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Fault tolerance of an (n, k)-star network is measured by its h-super connectivity κ(h)
s or 

h-super edge-connectivity λ(h)
s . Li et al. (2014) [8], (2012) [6] determined κ(h)

s and λ(h)
s for 

0 ≤ h ≤ n − k. This paper determines that κ(h)
s = λ

(h)
s = (h+1)!(n−h−1)

(n−k)! for n − k ≤ h ≤ n − 2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. 
An interconnection network can be modeled by a graph in which vertices correspond to processors and edges correspond 
to communication links.

Let G be a connected graph. A subset T ⊂ V (G), if any, is called an h-vertex-cut, if G − T is disconnected and has the 
minimum degree at least h. The h-super connectivity κ

(h)
s (G) of G is defined as the minimum cardinality over all h-vertex-

cuts of G . Similarly, a subset F ⊂ E(G), if any, is called an h-edge-cut, if G − F is disconnected and has the minimum degree 
at least h. The h-super edge-connectivity λ

(h)
s (G) of G is defined as the minimum cardinality over all h-edge-cuts of G .

The h-super connectivity and h-super edge-connectivity are important measure of fault tolerance of networks and have 
been received considerable attention in the literature (see, for example, [6–8] and references cited therein).

For the n-dimensional star graph Sn , Li and Xu [7] proved that κ(h)
s (Sn) = λ

(h)
s (Sn) = (h + 1)!(n − h − 1) for any h with 

0 ≤ h ≤ n − 2. As a generalization of Sn , the (n, k)-star graph Sn,k , where 2 ≤ k ≤ n − 1, when 0 ≤ h ≤ n − k, Li and Xu [6,8]
determined that

κ
(h)
s (Sn,k) = n + h(k − 2) − 1 (1.1)

and

λ
(h)
s (Sn,k) =

{
(n − h − 1)(h + 1) for h � min{k − 2, n

2 − 1},
(n − k + 1)(k − 1) otherwise.

(1.2)
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Fig. 1. A (4,2)-star graph S4,2 and its 2-split graph S2
4,2, which is isomorphic to a star S4.

When n − k + 1 ≤ h ≤ n − 2, in this paper, we prove that

κ
(h)
s (Sn,k) = λ

(h)
s (Sn,k) = (h + 1)!(n − h − 1)

(n − k)!
by using an (n − k)!-split graph of Sn,k .

The rest of the paper is organized as follows. In Section 2, we give definitions of a star graph Sn , an (n, k)-star graph 
Sn,k and an (n − k)!-split graph of Sn,k , and some lemmas used in our proofs. The proof of our main result is in Section 3. 
Conclusions are in Section 4.

2. Definitions and lemmas

For a given integer n with n ≥ 2, let In = {1, 2, . . . , n}, I ′n = {2, . . . , n}. For k ∈ In , let P (n, k) be the set of k-arrangements 
on In , that is, P (n, k) = {p1 p2 . . . pk : pi ∈ In, pi �= p j, 1 ≤ i �= j ≤ k}. P (n, n) will be shorted as P (n). Clearly, |P (n, k)| =

n!
(n−k)! . Usually, if u = p1 p2 . . . pk ∈ P (n, k), we call pi the i-digit of u for each i ∈ Ik . For simplicity, we write upk+1 . . . pn for 
p = p1 p2 . . . pk pk+1 . . . pn ∈ P (n), where u is called the prefix of p and pk+1 . . . pn is called the suffix of p.

Definition 2.1. (Akers and Krishnamurthy, 1989 [1]) An n-dimensional star graph Sn is a graph with vertex-set P (n), a vertex 
p = p1 p2 . . . pi . . . pn being linked a vertex q if and only if q = pi p2 . . . pi−1 p1 pi+1 . . . pn for some i ∈ I ′n .

Lemma 2.2. (Li and Xu, 2014 [7]) κ(h)
s (Sn) = λ

(h)
s (Sn) = (h + 1)!(n − h − 1) for any h with 0 ≤ h ≤ n − 2.

Definition 2.3. (Chiang et al., 1995 [3]) An (n, k)-star graph Sn,k is a graph with vertex-set P (n, k), a vertex p =
p1 p2 . . . pi . . . pk being linked a vertex q if and only if q is

(a) pi p2 · · · pi−1 p1 pi+1 · · · pk , where i ∈ I ′k (swap p1 with pi ), or
(b) p′

1 p2 p3 · · · pk , where p′
1 ∈ In \ {pi : i ∈ Ik} (replace p1 by p′

1).

The vertices of type (a) are referred to as swap-neighbors of the vertex p and the edges between them are referred to as 
swap-edges or i-edges. The vertices of type (b) are referred to as unswap-neighbors of the vertex p and the edges between 
them are referred to as unswap-edges. Clearly, every vertex in Sn,k has (k −1) swap-neighbors and (n −k) unswap-neighbors.

By definitions, it is clear that Sn,1 ∼= Kn , a complete graph with n vertices, and Sn,n−1 ∼= Sn .

Definition 2.4. Let G be a graph and t be a positive integer. A t-split graph Gt of G is a graph obtained from G by replacing 
each vertex x by a set V x of t independent vertices, and replacing each edge e = xy by a perfect matching Ee between V x
and V y .

Fig. 1 shows a (4, 2)-star graph S4,2 and its 2-split graph S2
4,2, which is isomorphic to a star S4.

Lemma 2.5. Let G be a connected graph and Gt be a t-split graph of G. Then κ(h)
s (Gt) ≤ t κ

(h)
s (G) and λ(h)

s (Gt) ≤ t λ
(h)
s (G).

Proof. Assume that T is a minimum h-vertex-cut and F is a minimum h-edge-cut in G . Then κ(h)
s (G) = |T | and λ(h)

s (G) =
|F |. Let T t = {V u : u ∈ T } and F t = {Ee : e ∈ F }. Then |T t | = t |T | and |F t | = t |F |.
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Since G − T (resp. G − F ) is disconnected, then Gt − T t (resp. Gt − F t ) also is disconnected. Furthermore, it is easy to 
see that (G − T )t = Gt − T t (resp. (G − F )t = Gt − F t ).

Because T (resp. F ) is an h-vertex-cut (resp. h-edge-cut) in G , each vertex in G − T (resp. G − F ) has at least h neighbors 
in G − T (resp. G − F ), and so each vertex in (G − T )t (resp. (G − F )t ) also has h neighbors in (G − T )t (resp. (G − F )t ), 
which implies that T t is an h-vertex-cut (resp. F t is an h-edge-cut) in Gt . Thus, we have

κ
(h)
s (Gt) ≤ |T t | = t |T | = t κ

(h)
s (G),

λ
(h)
s (Gt) ≤ |F t | = t |F | = t λ

(h)
s (G)

as required.

Lemma 2.6. For any k with 2 ≤ k ≤ n − 1, there is an (n − k)!-split graph of Sn,k that is isomorphic to a star graph Sn.

Proof. Define an (n − k)!-split graph S(n−k)!
n,k of Sn,k as follows.

For a vertex u = p1 p2 . . . pk in Sn,k , it is replaced by (n − k)! vertices

V u = {upk+1 . . . pn ∈ P (n) : pk+i ∈ In \ {p1, . . . , pk} for 1 ≤ i ≤ n − k}.
For an edge uv in Sn,k , let x = upk+1 . . . pn ∈ V u , and define a matching Euv between V u and V v as follows.
If uv is an i-edge in Sn,k for some i ∈ I ′k , then v = pi p2 . . . pi−1 p1 pi+1 . . . pk . Let Euv be the set of edges that link two 

vertices x ∈ V u and y ∈ V v with the same suffix.
If uv is an unswap-edge in Sn,k , then v = pk+ j p2 p3 · · · pk for some pk+ j ∈ In \ {pi : i ∈ Ik}. Let Euv be the set of edges 

that link two vertices x ∈ V u and y ∈ V v with suffixes differing in exactly the (k + j)-digit.
Clearly, S(n−k)!

n,k has vertex-set P (n), a vertex x is adjacent to a vertex y if and only if the label of y can be obtained 
from the label of x by swapping the first digit and the i-digit for some i ∈ I ′n . Therefore, by Definition 2.1, S(n−k)!

n,k is a star 
graph Sn . The Lemma follows.

3. Main results

In this section, we present our main results, that is, we determine the h-super connectivity and h-super edge connectivity 
of the (n, k)-star graph Sn,k . Since Sn,1 ∼= Kn , for which κ(h)

s and λ(h)
s do not exist for any h with 1 ≤ h ≤ n − 1, we only 

consider the case of k ≥ 2 in the following discussion.

Lemma 3.1. For 2 ≤ k ≤ n − 1 and n − k ≤ h ≤ n − 2,

min{λ(h)
s (Sn,k), κ

(h)
s (Sn,k)} ≥ (h + 1)!(n − h − 1)

(n − k)! .

Proof. For 2 ≤ k ≤ n − 1 and n − k ≤ h ≤ n − 2, by Lemma 2.5, Lemma 2.6 and Lemma 2.2, we immediately have that

κ
(h)
s (Sn,k)(n − k)! ≥ κ

(h)
s (S(n−k)!

n,k ) = κ
(h)
s (Sn) = (h + 1)!(n − h − 1)

λ
(h)
s (Sn,k)(n − k)! ≥ λ

(h)
s (S(n−k)!

n,k ) = λ
(h)
s (Sn) = (h + 1)!(n − h − 1)

as required.

Lemma 3.2. For 2 ≤ k ≤ n − 1 and n − k ≤ h ≤ n − 2,

max{λ(h)
s (Sn,k), κ

(h)
s (Sn,k)} ≤ (h + 1)!(n − h − 1)

(n − k)! .

Proof. Since n − k ≤ h, n − 1 − h ≤ k − 1. Let X be the set of k-arrangements on In whose the last (n − 1 − h) digits are 
12 · · · (n − 1 − h). Then |X | = (h+1)!

(n−k)! . Let H be the subgraph of Sn,k induced by X . Since n ≥ k + 1, h + 1 − (n − k) ≤ h and H
is an (h + 1, h + 1 − (n − k))-star graph. Let T be the set of neighbors of X in Sn,k − X and F be the set of edges between X
and T . Since all the vertices with the last (n −1 −h) digits 12 · · · (n −1 −h) are in X , all the vertices in T are swap-neighbors 
of X and no two vertices in X share a common swap-neighbor in T , that is, |F | = |T |.

For a vertex of H , since it has h neighbors in X , it has exactly (n − 1 − h) neighbors in T . It follows that

|F | = |T | = |X |(n − 1 − h) = (h + 1)!(n − 1 − h)
.

(n − k)!
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We show that F is an h-edge-cut of Sn,k . To this end, we only need to show that any vertex v in Sn,k − X has at least h
neighbors in Sn,k − F . In fact, since Sn,k is (n − 1)-regular and v has at most one neighbor in X , v has at least n − 2 (≥ h)

neighbors in Sn,k − X , which implies that F is an h-edge-cut of Sn,k . It follows that

λ
(h)
s (Sn,k) ≤ |F | = (h + 1)!(n − 1 − h)

(n − k)! .

We now show that T is an h-vertex-cut of Sn,k . To this end, we only need to show that any vertex u in Sn,k − (X ∪ T )

has at least h neighbors within.
We claim that at most one of neighbors of u is in T . Suppose to the contrary that u has two distinct neighbors v and w

in T . Since all vertices in T are swap-neighbors of X , without loss of generality, we may assume

v = 1p2 . . . ph+1−(n−k)p123 · · · (n − h − 1), (3.1)

w = 2p′
2 . . . p′

h+1−(n−k)1p′
13 · · · (n − h − 1). (3.2)

Since u and w are adjacent, their 1-digits are different, that is, the 1-digit of u is not 2. If v is an unswap-neighbor of u, 
then from (3.1) we should have

u = q1 p2 . . . ph+1−(n−k)p123 · · · (n − h − 1), (3.3)

where q1 ∈ In \ {p1, p2, . . . , ph+1−(n−k), 1, 2, · · · , (n − h − 1)}. Since p1 �= 1, p′
1 �= 2 and q1 �= 2, comparing (3.2) and (3.3), 

we can easily find that u and w have different digits at least three positions. By Definition 2.3, w is not a neighbor of u, 
a contradiction.

If v is a swap-neighbor of u then, without loss of generality,

u = 3p2 . . . ph+1−(n−k)p121 · · · (n − h − 1). (3.4)

Comparing (3.2) and (3.4), we can also easily find that u and w have different digits at least three positions, and so w is 
not a neighbor of u, a contradiction.

Since u has at most one neighbor in T , u has at least (n − 1) − 1 neighbors in Sn,k − (X ∪ T ). Since (n − 1) − 1 ≥ h, u has 
at least h neighbors in Sn,k − (X ∪ T ). It follows that T is an h-vertex-cut of Sn,k , and so

κ
(h)
s (Sn,k) ≤ |T | = (h + 1)!(n − 1 − h)

(n − k)! .

The lemma follows.

By Lemma 3.1 and Lemma 3.2, we immediately obtain our main result.

Theorem 3.3. For 2 ≤ k ≤ n − 1 and n − k ≤ h ≤ n − 2,

κ
(h)
s (Sn,k) = λ

(h)
s (Sn,k) = (h + 1)!(n − h − 1)

(n − k)! . (3.5)

Remark 3.4. We would like to make some remarks on our result.
When h = n − k, the results in (1.1), (1.2) and (3.5) are consistent, that is, κ(n−k)

s (Sn,k) = λ
(n−k)
s (Sn,k) = (n − k + 1)(k − 1).

The alternating group network ANn(n ≥ 3), proposed by Ji [5], is a Cayley graph on the alternating group An with 
respect to the generating set S = {(123), (132), (12)(3i) : 4 ≤ i ≤ n}. Cheng et al. [2] proved that ANn ∼= Sn,n−2. When 
h ∈ {0, 1, 2}, κ(h)

s (ANn) and λ(h)
s (ANn) can be obtained by (1.1) and (1.2). Very recently, Feng et al. [4] have determined 

λ
(3)
s (ANn) = 12(n − 4) for n ≥ 5. When h ≥ 2, the following result is obtained from Theorem 3.3 immediately.

Corollary 3.5. κ(h)
s (ANn) = λ

(h)
s (ANn) = 1

2 (h + 1)!(n − h − 1) for 2 ≤ h ≤ n − 2.

4. Conclusions

This paper considers the refined measure, k-super connectivity κ(h)
s and k-super edge-connectivity λ(h)

s for the fault-
tolerance of a network, and the (n, k)-star graph Sn,k (2 ≤ k ≤ n − 1), which is an attractive alternative network to the 
hypercube. In early articles [6,7], we determined κ(h)

s (Sn,k) and λ(h)
s (Sn,k) for 0 � h � n − k, which are two different val-

ues. In this paper, we proved κ(h)
s (Sn,k) = λ

(h)
s (Sn,k) = (h+1)!(n−h−1)

(n−k)! for n − k ≤ h ≤ n − 2. This result implies that at least 
(h+1)!(n−h−1)

(n−k)! vertices or edges have to be removed from an (n, k)-star Sn,k to make it disconnected and no vertices of de-
gree less than h. When the (n, k)-star graph is used to model the topological structure of a large-scale parallel processing 
system, this result can provide a more accurate measure for the fault tolerance of the system.
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