Note

On conditional fault tolerance of hierarchical cubic networks ${ }^{2 / 2}$

Xiang-Jun Li ${ }^{\text {a }}$, Min Liu ${ }^{\text {a }}$, Zheng Yan ${ }^{\text {a }}$, Jun-Ming Xu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, 434023, China
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China

A R T I C L E I N F O

Article history:

Received 6 September 2017
Received in revised form 3 July 2018
Accepted 25 July 2018
Available online 31 July 2018
Communicated by S.-y. Hsieh

Keywords:

Conditional connectivity
Fault tolerance
h-super connectivity
Hierarchical cubic networks
Hypercubes

Abstract

This paper considers the conditional fault tolerance, h-super connectivity κ^{h} and h-super edge-connectivity λ^{h} of the hierarchical cubic network $H C N_{n}$, an attractive alternative network to the hypercube, and shows $\kappa^{h}\left(H C N_{n}\right)=\lambda^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n-1$. The results imply that at least $2^{h}(n+1-h)$ vertices or edges have to be removed from $H C N_{n}$ to make it disconnected with no vertices of degree less than h, and generalize some known results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network.

The n-dimensional hypercube Q_{n} is a graph whose vertex-set consists of all binary vectors of length n, with two vertices being adjacent whenever the corresponding vectors differ in exactly one coordinate. For its regularity, symmetry, high connectivity, logarithmic diameter and simple routing, the hypercube becomes one of the most popular, versatile and efficient topological structures of interconnection networks [8].

However, the hypercube has been considered unsuitable for building large systems since the relatively high vertexdegree results in an additional difficulty in interconnection. To make up for these defects, as an alternative to the hypercube network, many variations of the hypercube network are proposed in the literature. One of them is the hierarchical cubic networks $H C N_{n}$ proposed by Ghose and Desai [5], which is feasible to be implemented with thousands of or more processors, with retaining some good properties of the hypercubes, such as regularity, symmetry and logarithmic diameter.

Previous works relating to the $H C N_{n}$ can be found in [1,3-5,25,26]. A shortest-path routing algorithm is presented in [1, 25,26]. A broadcasting algorithm appears in [1]. Some parallel algorithms are designed in [5]. The diameter is computed in $[25,26]$, which is about two-thirds the diameter of a comparable hypercube. Hamiltonian cycles are constructed in [1,3, 25]. The wide-diameter and fault-diameter are computed in [4], which are also about two-thirds of those of a comparable hypercube.

[^0]In real networks, since the fault of vertices and edges are inevitable, measuring the fault tolerance in networks are very important. The traditional connectivity is a good measurement for the fault tolerance of networks. The connectivity $\kappa(G)$ (resp. edge-connectivity $\lambda(G)$) of G is defined as the minimum number of vertices (resp. edges) whose removal from G results in a disconnected graph. The connectivity $\kappa(G)$ and edge-connectivity $\lambda(G)$ of a graph G are two important measurements for fault tolerance of the network since the larger $\kappa(G)$ or $\lambda(G)$ is, the more reliable the network is (see [22]).

However, the definitions of $\kappa(G)$ and $\lambda(G)$ are implicitly assumed that any subset of system components is equally likely to be faulty simultaneously, which may not be true in real applications, thus they underestimate the reliability of the network. To overcome such a shortcoming, Harary [6] introduced the concept of conditional connectivity by appending some requirements on connected components, Latifi et al. [7] specified requirements and proposed the concept of the restricted h-connectivity. These parameters can measure fault tolerance of an interconnection network more accurately than the classical connectivity. The concepts stated here are slightly different from theirs (see [24]).

For a graph $G, \delta(G)$ denotes its minimum vertex-degree. A subset $S \subset V(G)$ (resp. $F \subset E(G)$) is called an h-vertex-cut (resp. edge-cut), if $G-S$ (resp. $G-F$) is disconnected and $\delta(G-S) \geq h$. The h-super connectivity $\kappa^{h}(G)$ (resp. h-super edge-connectivity $\left.\lambda^{h}(G)\right)$ of G is defined as the cardinality of a minimum h-vertex-cut (resp. h-edge-cut) of G. It is clear that $\kappa^{0}(G)=\kappa(G)$ and $\lambda^{0}(G)=\lambda(G)$.

For an arbitrarily given graph G and any integer h, determining the exact values of $\kappa^{h}(G)$ and $\lambda^{h}(G)$ is quite difficult, no polynomial algorithm to compute them has been yet known so far. In fact, the existence of $\kappa^{h}(G)$ and $\lambda^{h}(G)$ is an open problem for a general graph G and $h \geq 1$. The main interest of the researchers is to determine the values of κ^{h} and λ^{h} for some well-known classes of networks and any h. For a long time, almost all of the research on this topics has been focused on some small h^{\prime} s, only the hypercube network, its κ^{h} and λ^{h} were determined $[18,20,21]$ for any h with $0 \leq h \leq n-2$.

In recent years, some new methods and techniques have been discovered, from which κ^{h} and λ^{h} have been determined for some well-known classes of networks and for any h. For example, κ^{h} and λ^{h} were determined for star networks [14], (n, k)-star networks [9-11] and exchanged hypercubes [13]; κ^{h} was determined for (n, k)-arrangement networks [16], exchanged crossed cubes [17] and locally twisted cubes [19]; λ^{h} was determined for hypercube-like networks [12].

Since the h-super connectivity κ^{h} and h-super edge-connectivity λ^{h} can provide more accurate measure for the fault tolerance of the system, this paper is interested κ^{h} and λ^{h} in the hierarchical cubic network $H C N_{n}$, which has much attractive properties than hypercubes. Chiang and Chen [1] determined $\kappa\left(H C N_{n}\right)=\lambda\left(H C N_{n}\right)=n+1$, Zhou et al. [27] proved that $\kappa^{1}\left(H C N_{n}\right)=2 n$ and $\kappa^{2}\left(H C N_{n}\right)=4(n-1)$. However, for any $h \geq 1, \kappa^{h}\left(H C N_{n}\right)$ and $\lambda^{h}\left(H C N_{n}\right)$ have not yet been considered as far now. This paper, we generalize the above results by proving that $\kappa^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n-1$, and $\lambda^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n$.

The rest of the paper is organized as follows. In Section 2, we recall the structure of $H C N_{n}$ and some lemmas used in our proofs. The main proof of the result is in Section 3. Conclusions are in Section 4.

For graph terminology and notation not defined here we follow Xu [22]. For a subset X of vertices in G, we do not distinguish X and the induced subgraph $G[X]$.

2. Definitions and lemmas

Let V_{n} be the set of binary sequence of length n, i.e., $V_{n}=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1\}, 1 \leq i \leq n\right\}$. For $x=x_{1} x_{2} \cdots x_{n} \in V_{n}$, the element $\bar{x}=\bar{x}_{1} \bar{x}_{2} \cdots \bar{x}_{n} \in V_{n}$ is called the bitwise complement of x, where $\bar{x}_{i}=\{0,1\} \backslash\left\{x_{i}\right\}$ for each $i \in\{1,2, \ldots, n\}$.

A hypercube network Q_{n} is an n-dimensional cube, shortly n-cube, its vertex-set V_{n}, and two vertices being linked by an edge if and only if they differ exactly in one coordinate. For the sake of simplicity, we use $x Q_{n}$ to denote the Cartesian product $\{x\} \times Q_{n}$ of a vertex x and a hypercube network Q_{n}.

Definition 2.1. ([5]) An n-dimensional hierarchical cubic network $H C N_{n}$ with vertex-set $V_{n} \times V_{n}$ is obtained from $2^{n} n$-cubes $\left\{x Q_{n}: x \in V_{n}\right\}$ by adding edges between two n-cubes, called crossing edges, according to the following rule: A vertex (x, y) in $x Q_{n}$ is linked to
(1) (y, x) in $y Q_{n}$ if $x \neq y$ or
(2) (\bar{x}, \bar{y}) in $\bar{x} Q_{n}$ if $x=y$.

The vertex (y, x) in $y Q_{n}$ or (\bar{x}, \bar{y}) in $\bar{x} Q_{n}$ is called an external neighbor of (x, y) in $x Q_{n}$.

A 2-dimensional hierarchical cubic network HCN_{2} is shown in Fig. 1, where the red edges are the crossing edges in HCN_{2}.

Clearly, $H C N_{n}$ is an ($n+1$)-regular graph. Chiang and Chen [1] determined its connectivity and edge-connectivity.

Lemma 2.2. $([1]) \kappa\left(H C N_{n}\right)=\lambda\left(H C N_{n}\right)=n+1$.

From Definition 2.1, it is easy to obtain the following property about crossing edges in $H C N_{n}$.

Fig. 1. 2-dimensional hierarchical cubic network HCN_{2}.

Lemma 2.3.

(1) There are two crossing edges between two n-cubes $x Q_{n}$ and $y Q_{n}$ if and only if x and y are complementary; otherwise there is only one crossing edge.
(2) The set of crossing edges consists of a perfect matching of HCN_{n}.

Since $H C N_{n}$ is made up of $2^{n} n$-cubes and a perfect matching, some properties on an n-cube Q_{n} are very useful for the proofs of our main results.

Lemma 2.4. $([18,20,21]) \kappa^{h}\left(Q_{n}\right)=2^{h}(n-h)$ for any h with $0 \leq h \leq n-2$, and $\lambda^{h}\left(Q_{n}\right)=2^{h}(n-h)$ for any h with $0 \leq h \leq n-1$.
Lemma 2.5. ([20]) If X is a subgraph in Q_{n} and $\delta(X) \geq h$, then $|X| \geq 2^{h}$.
For a subgraph X in $Q_{n}, N_{n}(X)$ denotes the set of neighbors of X in $Q_{n}-X$.
Lemma 2.6. If X is a subgraph in Q_{n} and $\delta(X) \geq h$, then $|X|+\left|N_{n}(X)\right| \geq 2^{h}(n-h)$ for any h with $0 \leq h \leq n-1$ and $n \geq 1$.
Proof. For $n=1, Q_{1} \cong K_{2}$, the conclusion holds clearly. Assume $n \geq 2$ below. The proof proceeds by induction on $h \geq 0$ for a fixed n. Since Q_{n} is n-regular, for any non-empty subgraph X of $Q_{n},|X|+\left|N_{n}(X)\right| \geq n+1$, and so the conclusion is true for $h=0$. Assume the induction hypothesis for $h-1$ with $h \geq 1$.

It is well known that Q_{n} can be expressed as $Q_{n}=L \odot_{i} R$, where L and R are two ($n-1$)-cubes induced by the vertices with i-th coordinate is 0 and 1 , respectively, the set of edges between L and R consists of a perfect matching in Q_{n} (see Xu [22]).

Let X be a subgraph in Q_{n} with $\delta(X) \geq h$. Then $E(X) \neq \emptyset$ since $h \geq 1$. Arbitrarily take an edge e of X, and assume that two end-vertices of e differ in only the i-th coordinate. Let $Q_{n}=L \odot_{i} R$. Then $X \cap L \neq \emptyset$ and $X \cap R \neq \emptyset$.

Let $X_{0}=X \cap L, X_{1}=X \cap R$. Since $\delta(X) \geq h$ in Q_{n} and the set of edges between L and R is a matching, $\delta\left(X_{0}\right) \geq h-1$ in L and $\delta\left(X_{1}\right) \geq h-1$ in R. Using the induction hypothesis in L and R respectively, we have

$$
\left|X_{i}\right|+\left|N_{n-1}\left(X_{i}\right)\right| \geq 2^{h-1}(n-h) \text { for each } i \in\{0,1\}
$$

It follows that

$$
|X|+\left|N_{n}(X)\right| \geq\left|X_{0}\right|+\left|N_{n-1}\left(X_{0}\right)\right|+\left|X_{1}\right|+\left|N_{n-1}\left(X_{1}\right)\right| \geq 2^{h}(n-h)
$$

By the induction principle, the lemma follows.

3. Main results

Lemma 3.1. For $n \geq 1, \kappa^{h}\left(H C N_{n}\right) \leq 2^{h}(n+1-h)$ for any h with $0 \leq h \leq n-1$, and $\lambda^{h}\left(H C N_{n}\right) \leq 2^{h}(n+1-h)$ for any h with $0 \leq h \leq n$.

Proof. For $n=1, H C N_{1} \cong C_{4}$, a cycle of length 4 , the conclusion holds clearly. Assume $n \geq 2$ below. Let $x_{1} Q_{n}, x_{2} Q_{n}, \ldots$, $x_{2^{n}} Q_{n}$ be $2^{n} n$-cubes in $H C N_{n}$. For a fixed h with $0 \leq h \leq n-1$, let $x_{1} Q_{h}$ be a subgraph in $x_{1} Q_{n}$ induced by the vertices
with the rightmost $(n-h)$ bits 0 s of the second component, S be the neighbors of $x_{1} Q_{h}$ in $H C N_{n}-x_{1} Q_{h}$. Then $H C N_{n}-S$ is disconnected.

On the one hand, by the choice of Q_{h}, S must contain all vertices with exactly one 1 in the rightmost ($n-h$) coordinates of the second component, such vertices have exactly $2^{h}(n-h)$. On the other hand, S must contain all external neighbors of $x_{1} Q_{h}$, such external neighbors have exactly 2^{h}. Thus, $|S|=2^{h}(n-h)+2^{h}=2^{h}(n+1-h)$.

We now need to prove that S is an h-vertex-cut, i.e., each vertex in $H C N_{n}-S$ has at least h neighbors.
We first show that $\left|S \cap V\left(x_{j} Q_{n}\right)\right| \leq 1$ for each $j \neq 1$. On the contrary, suppose that $\left|S \cap V\left(x_{j_{0}} Q_{n}\right)\right|=2$ for some $j_{0} \neq 1$. Then there are two crossing edges, say e_{1} and e_{2}, between $x_{1} Q_{h}$ and $x_{j_{0}} Q_{n}$, and so $j_{0}=\bar{x}_{1}$ by Lemma 2.3. By Definition 2.1, two of end-vertices of $\left\{e_{1}, e_{2}\right\}$ in $x_{1} Q_{h}$ is certainly $\left(x_{1}, x_{1}\right)$ and (x_{1}, \bar{x}_{1}). Since the distance between (x_{1}, x_{1}) and (x_{1}, \bar{x}_{1}) is n, we have $n \leq h$, a contradiction. It follows that $\left|S \cap V\left(x_{j} Q_{n}\right)\right| \leq 1$ for each $j \neq 1$.

For any $j \neq 1$, let z be a vertex in $x_{j} Q_{n}-S$. Then z has at most one neighbor in $S \cap V\left(x_{j} Q_{n}\right)$ since $\left|S \cap V\left(x_{j} Q_{n}\right)\right| \leq 1$. By Definition 2.1, z has at most one neighbor in $H C N_{n}-x_{j} Q_{n}$. Thus, the vertex z has at least $(n+1)-2 \geq h$ neighbors in $H C N_{n}-S$.

Let $S_{1}=V\left(x_{1} Q_{n}\right) \cap S$ and $T_{1}=V\left(x_{1}\left(Q_{n}-Q_{h}\right)-S_{1}\right)$. All that's left is to prove that each vertex in $x_{1} Q_{n}-S_{1}$ has at least h neighbors in $H C N_{n}-S$. It is clear that each vertex in $x_{1} Q_{h}$ has h neighbors in $H C N_{n}-S$ by the choice of $x_{1} Q_{h}$.

If T_{1} is empty then we have done. Assume $T_{1} \neq \emptyset$ and let $w \in T_{1}$. Then $h \leq n-2$. If w has no neighbors in S_{1}, then it has at least n neighbors in $H C N_{n}-S$. Suppose that w has neighbors in S_{1}. By the choice of $x_{1} Q_{h}$, there is exactly one 1 in the rightmost $(n-h)$ coordinates of the second component of each vertex in S_{1}, and so there are exactly two 1 s in the rightmost ($n-h$) coordinates of the second component of w, which implies that w has at most two neighbors in S_{1}. Thus w has at least $(n-2) \geq h$ neighbors in $H C N_{n}-S$.

From the above discussions, each vertex of $H C N_{n}-S$ has at least h neighbors within. Therefore, S is an h-vertex-cut in $H C N_{n}$, and so $\kappa^{h}\left(H C N_{n}\right) \leq|S|=2^{h}(n+1-h)$.

Let F be the set of edges between $x_{1} Q_{h}$ and S. Then $H C N_{n}-F$ is disconnected. From the above discussions, it is easy to see that F is an h-edge-cut in $H C N_{n}$ and $|F|=|S|$. Thus $\lambda^{h}\left(H C N_{n}\right) \leq|F|=|S|=2^{h}(n+1-h)$.

The lemma follows.
Theorem 3.2. For $n \geq 1, \kappa^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n-1$, and $\lambda^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n$.

Proof. For $n=1, H C N_{1} \cong C_{4}$, a cycle of length 4, the conclusion holds clearly. Assume $n \geq 2$ below. By Lemma 2.2 and Lemma 3.1, we only to show $\kappa^{h}\left(H C N_{n}\right) \geq 2^{h}(n+1-h)$ for any h with $1 \leq h \leq n-1$, and $\lambda^{h}\left(H C N_{n}\right) \geq 2^{h}(n+1-h)$ for any h with $1 \leq h \leq n$.

To the end, let F be a minimum h-vertex-cut (or h-edge-cut) of $H C N_{n}, X$ be the vertex-set of the minimum connected component of $\mathrm{HCN}-F$, and let

$$
Y= \begin{cases}V\left(H C N_{n}-X \cup F\right) & \text { if } F \text { is a vertex-cut; } \\ V\left(H C N_{n}-X\right) & \text { if } F \text { is an edge-cut. }\end{cases}
$$

Let $H_{1}, H_{2}, \ldots, H_{2^{n}}$ be $2^{n} n$-cubes in $H C N_{n}$. For any $i \in\left\{1,2, \ldots, 2^{n}\right\}$, let

$$
\begin{aligned}
& X_{i}=X \cap V\left(H_{i}\right), Y_{i}=Y \cap V\left(H_{i}\right), \\
& F_{i}= \begin{cases}F \cap V\left(H_{i}\right) & \text { if } F \text { is a vertex-cut; } \\
F \cap E\left(H_{i}\right) & \text { if } F \text { is an edge-cut. }\end{cases} \\
& F_{C}= \begin{cases}\emptyset & \text { if } F \text { is a vertex-cut; } \\
F \cap\left(\bigcup_{i \neq j} E\left(H_{i}, H_{j}\right)\right) & \text { if } F \text { is an edge-cut. }\end{cases}
\end{aligned}
$$

where $E\left(H_{i}, H_{j}\right)$ denotes the set of edges between H_{i} and H_{j} for $i \neq j$. Let

$$
\begin{aligned}
& J_{X}=\left\{i \in\left\{1,2, \ldots, 2^{n}\right\}: X_{i} \neq \emptyset\right\}, \\
& J_{Y}=\left\{i \in\left\{1,2, \ldots, 2^{n}\right\}: Y_{i} \neq \emptyset\right\} \text { and } \\
& J_{0}=J_{X} \cap J_{Y} .
\end{aligned}
$$

Clearly, if $J_{0} \neq \emptyset$ then $X_{i} \neq \emptyset$ and $Y_{i} \neq \emptyset$ for each $i \in J_{0}$. By the choice of F, every vertex in $X_{i} \cup Y_{i}$ has at least h neighbors in $H C N_{n}-F$, at most one of them is an external neighbor. This fact implies that F_{i} is an $(h-1)$-vertex-cut of H_{i} if F is a vertex-cut, or an $(h-1)$-edge-cut of H_{i} if F is an edge-cut. Since H_{i} is an n-cube and $h-1 \geq 0$, by Lemma 2.4 we have

$$
\begin{equation*}
\left|F_{i}\right| \geq 2^{h-1}(n+1-h) \text { for each } i \in J_{0}, \tag{3.1}
\end{equation*}
$$

and by Lemma 2.5 we have

$$
\begin{equation*}
\left|X_{i}\right| \geq 2^{h-1} \text { and }\left|Y_{i}\right| \geq 2^{h-1} \text { for each } i \in J_{0} \tag{3.2}
\end{equation*}
$$

If $h=n$ then F is an n-edge-cut. We will prove $|F| \geq 2^{n}$.
If $J_{0}=\emptyset$, then F is only consists of crossing edges. Let G be a contracting graph of $H C N_{n}$, obtained by contracting each n-cube H_{i} in $H C N_{n}$ as a single vertex x_{i} and by removing all loops. It is easy to see that G is a complete graph $K_{2^{n}}$ plus a perfect matching, and F is an edge-cut of G. Thus, $|F| \geq \lambda(G)=2^{n}$.

If $J_{0} \neq \emptyset$ then, $\left|F_{i}\right| \geq 2^{n-1}$ for $i \in J_{0}$ by (3.1). Combining (3.2) with $H_{i} \cong Q_{n}$, we have $\left|F_{i}\right|=\left|X_{i}\right|=\left|Y_{i}\right|=2^{n-1}$ and X_{i} is ($n-1$)-regular for each $i \in J_{0}$. Without loss of generality, assume $1 \in J_{0}$. Since $\delta(X) \geq n \geq 2$ and X_{1} is ($n-1$)-regular, all external neighbors of X_{1} are certainly in $X \backslash X_{1}$. So $\left|J_{X}\right| \geq\left|X_{1}\right|+1=2^{n-1}+1$. Since $\left|X_{i}\right|=\left|Y_{i}\right|$ for each $i \in J_{0}$, by the minimality of X, we have $\left|J_{Y}\right| \geq\left|J_{X}\right| \geq 2^{n-1}+1$. Since $\left|J_{X} \cup J_{Y}\right|=2^{n}$, we have $\left|J_{0}\right|=\left|J_{X}\right|+\left|J_{Y}\right|-\left|J_{X} \cup J_{Y}\right| \geq 2$. Thus, $|F| \geq \sum_{i \in J_{0}}\left|F_{i}\right| \geq 2 \times 2^{n-1}=2^{n}$.

In the following discussion, we assume $1 \leq h \leq n-1$ and need to show that

$$
\begin{equation*}
|F| \geq 2^{h}(n+1-h) \text { for } 1 \leq h \leq n-1 \tag{3.3}
\end{equation*}
$$

If $\left|J_{0}\right| \geq 2$ then, by (3.1), we have that

$$
|F| \geq \sum_{i \in J_{0}}\left|F_{i}\right| \geq 2 \times 2^{h-1}(n+1-h)=2^{h}(n+1-h)
$$

Thus, (3.3) holds if $\left|J_{0}\right| \geq 2$. Assume $0 \leq\left|J_{0}\right| \leq 1$ below.
Let $a=\left|J_{X} \backslash J_{0}\right|, b=\left|J_{Y} \backslash J_{0}\right|, c=\left|\left\{1, \ldots, 2^{n}\right\} \backslash\left(J_{X} \cup J_{Y}\right)\right|$. By the choice of X with minimum cardinality, we have $a \leq b$. If $c \geq 1$, then there exists some i such that $V\left(H_{i}\right) \subseteq F$ and F is a vertex-cut, therefore $|F| \geq 2^{n} \geq 2^{h}(n+1-h)$ for $h \leq n-1$, and so (3.3) holds. Next, assume $c=0$, that is, $a+b+\left|J_{0}\right|=2^{n}$.

If $a \geq 1$ and $b \geq 1$ then, by Lemma 2.3, for $j_{1} \in J_{X} \backslash J_{0}, j_{2} \in J_{Y} \backslash J_{0}$, there is at least one crossing edge between $H_{j_{1}}$ and $H_{j_{2}}$, and so there are at least $a b$ crossing edges between $\cup_{j_{1} \in J_{X} \backslash J_{0}} H_{j_{1}}$ and $\cup_{j_{2} \in J_{Y} \backslash J_{0}} H_{j_{2}}$. Each of these crossing edges must be in F if F is an edge-cut, or one of its end-vertices must be in F if F is a vertex-cut. Therefore, we have

$$
\begin{equation*}
\sum_{i \in J_{X} \cup J_{Y} \backslash J_{0}}\left|F_{i}\right|+\left|F_{C}\right| \geq \sum_{i \in J_{X} \backslash J_{0}, j \in J_{Y} \backslash J_{0}}\left|E\left(H_{i}, H_{j}\right)\right| \geq a b \tag{3.4}
\end{equation*}
$$

We consider two cases depending on $\left|J_{0}\right|=0$ or $\left|J_{0}\right|=1$.
Case 1. $\left|J_{0}\right|=0$.
In this case, $a \geq 1$. If $a \geq 2$, by (3.4) we have

$$
|F| \geq \sum_{i \in J_{X} \cup J_{Y}}\left|F_{i}\right|+\left|F_{C}\right| \geq a b=a\left(2^{n}-a\right) \geq 2^{n} \geq 2^{h}(n+1-h) .
$$

If $a=1$, without loss of generality assume $J_{X}=\{1\}$, then $X_{1} \subseteq V\left(H_{1}\right)$ if F is a vertex-cut or $X_{1}=V\left(H_{1}\right)$ if F is an edge-cut. If F is a vertex-cut, then all external neighbors of X_{1} and all vertices in $V\left(H_{1}-X_{1}\right)$ are contained in F, and so $|F| \geq\left|V\left(H_{1}\right)\right|=2^{n}$. If F is an edge-cut, then all crossing edges incident with H_{1} are contained in F, and so $|F| \geq\left|V\left(H_{1}\right)\right|=$ 2^{n}. Whether F is a vertex-cut or an edge-cut, we have $|F| \geq 2^{n} \geq 2^{h}(n+1-h)$ for $1 \leq h \leq n-1$.

Case 2. $\left|J_{0}\right|=1$.

In this case, $a \geq 0$ and $b=2^{n}-a-1$. Without loss of generality, we assume $J_{0}=\{1\}$.
If $a \geq 1$, combining (3.1) and (3.4), we have

$$
\begin{aligned}
|F| & \geq\left|F_{1}\right|+\sum_{i \in J_{X} \cup J_{Y} \backslash J_{0}}\left|F_{i}\right|+\left|F_{C}\right| \\
& \geq 2^{h-1}(n+1-h)+a\left(2^{n}-a-1\right) \\
& \geq 2^{h-1}(n+1-h)+2^{n-1} \\
& \geq 2^{h-1}(n+1-h)+2^{h-1}(n+1-h) \\
& \geq 2^{h}(n+1-h) .
\end{aligned}
$$

If $a=0$, then $J_{X}=J_{0}=\{1\}$. Since $\delta(X) \geq h$ and H_{1} is an n-cube, by Lemma 2.6 $|X|+\left|N_{H_{1}}(X)\right| \geq 2^{h}(n+1-h)$. If F is a vertex-cut, then $N_{H C N_{n}}(X) \subset F$, and so

$$
|F| \geq\left|N_{H C N_{n}}(X)\right| \geq|X|+\left|N_{H_{1}}(X)\right| \geq 2^{h}(n+1-h)
$$

If F is an edge-cut then F_{1} is the set of edges between X and $N_{H_{1}}(X)$, and so $\left|F_{1}\right| \geq\left|N_{H_{1}}(X)\right|$. Note that $\left|F_{C}\right| \geq|X|$ since $a=0$. It follows that

$$
|F| \geq\left|F_{C}\right|+\left|F_{1}\right| \geq|X|+\left|N_{H_{1}}(X)\right| \geq 2^{h}(n+1-h) .
$$

The theorem follows.
Zhou et al.[27] determined $\kappa^{1}\left(H C N_{n}\right)$ and $\kappa^{2}\left(H C N_{n}\right)$, which can be obtained from Theorem 3.2 by setting $h=1,2$ respectively.

Corollary 3.3. (Zhou et al. [27]) $\kappa^{1}\left(H C N_{n}\right)=2 n$ and $\kappa^{2}\left(H C N_{n}\right)=4(n-1)$ for $n \geq 3$.

4. Conclusions

In this paper, we investigate the refined measure, k-super connectivity κ^{h} and k-super edge-connectivity λ^{h} for the fault tolerance of a network. For the hierarchical cubic network $H C N_{n}$, which is an attractive alternative network to the hypercube, we prove $\kappa^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n-1$, and $\lambda^{h}\left(H C N_{n}\right)=2^{h}(n+1-h)$ for any h with $0 \leq h \leq n$, which implies that at least $2^{h}(n+1-h)$ vertices or edges have to be removed from $H C N_{n}$ to make it disconnected with no vertices of degree less than h. When the hierarchical cubic networks $H C N_{n}$ is used to model the topological structure of a large-scale parallel processing system, these results can provide a more accurate measure for the fault tolerance of the system.

There is an other important measure for the fault tolerance in networks G, g-extra connectivity, which defined as the minimum cardinality of vertex-cut T such that every component of $G-T$ has at least $g+1$ vertices. In this direction, g-extra connectivity in some regular networks have received much attention in recent years, such as hypercube-like graphs [2], splitstars [15], arrangement graphs [23]. The g-extra connectivity of the hierarchical cubic networks $H C N_{n}$ will be a problem worth studying in the future.

References

[1] W.-K. Chiang, R.-J. Chen, Topological properties of hierarchical cubic networks, J. Syst. Architecture 42 (4) (1996) 289-307.
[2] N.-W. Chang, S.-Y. Hsieh, \{2, 3\}-Extraconnectivities of hypercube-like networks, J. Comput. System Sci. 79 (5) (2013) 669-688.
[3] J.-S. Fu, G.-H. Chen, Hamiltonicity of the hierarchical cubic network, Theory Comput. Syst. 35 (1) (2002) 59-79.
[4] J.-S. Fu, G.-H. Chen, D.-R. Duh, Node-disjoint paths and related problems on hierarchical cubic networks, Networks 40 (2002) 142-154.
[5] K. Ghose, K.R. Desai, Hierarchical cubic network, IEEE Trans. Parallel Distrib. Syst. 6 (1995) 427-435.
[6] F. Harary, Conditional connectivity, Networks 13 (1983) 347-357.
[7] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Trans. Comput. 43 (2) (1994) $218-222$.
[8] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufman, San Mateo, CA, 1992.
[9] X.-J. Li, Y.-N. Guan, Z. Yan, J.-M. Xu, On fault tolerance of (n, k)-star networks, Theoret. Comput. Sci. 704 (2017) 82-86.
[10] X.-J. Li, J.-M. Xu, Fault-tolerance of (n, k)-star networks, Appl. Math. Comput. 248 (2014) 525-530.
[11] X.-J. Li, J.-M. Xu, Generalized measures of edge fault tolerance in (n, k)-star graphs, Math. Sci. Lett. 1 (2) (2012) 133-138.
[12] X.-J. Li, J.-M. Xu, Edge-fault tolerance of hypercube-like networks, Inform. Process. Lett. 113 (19-21) (2013) 760-763.
[13] X.-J. Li, J.-M. Xu, Generalized measures of fault tolerance in exchanged hypercubes, Inform. Process. Lett. 113 (14-16) (2013) 533-537.
[14] X.-J. Li, J.-M. Xu, Generalized measures for fault tolerance of star networks, Networks 63 (3) (2014) 225-230.
[15] L. Lin, L. Xu, S. Zhou, S.-Y. Hsieh, The extra, restricted connectivity and conditional diagnosability of split-star networks, IEEE Trans. Parallel Distrib. Syst. 27 (2) (2016) 533-545.
[16] L. Lin, S. Zhou, Conditional connectivity for (n, k)-arrangement graphs, J. Math. Study 45 (4) (2012) 350-364.
[17] W.-T. Ning, The h-connectivity of exchanged crossed cube, Theoret. Comput. Sci. 696 (2017) 65-68.
[18] A.D. Oh, H. Choi, Generalized measures of fault tolerance in n-cube networks, IEEE Trans. Parallel Distrib. Syst. 4 (1993) $702-703$.
[19] C.-C. Wei, S.-Y. Hsieh, h-restricted connectivity of locally twisted cubes, Discrete Appl. Math. 217 (2) (2017) 330-339.
[20] J. Wu, G. Guo, Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets, IEEE Trans. Comput. 47 (1998) $888-893$.
[21] J.-M. Xu, On conditional edge-connectivity of graphs, Acta Math. Appl. Sin. 16 (4) (2000) 414-419.
[22] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.
[23] L. Xu, L. Lin, S. Zhou, S.-Y. Hsieh, The extra connectivity, extra conditional diagnosability, and t / m-diagnosability of arrangement graphs, IEEE Trans. Reliab. 65 (3) (2016) 1248-1262.
[24] J.-M. Xu, M. Lü, M. Ma, A. Hellwig, Super connectivity of line graphs, Inform. Process. Lett. 94 (4) (2005) 191-195.
[25] S.-K. Yun, K.-H. Park, The optimal routing algorithm in hierarchical cubic network and its properties, IEICE Trans. Inform. Syst. E78-D (4) (1995) 436-443.
[26] S.-K. Yun, K.-H. Park, Comments on hierarchical cubic network, IEEE Trans. Parallel Distrib. Syst. 9 (1998) 410-414.
[27] S. Zhou, S. Song, X. Yang, L. Chen, On conditional fault tolerance and diagnosability of hierarchical cubic networks, Theoret. Comput. Sci. 609 (2016) 421-433.

[^0]: the work was supported by NNSF of China (11571044, 61503046, 11601041, 91647204), Young Talent Fund of Yangtze University (2015cqr23).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

