 — h) neighbors in T. It follows that

th+D!n—1—h)
n—k)! ’

|F|=IT|=|X|n—1—-h) =
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We show that F is an h-edge-cut of Sy . To this end, we only need to show that any vertex v in S, — X has at least h
neighbors in S, x — F. In fact, since S,k is (n — 1)-regular and v has at most one neighbor in X, v has at least n — 2 (> h)
neighbors in S, x — X, which implies that F is an h-edge-cut of S; . It follows that

(h+1)!n—-1-h)
n—k)! ’
We now show that T is an h-vertex-cut of Sj k. To this end, we only need to show that any vertex u in Spx — (XUT)
has at least h neighbors within.

We claim that at most one of neighbors of u is in T. Suppose to the contrary that u has two distinct neighbors v and w
in T. Since all vertices in T are swap-neighbors of X, without loss of generality, we may assume

h
AP (Sni) <IF| =

v=1p2...Pht1-m-kP123---(n—h—1), (3.1)

W:2p’2...p;1+]_(n_k)1p’13~--(n—h—1). (3.2)

Since u and w are adjacent, their 1-digits are different, that is, the 1-digit of u is not 2. If v is an unswap-neighbor of u,
then from (3.1) we should have

U=q1p2-..Ph+1-(n-kyP123---(n—h —1), (3.3)

where q1 € Iy \ {p1, P2, ..., Ph1—-(n—k)> 1,2, -+, (n — h — 1)}. Since p; #1, p’1 # 2 and g7 # 2, comparing (3.2) and (3.3),
we can easily find that u and w have different digits at least three positions. By Definition 2.3, w is not a neighbor of u,
a contradiction.

If v is a swap-neighbor of u then, without loss of generality,

U=3py...Pht1-m-kyP121---(n —h—=1). (34)

Comparing (3.2) and (3.4), we can also easily find that u and w have different digits at least three positions, and so w is
not a neighbor of u, a contradiction.

Since u has at most one neighbor in T, u has at least (n — 1) — 1 neighbors in S,y — (XUT). Since (n—1) —1 > h, u has
at least h neighbors in S, x — (X UT). It follows that T is an h-vertex-cut of S, x, and so

(h+1D!n—1-h)
(n—k)!

e (Spp) < IT| =
The lemma follows.
By Lemma 3.1 and Lemma 3.2, we immediately obtain our main result.
Theorem 3.3.For2 <k<n—1landn—k<h<n-2,
(h+D!n—h-1)

5" (Sni) = 2" (Sn) = = (35)

Remark 3.4. We would like to make some remarks on our result.
When h=n —k, the results in (1.1), (1.2) and (3.5) are consistent, that is, k" ¥ (S, ;) = xﬁ”"‘)(sn,k) =m—k+1Dk=1).
The alternating group network ANp(n > 3), proposed by Ji [5], is a Cayley graph on the alternating group A, with
respect to the generating set S = {(123), (132), (12)(3i) : 4 <i <n}. Cheng et al. [2] proved that AN, = S, ,—2. When
he{0,1,2}, /cs(h)(ANn) and Agh)(ANn) can be obtained by (1.1) and (1.2). Very recently, Feng et al. [4] have determined
AS) (ANp) =12(n — 4) for n > 5. When h > 2, the following result is obtained from Theorem 3.3 immediately.

Corollary 3.5. k" (ANy) = A (ANy) = L (h+ D!(n —h — 1) for2 <h <n —2.

4. Conclusions
This paper considers the refined measure, k-super connectivity Ks(h) and k-super edge-connectivity Agh) for the fault-
tolerance of a network, and the (n, k)-star graph S,k (2 <k <n — 1), which is an attractive alternative network to the

hypercube. In early articles [6,7], we determined Ks(h’(sn,k) and ,\g’”(s,,,k) for 0 < h <n —k, which are two different val-

ues. In this paper, we proved Ks(h)(sn,k) = lgh)(sn,k) = (ED-h=1) for n — k < h <n — 2. This result implies that at least

(n—k)!
% vertices or edges have to be removed from an (n, k)-star S, to make it disconnected and no vertices of de-

gree less than h. When the (n, k)-star graph is used to model the topological structure of a large-scale parallel processing
system, this result can provide a more accurate measure for the fault tolerance of the system.



86 X.-J. Li et al. / Theoretical Computer Science 704 (2017) 82-86

References

[1] S.B. Akers, B. Krishnamurthy, A group theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38 (4) (1989) 555-566.

[2] E. Cheng, K. Qiu, Z. Shen, A note on the alternating group network, ]. Supercomput. 59 (1) (2012) 246-248.

[3] W.-K. Chiang, R.-]. Chen, The (n, k)-star graphs: a generalized star graph, Inform. Process. Lett. 56 (1995) 259-264.

[4] Y.-Q. Feng, R.-X. Hao, J.-X. Zhou, On computing of a conditional edge connectivity of alternating group network, Linear Multilinear Algebra (2017),
http://dx.doi.org/10.1080/03081087.2016.1277689.

[5] Y.-H. Ji, A new class of Cayley networks based on the alternating groups, Appl. Math. J. Chinese Univ. Ser. A 14 (1998) 235-239 (in Chinese).

[6] X.-J. Li, J.-M. Xu, Generalized measures of edge fault tolerance in (n, k)-star graphs, Math. Sci. Lett. 1 (2) (2012) 133-138.

[7] X.-J. Li, J.-M. Xu, Generalized measures for fault tolerance of star networks, Networks 63 (3) (2014) 225-230.

[8] X.-J. Li, J.-M. Xu, Fault-tolerance of (n, k)-star networks, Appl. Math. Comput. 248 (2014) 525-530.


http://refhub.elsevier.com/S0304-3975(17)30598-4/bib616B3839s1
http://refhub.elsevier.com/S0304-3975(17)30598-4/bib6371733132s1
http://refhub.elsevier.com/S0304-3975(17)30598-4/bib63633935s1
http://dx.doi.org/10.1080/03081087.2016.1277689
http://refhub.elsevier.com/S0304-3975(17)30598-4/bib6A3938s1
http://refhub.elsevier.com/S0304-3975(17)30598-4/bib6C783132s1
http://refhub.elsevier.com/S0304-3975(17)30598-4/bib6C783134s1
http://refhub.elsevier.com/S0304-3975(17)30598-4/bib6C78753134s1

	On fault tolerance of (n,k)-star networks
	1 Introduction
	2 Deﬁnitions and lemmas
	3 Main results
	4 Conclusions
	References


