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This paper considers the conditional fault tolerance, h-super connectivity κh and h-super 
edge-connectivity λh of the hierarchical cubic network HC Nn , an attractive alternative 
network to the hypercube, and shows κh(HC Nn) = λh(HC Nn) = 2h(n + 1 − h) for any h
with 0 ≤ h ≤ n − 1. The results imply that at least 2h(n + 1 − h) vertices or edges have to 
be removed from HC Nn to make it disconnected with no vertices of degree less than h, 
and generalize some known results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. 
An interconnection network can be modeled by a graph G = (V , E), where V is the set of processors and E is the set of 
communication links in the network.

The n-dimensional hypercube Q n is a graph whose vertex-set consists of all binary vectors of length n, with two vertices 
being adjacent whenever the corresponding vectors differ in exactly one coordinate. For its regularity, symmetry, high con-
nectivity, logarithmic diameter and simple routing, the hypercube becomes one of the most popular, versatile and efficient 
topological structures of interconnection networks [8].

However, the hypercube has been considered unsuitable for building large systems since the relatively high vertex-
degree results in an additional difficulty in interconnection. To make up for these defects, as an alternative to the hypercube 
network, many variations of the hypercube network are proposed in the literature. One of them is the hierarchical cubic net-
works HC Nn proposed by Ghose and Desai [5], which is feasible to be implemented with thousands of or more processors, 
with retaining some good properties of the hypercubes, such as regularity, symmetry and logarithmic diameter.

Previous works relating to the HC Nn can be found in [1,3–5,25,26]. A shortest-path routing algorithm is presented in [1,
25,26]. A broadcasting algorithm appears in [1]. Some parallel algorithms are designed in [5]. The diameter is computed 
in [25,26], which is about two-thirds the diameter of a comparable hypercube. Hamiltonian cycles are constructed in [1,3,
25]. The wide-diameter and fault-diameter are computed in [4], which are also about two-thirds of those of a comparable 
hypercube.
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In real networks, since the fault of vertices and edges are inevitable, measuring the fault tolerance in networks are 
very important. The traditional connectivity is a good measurement for the fault tolerance of networks. The connectivity
κ(G) (resp. edge-connectivity λ(G)) of G is defined as the minimum number of vertices (resp. edges) whose removal from 
G results in a disconnected graph. The connectivity κ(G) and edge-connectivity λ(G) of a graph G are two important 
measurements for fault tolerance of the network since the larger κ(G) or λ(G) is, the more reliable the network is (see [22]).

However, the definitions of κ(G) and λ(G) are implicitly assumed that any subset of system components is equally 
likely to be faulty simultaneously, which may not be true in real applications, thus they underestimate the reliability of 
the network. To overcome such a shortcoming, Harary [6] introduced the concept of conditional connectivity by appending 
some requirements on connected components, Latifi et al. [7] specified requirements and proposed the concept of the re-
stricted h-connectivity. These parameters can measure fault tolerance of an interconnection network more accurately than 
the classical connectivity. The concepts stated here are slightly different from theirs (see [24]).

For a graph G , δ(G) denotes its minimum vertex-degree. A subset S ⊂ V (G) (resp. F ⊂ E(G)) is called an h-vertex-cut
(resp. edge-cut), if G − S (resp. G − F ) is disconnected and δ(G − S) ≥ h. The h-super connectivity κh(G) (resp. h-super 
edge-connectivity λh(G)) of G is defined as the cardinality of a minimum h-vertex-cut (resp. h-edge-cut) of G . It is clear that 
κ0(G) = κ(G) and λ0(G) = λ(G).

For an arbitrarily given graph G and any integer h, determining the exact values of κh(G) and λh(G) is quite difficult, 
no polynomial algorithm to compute them has been yet known so far. In fact, the existence of κh(G) and λh(G) is an open 
problem for a general graph G and h ≥ 1. The main interest of the researchers is to determine the values of κh and λh for 
some well-known classes of networks and any h. For a long time, almost all of the research on this topics has been focused 
on some small h’s, only the hypercube network, its κh and λh were determined [18,20,21] for any h with 0 ≤ h ≤ n − 2.

In recent years, some new methods and techniques have been discovered, from which κh and λh have been determined 
for some well-known classes of networks and for any h. For example, κh and λh were determined for star networks [14], 
(n, k)-star networks [9–11] and exchanged hypercubes [13]; κh was determined for (n, k)-arrangement networks [16], ex-
changed crossed cubes [17] and locally twisted cubes [19]; λh was determined for hypercube-like networks [12].

Since the h-super connectivity κh and h-super edge-connectivity λh can provide more accurate measure for the fault 
tolerance of the system, this paper is interested κh and λh in the hierarchical cubic network HC Nn , which has much 
attractive properties than hypercubes. Chiang and Chen [1] determined κ(HC Nn) = λ(HC Nn) = n +1, Zhou et al. [27] proved 
that κ1(HC Nn) = 2n and κ2(HC Nn) = 4(n − 1). However, for any h ≥ 1, κh(HC Nn) and λh(HC Nn) have not yet been 
considered as far now. This paper, we generalize the above results by proving that κh(HC Nn) = 2h(n + 1 − h) for any h with 
0 ≤ h ≤ n − 1, and λh(HC Nn) = 2h(n + 1 − h) for any h with 0 ≤ h ≤ n.

The rest of the paper is organized as follows. In Section 2, we recall the structure of HC Nn and some lemmas used in 
our proofs. The main proof of the result is in Section 3. Conclusions are in Section 4.

For graph terminology and notation not defined here we follow Xu [22]. For a subset X of vertices in G , we do not 
distinguish X and the induced subgraph G[X].

2. Definitions and lemmas

Let Vn be the set of binary sequence of length n, i.e., Vn = {x1x2 · · · xn : xi ∈ {0, 1}, 1 ≤ i ≤ n}. For x = x1x2 · · · xn ∈ Vn , the 
element x̄ = x̄1 x̄2 · · · x̄n ∈ Vn is called the bitwise complement of x, where x̄i = {0, 1} \ {xi} for each i ∈ {1, 2, . . . , n}.

A hypercube network Q n is an n-dimensional cube, shortly n-cube, its vertex-set Vn , and two vertices being linked by 
an edge if and only if they differ exactly in one coordinate. For the sake of simplicity, we use xQ n to denote the Cartesian 
product {x} × Q n of a vertex x and a hypercube network Q n .

Definition 2.1. ([5]) An n-dimensional hierarchical cubic network HC Nn with vertex-set Vn × Vn is obtained from 2n n-cubes 
{xQ n : x ∈ Vn} by adding edges between two n-cubes, called crossing edges, according to the following rule: A vertex (x, y)

in xQ n is linked to

(1) (y, x) in y Q n if x �= y or
(2) (x̄, ȳ) in x̄Q n if x = y.

The vertex (y, x) in y Q n or (x̄, ȳ) in x̄Q n is called an external neighbor of (x, y) in xQ n .

A 2-dimensional hierarchical cubic network HC N2 is shown in Fig. 1, where the red edges are the crossing edges in 
HC N2.

Clearly, HC Nn is an (n + 1)-regular graph. Chiang and Chen [1] determined its connectivity and edge-connectivity.

Lemma 2.2. ([1]) κ(HC Nn) = λ(HC Nn) = n + 1.

From Definition 2.1, it is easy to obtain the following property about crossing edges in HC Nn .
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Fig. 1. 2-dimensional hierarchical cubic network HC N2.

Lemma 2.3.

(1) There are two crossing edges between two n-cubes xQ n and y Q n if and only if x and y are complementary; otherwise there is 
only one crossing edge.

(2) The set of crossing edges consists of a perfect matching of HC Nn.

Since HC Nn is made up of 2n n-cubes and a perfect matching, some properties on an n-cube Q n are very useful for the 
proofs of our main results.

Lemma 2.4. ([18,20,21]) κh(Q n) = 2h(n − h) for any h with 0 ≤ h ≤ n − 2, and λh(Q n) = 2h(n − h) for any h with 0 ≤ h ≤ n − 1.

Lemma 2.5. ([20]) If X is a subgraph in Q n and δ(X) ≥ h, then |X | ≥ 2h.

For a subgraph X in Q n , Nn(X) denotes the set of neighbors of X in Q n − X .

Lemma 2.6. If X is a subgraph in Q n and δ(X) ≥ h, then |X | + |Nn(X)| ≥ 2h(n − h) for any h with 0 ≤ h ≤ n − 1 and n ≥ 1.

Proof. For n = 1, Q 1 ∼= K2, the conclusion holds clearly. Assume n ≥ 2 below. The proof proceeds by induction on h ≥ 0 for 
a fixed n. Since Q n is n-regular, for any non-empty subgraph X of Q n , |X | + |Nn(X)| ≥ n + 1, and so the conclusion is true 
for h = 0. Assume the induction hypothesis for h − 1 with h ≥ 1.

It is well known that Q n can be expressed as Q n = L 	i R , where L and R are two (n − 1)-cubes induced by the vertices 
with i-th coordinate is 0 and 1, respectively, the set of edges between L and R consists of a perfect matching in Q n (see 
Xu [22]).

Let X be a subgraph in Q n with δ(X) ≥ h. Then E(X) �= ∅ since h ≥ 1. Arbitrarily take an edge e of X , and assume that 
two end-vertices of e differ in only the i-th coordinate. Let Q n = L 	i R . Then X ∩ L �= ∅ and X ∩ R �= ∅.

Let X0 = X ∩ L, X1 = X ∩ R . Since δ(X) ≥ h in Q n and the set of edges between L and R is a matching, δ(X0) ≥ h − 1 in 
L and δ(X1) ≥ h − 1 in R . Using the induction hypothesis in L and R respectively, we have

|Xi| + |Nn−1(Xi)| ≥ 2h−1(n − h) for each i ∈ {0,1}.
It follows that

|X | + |Nn(X)| ≥ |X0| + |Nn−1(X0)| + |X1| + |Nn−1(X1)| ≥ 2h(n − h).

By the induction principle, the lemma follows. �
3. Main results

Lemma 3.1. For n ≥ 1, κh(HC Nn) ≤ 2h(n + 1 − h) for any h with 0 ≤ h ≤ n − 1, and λh(HC Nn) ≤ 2h(n + 1 − h) for any h with 
0 ≤ h ≤ n.

Proof. For n = 1, HC N1 ∼= C4, a cycle of length 4, the conclusion holds clearly. Assume n ≥ 2 below. Let x1 Q n, x2 Q n, . . . ,
x2n Q n be 2n n-cubes in HC Nn . For a fixed h with 0 ≤ h ≤ n − 1, let x1 Q h be a subgraph in x1 Q n induced by the vertices 



4 X.-J. Li et al. / Theoretical Computer Science 761 (2019) 1–6
with the rightmost (n − h) bits 0s of the second component, S be the neighbors of x1 Q h in HC Nn − x1 Q h . Then HC Nn − S
is disconnected.

On the one hand, by the choice of Q h , S must contain all vertices with exactly one 1 in the rightmost (n −h) coordinates 
of the second component, such vertices have exactly 2h(n − h). On the other hand, S must contain all external neighbors of 
x1 Q h , such external neighbors have exactly 2h . Thus, |S| = 2h(n − h) + 2h = 2h(n + 1 − h).

We now need to prove that S is an h-vertex-cut, i.e., each vertex in HC Nn − S has at least h neighbors.
We first show that |S ∩ V (x j Q n)| ≤ 1 for each j �= 1. On the contrary, suppose that |S ∩ V (x j0 Q n)| = 2 for some j0 �= 1. 

Then there are two crossing edges, say e1 and e2, between x1 Q h and x j0 Q n , and so j0 = x̄1 by Lemma 2.3. By Definition 2.1, 
two of end-vertices of {e1, e2} in x1 Q h is certainly (x1, x1) and (x1, ̄x1). Since the distance between (x1, x1) and (x1, ̄x1) is 
n, we have n ≤ h, a contradiction. It follows that |S ∩ V (x j Q n)| ≤ 1 for each j �= 1.

For any j �= 1, let z be a vertex in x j Q n − S . Then z has at most one neighbor in S ∩ V (x j Q n) since |S ∩ V (x j Q n)| ≤ 1. 
By Definition 2.1, z has at most one neighbor in HC Nn − x j Q n . Thus, the vertex z has at least (n + 1) − 2 ≥ h neighbors in 
HC Nn − S .

Let S1 = V (x1 Q n) ∩ S and T1 = V (x1(Q n − Q h) − S1). All that’s left is to prove that each vertex in x1 Q n − S1 has at least 
h neighbors in HC Nn − S . It is clear that each vertex in x1 Q h has h neighbors in HC Nn − S by the choice of x1 Q h .

If T1 is empty then we have done. Assume T1 �= ∅ and let w ∈ T1. Then h ≤ n − 2. If w has no neighbors in S1, then it 
has at least n neighbors in HC Nn − S . Suppose that w has neighbors in S1. By the choice of x1 Q h , there is exactly one 1
in the rightmost (n − h) coordinates of the second component of each vertex in S1, and so there are exactly two 1s in the 
rightmost (n − h) coordinates of the second component of w , which implies that w has at most two neighbors in S1. Thus 
w has at least (n − 2) ≥ h neighbors in HC Nn − S .

From the above discussions, each vertex of HC Nn − S has at least h neighbors within. Therefore, S is an h-vertex-cut in 
HC Nn , and so κh(HC Nn) ≤ |S| = 2h(n + 1 − h).

Let F be the set of edges between x1 Q h and S . Then HC Nn − F is disconnected. From the above discussions, it is easy 
to see that F is an h-edge-cut in HC Nn and |F | = |S|. Thus λh(HC Nn) ≤ |F | = |S| = 2h(n + 1 − h).

The lemma follows. �
Theorem 3.2. For n ≥ 1, κh(HC Nn) = 2h(n + 1 − h) for any h with 0 ≤ h ≤ n − 1, and λh(HC Nn) = 2h(n + 1 − h) for any h with 
0 ≤ h ≤ n.

Proof. For n = 1, HC N1 ∼= C4, a cycle of length 4, the conclusion holds clearly. Assume n ≥ 2 below. By Lemma 2.2 and 
Lemma 3.1, we only to show κh(HC Nn) ≥ 2h(n + 1 − h) for any h with 1 ≤ h ≤ n − 1, and λh(HC Nn) ≥ 2h(n + 1 − h) for any 
h with 1 ≤ h ≤ n.

To the end, let F be a minimum h-vertex-cut (or h-edge-cut) of HC Nn , X be the vertex-set of the minimum connected 
component of HC Nn − F , and let

Y =
{

V (HC Nn − X ∪ F ) if F is a vertex-cut;
V (HC Nn − X) if F is an edge-cut.

Let H1, H2, . . . , H2n be 2n n-cubes in HC Nn . For any i ∈ {1, 2, . . . , 2n}, let

Xi = X ∩ V (Hi), Yi = Y ∩ V (Hi),

Fi =
{

F ∩ V (Hi) if F is a vertex-cut;
F ∩ E(Hi) if F is an edge-cut.

FC =
{ ∅ if F is a vertex-cut;

F ∩
(⋃

i �= j E(Hi, H j)
)

if F is an edge-cut.

where E(Hi, H j) denotes the set of edges between Hi and H j for i �= j. Let

J X = {i ∈ {1,2, . . . ,2n} : Xi �= ∅},
J Y = {i ∈ {1,2, . . . ,2n} : Yi �= ∅} and
J0 = J X ∩ J Y .

Clearly, if J0 �= ∅ then Xi �= ∅ and Yi �= ∅ for each i ∈ J0. By the choice of F , every vertex in Xi ∪ Yi has at least h
neighbors in HC Nn − F , at most one of them is an external neighbor. This fact implies that Fi is an (h − 1)-vertex-cut of Hi

if F is a vertex-cut, or an (h − 1)-edge-cut of Hi if F is an edge-cut. Since Hi is an n-cube and h − 1 ≥ 0, by Lemma 2.4 we 
have

|Fi | ≥ 2h−1(n + 1 − h) for each i ∈ J0, (3.1)

and by Lemma 2.5 we have

|Xi| ≥ 2h−1 and |Yi | ≥ 2h−1 for each i ∈ J0. (3.2)
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If h = n then F is an n-edge-cut. We will prove |F | ≥ 2n .
If J0 = ∅, then F is only consists of crossing edges. Let G be a contracting graph of HC Nn , obtained by contracting each 

n-cube Hi in HC Nn as a single vertex xi and by removing all loops. It is easy to see that G is a complete graph K2n plus a 
perfect matching, and F is an edge-cut of G . Thus, |F | ≥ λ(G) = 2n .

If J0 �= ∅ then, |Fi | ≥ 2n−1 for i ∈ J0 by (3.1). Combining (3.2) with Hi ∼= Q n , we have |Fi | = |Xi | = |Yi | = 2n−1 and Xi
is (n − 1)-regular for each i ∈ J0. Without loss of generality, assume 1 ∈ J0. Since δ(X) ≥ n ≥ 2 and X1 is (n − 1)-regular, 
all external neighbors of X1 are certainly in X \ X1. So | J X | ≥ |X1| + 1 = 2n−1 + 1. Since |Xi | = |Yi | for each i ∈ J0, by the 
minimality of X , we have | J Y | ≥ | J X | ≥ 2n−1 + 1. Since | J X ∪ J Y | = 2n , we have | J0| = | J X | + | J Y | − | J X ∪ J Y | ≥ 2. Thus, 
|F | ≥ ∑

i∈ J0
|Fi | ≥ 2 × 2n−1 = 2n .

In the following discussion, we assume 1 ≤ h ≤ n − 1 and need to show that

|F | ≥ 2h(n + 1 − h) for 1 ≤ h ≤ n − 1. (3.3)

If | J0| ≥ 2 then, by (3.1), we have that

|F | ≥ ∑
i∈ J0

|Fi | ≥ 2 × 2h−1(n + 1 − h) = 2h(n + 1 − h).

Thus, (3.3) holds if | J0| ≥ 2. Assume 0 ≤ | J0| ≤ 1 below.
Let a = | J X \ J0|, b = | J Y \ J0|, c = |{1, . . . , 2n} \ ( J X ∪ J Y )|. By the choice of X with minimum cardinality, we have a ≤ b. 

If c ≥ 1, then there exists some i such that V (Hi) ⊆ F and F is a vertex-cut, therefore |F | ≥ 2n ≥ 2h(n + 1 − h) for h ≤ n − 1, 
and so (3.3) holds. Next, assume c = 0, that is, a + b + | J0| = 2n .

If a ≥ 1 and b ≥ 1 then, by Lemma 2.3, for j1 ∈ J X \ J0, j2 ∈ J Y \ J0, there is at least one crossing edge between H j1 and 
H j2 , and so there are at least ab crossing edges between ∪ j1∈ J X \ J0 H j1 and ∪ j2∈ J Y \ J0 H j2 . Each of these crossing edges must 
be in F if F is an edge-cut, or one of its end-vertices must be in F if F is a vertex-cut. Therefore, we have∑

i∈ J X ∪ J Y \ J0

|Fi | + |FC | ≥
∑

i∈ J X \ J0, j∈ J Y \ J0

|E(Hi, H j)| ≥ ab. (3.4)

We consider two cases depending on | J0| = 0 or | J0| = 1.
Case 1. | J0| = 0.
In this case, a ≥ 1. If a ≥ 2, by (3.4) we have

|F | ≥
∑

i∈ J X ∪ J Y

|Fi | + |FC | ≥ ab = a(2n − a) ≥ 2n ≥ 2h(n + 1 − h).

If a = 1, without loss of generality assume J X = {1}, then X1 ⊆ V (H1) if F is a vertex-cut or X1 = V (H1) if F is an 
edge-cut. If F is a vertex-cut, then all external neighbors of X1 and all vertices in V (H1 − X1) are contained in F , and so 
|F | ≥ |V (H1)| = 2n . If F is an edge-cut, then all crossing edges incident with H1 are contained in F , and so |F | ≥ |V (H1)| =
2n . Whether F is a vertex-cut or an edge-cut, we have |F | ≥ 2n ≥ 2h(n + 1 − h) for 1 ≤ h ≤ n − 1.

Case 2. | J0| = 1.
In this case, a ≥ 0 and b = 2n − a − 1. Without loss of generality, we assume J0 = {1}.
If a ≥ 1, combining (3.1) and (3.4), we have

|F | ≥ |F1| + ∑
i∈ J X ∪ J Y \ J0

|Fi | + |FC |
≥ 2h−1(n + 1 − h) + a(2n − a − 1)

≥ 2h−1(n + 1 − h) + 2n−1

≥ 2h−1(n + 1 − h) + 2h−1(n + 1 − h)

≥ 2h(n + 1 − h).

If a = 0, then J X = J0 = {1}. Since δ(X) ≥ h and H1 is an n-cube, by Lemma 2.6 |X | + |NH1(X)| ≥ 2h(n + 1 − h). If F is a 
vertex-cut, then NHC Nn (X) ⊂ F , and so

|F | ≥ |NHC Nn (X)| ≥ |X | + |NH1(X)| ≥ 2h(n + 1 − h).

If F is an edge-cut then F1 is the set of edges between X and NH1 (X), and so |F1| ≥ |NH1 (X)|. Note that |FC | ≥ |X | since 
a = 0. It follows that

|F | ≥ |FC | + |F1| ≥ |X | + |NH1(X)| ≥ 2h(n + 1 − h).

The theorem follows. �
Zhou et al.[27] determined κ1(HC Nn) and κ2(HC Nn), which can be obtained from Theorem 3.2 by setting h = 1, 2

respectively.

Corollary 3.3. (Zhou et al. [27]) κ1(HC Nn) = 2n and κ2(HC Nn) = 4(n − 1) for n ≥ 3.
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4. Conclusions

In this paper, we investigate the refined measure, k-super connectivity κh and k-super edge-connectivity λh for the 
fault tolerance of a network. For the hierarchical cubic network HC Nn , which is an attractive alternative network to the 
hypercube, we prove κh(HC Nn) = 2h(n + 1 − h) for any h with 0 ≤ h ≤ n − 1, and λh(HC Nn) = 2h(n + 1 − h) for any h
with 0 ≤ h ≤ n, which implies that at least 2h(n + 1 − h) vertices or edges have to be removed from HC Nn to make it 
disconnected with no vertices of degree less than h. When the hierarchical cubic networks HC Nn is used to model the 
topological structure of a large-scale parallel processing system, these results can provide a more accurate measure for the 
fault tolerance of the system.

There is an other important measure for the fault tolerance in networks G , g-extra connectivity, which defined as the 
minimum cardinality of vertex-cut T such that every component of G −T has at least g +1 vertices. In this direction, g-extra 
connectivity in some regular networks have received much attention in recent years, such as hypercube-like graphs [2], split-
stars [15], arrangement graphs [23]. The g-extra connectivity of the hierarchical cubic networks HC Nn will be a problem 
worth studying in the future.
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