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cessing system. For the bubble sort networks B n , this paper determines κk (B n ) = λk (B n ) = 

2 k (n − k − 1) for k ≤ n /2. The results show that to disconnect B n with each vertex in re- 

sulting graph has at least k fault-free neighbors, at least 2 k (n − k − 1) faulty vertices or 

faulty edges have to occur. In particular, the results also settle affirmatively a conjecture 

proposed by Shi and Wu (Acta Math. Appl. Sin-E., 33 (4)(2017), 933–944). 
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1. Introduction 

In large parallel computing and communication systems, processors are connected by communication links according to

some interconnection networks, where the processors and communication links correspond to the vertices and edges in

the networks respectively. In the large-scale interconnection networks, it can not avoid faulty vertex and faulty edge oc-

curred, thus estimating the fault tolerance for networks is of crucial importance. The connectivity κ( G ) is the smallest size

of vertices whose deletion disconnects the graph G . The edge-connectivity λ( G ) is defined similarly, with vertices replaced

by edges (see [20] ). But, these two definitions are based on any subset of interconnection network can be faulty with equal

possibility, which just occur in the worst case. Thus κ and λ underrate the fault tolerance of the large-scale networks. Mo-

tivated by this weakness, Harary [5] introduced the concept of conditional connectivity by imposing a number of additional

requirements on the remaining networks. Thereafter, Latifi et al. [8] generalized this concept in some sense and proposed

restricted k -connectivity by restricting each vertex has at least k fault-free neighbors. These generalized measurements can

more accurately estimate the fault tolerance of an interconnection network in real applications. 

Suppose G is a connected graph, and T is a subset in V ( G ). If G − T is disconnected and δ(G − T ) ≥ k, we call T a k -

vertex-cut of G . The k - connectivity κk ( G ) is defined as the cardinality of a minimum k -vertex-cut of G . The k-edge-cut and

k-edge-connectivity λk ( G ) can be defined similarly, with T a set of edges. It is obvious that κ0 = κ and λ0 = λ. 

For a graph G , to determine κk ( G ) and λk ( G ) for any integer k is not a easy task. For hypercubes Q n , κk and λk were

determined for any k about two decades ago (see [14,18,19] ). For the other networks except Q n , people concentrate upon on

κk and λk for some small k ’s at long durations [4] . Recently, using some new methods, κk and λk have been established for
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Fig. 1. 2,3,4 dimensional bubble sort networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

some well-known networks and for any k [11,17] . For instance, κk and λk were given for exchanged hypercubes [12] , star

networks [13] and hierarchical cubic networks [10] . 

The bubble sort network B n was first presented by Akers and Krishnamurthy [1] , it has drawn considerable attention

in recent years since it has high symmetry and simple hierarchical structure [1,7] . Much properties for B n have been in-

vestigated, such as Hamiltonian laceability [2] , bipancyclicity [6] , embedded connectivity [9,22] , subnetwork fault tolerance

[16] , conditional diagnosibility [25] . For n ≥ 3, Cheng and Lipták [3] determined κ1 (B n ) = 2 n − 4 ; afterwards, Yang et al.

[21] shown that κ2 (B n ) = 4(n − 3) for n ≥ 4; Shi and Wu [15] recently determined that κ3 (B n ) = 8(n − 4) for n ≥ 6. Further-

more, it has been conjectured by Shi and Wu [15] that for n ≥ 3 and k ≤ n /2, κk (B n ) = 2 k (n − k − 1) . In this paper, we prove

that for k ≤ n /2, κk (B n ) = λk (B n ) = 2 k (n − k − 1) , which generalize the aforementioned results and also give an affirmative

answer for the conjecture. 

This paper proceeds as follows. Some structure properties of B n and useful lemmas are given in Section 2 , the main result

and the proof are in Section 3 . We conclude the paper in Section 4 . 

2. Preliminaries 

Suppose integer n ≥ 2, let [ n ] denotes the set { 1 , 2 , . . . , n } , and P ( n ) denotes all the permutations on [ n ], that is, P (n ) =
{ p 1 p 2 . . . p n : p i ∈ [ n ] , p i � = p j , 1 ≤ i � = j ≤ n } . For convenience, we do not distinguish the subset X of V ( G ) and the induced

subgraph G [ X ]. We follow Xu [20] for graph terminology and notation not defined here. 

Definition 2.1 [1] . The n -dimensional bubble sort graph B n has n ! vertices with each vertex represented by a permutation

in P ( n ). Two vertices u and v are linked in B n if and only if u and v differ in exactly two consecutive digits. 

It is clear that B n is (n − 1) -regular. The bubble sort graphs B 2 , B 3 and B 4 are shown in Fig. 1 . Akers and Krishnamurthy

[1] shown that the bubble sort graph B n is Cayley graph, bipartite, furthermore, B n contains n disjoint subgraphs B n −1 . For

each i ∈ [ n ], all the vertices of the last digit fixed with i induced a subgraph B n −1 (see Fig. 1 ), denoted by B i 
n −1 

. Similarly, let

B 
i j 
n −2 

denotes the subgraph of B n induced by all the vertices whose the last two digits are ij . It is easy to see that B 
i j 
n −2 

∼= 

B n −2 

for each two distinct elements i , j ∈ [ n ]. 

Lemma 2.2 [1] . B n can be partitioned into n disjoint subgraphs B 
j 
n −1 

isomorphic to B n −1 for each j ∈ [ n ] ; moreover, for two

distinct j 1 , j 2 ∈ [ n ], there are (n − 2) ! independent edges between B 
j 1 
n −1 

and B 
j 2 
n −1 

. 

We call the independent edges between B 
j 1 
n −1 

and B 
j 2 
n −1 

crossing edges . By Lemma 2.2 , all the crossing edges form a perfect

matching in B n , we denote the matching as M n . If u is linked with v by an edge in M n , call u an n - external neighbor of v ,
shorted as n - neighbor of v . Then every vertex in B n has just one n -neighbor. 

Lemma 2.3 [1] . κ(B n ) = λ(B n ) = n − 1 for n ≥ 2 . 

Lemma 2.4 [21] . Two distinct vertices in B n have at most two common neighbors, if they have any. 

The k -dimensional hypercube Q k is a graph with 2 k vertices, each vertex is represented by a k -digits binary sequence.

Two vertices u and v being adjacent in Q k if the sequences of u and v differ in exactly one digit [20] . In the next, we will

see that there exists Q as subgraph in the bubble sort networks B n . 
k 
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Assume n ≥ 3 and 1 ≤ k ≤ n /2, K be a subset of { n − 1 , n − 3 , . . . , n − 2 k + 1 } . For a vertex u = 12 . . . (n − 1) n in B n , let u K

denotes the set of vertices obtained from u by exchanging i and (i + 1) for all i ∈ K . Note that K could be empty, and u ∅ is u

itself. Let 

X n,k = { u 

K : K ⊆ { n − 1 , n − 3 , . . . , n − 2 k + 1 }} . 
Define a mapping φ from X n , k to V ( Q k ): 

φ(u 

K ) = x 1 x 2 . . . x k , 

where for each j ∈ [ k ], 

x j = 

{
1 , if n − 2 j + 1 ∈ K ;
0 , otherwise . 

By definition, the mapping φ is bijective. Let u K 1 , u K 2 be two vertices in X n , k , by the definition, if u K 1 and u K 2 are linked

in B n , then K 2 ⊂ K 1 and | K 1 − K 2 | = 1 or K 1 ⊂ K 2 and | K 2 − K 1 | = 1 , then φ(u K 1 ) and φ(u K 2 ) differ in exactly one coordinate,

thus φ(u K 1 ) and φ(u K 2 ) are linked in Q k , and vice versa. Then the mapping φ preserves adjacency. Therefore we have the

subgraph induced by X n , k in B n is isomorphic to Q k , that is, B n [ X n , k ] ∼= 

Q k and | X n,k | = 2 k . 

Lemma 2.5 [15] . Let Q k be a hypercube in B n . Then any two distinct vertices in Q k have no common neighbors in B n − Q k . 

For a subgraph X in B n , N n ( X ) denotes the set of neighbors of X in B n − X . By the definition of X n , k , we have that X n,k ⊂
B (n −1) n 

n −2 
∪ B n (n −1) 

n −2 
. Let X n,k = V (B n ) − (X n,k ∪ N n (X n,k )) and 

f (n, k ) = max {| N(v ) ∩ N n (X n,k ) | : v ∈ X n,k } . 
Lemma 2.6. If n ≥ 3 and 1 ≤ k ≤ n /2, then f ( n , k ) ≤ 2 . 

Proof. We apply induction on n ≥ 3. Note that for k = 1 , X n ,1 is an edge xy . It is easy to see that each vertex in X n, 1 can not

have neighbors both in N ( x ) and N ( y ), otherwise there exists a C 5 in B n , contradicts to B n is bipartite. Then by Lemma 2.4 ,

we have f ( n , 1) ≤ 2. And it is straight to know that f (4 , 2) = 1 (see Fig. 1 ). So for n ≤ 4, the conclusion holds. In the next, we

assume that n ≥ 5 and 2 ≤ k ≤ n /2. Assume the assertion holds for n − 2 with k − 1 ≤ (n − 2) / 2 , thus we have 

f (n − 2 , k − 1) ≤ 2 . (2.1)

By Lemma 2.2 , B n can be partitioned into n disjoint B n −1 ’s, and B n −1 can be partitioned into (n − 1) disjoint B n −2 ’s

similarly. For an arbitrary vertex v in X n,k , we consider the neighbors of v and let 

U 0 = V (B 

(n −1) n 
n −2 

∪ B 

n (n −1) 
n −2 

) − X n,k − N n (X n,k ) , 

U 1 = V (B 

(n −2) n 
n −2 

∪ B 

(n −3) n 
n −2 

∪ B 

(n −2)(n −1) 
n −2 

∪ B 

(n −3)(n −1) 
n −2 

) − N n (X n,k ) , 

U 2 = X n,k − U 0 − U 1 . 

For a vertex v in U 0 , by symmetry, assume v ∈ V (B (n −1) n 
n −2 

) . Note that B (n −1) n 
n −2 

∼= 

B n −2 , by Definition 2.1 , we have the

subgraph of B (n −1) n 
n −2 

induced by X n , k is isomorphic to the subgraph of B n −2 induced by X n −2 ,k −1 , that is B (n −1) n 
n −2 

[ X n,k ] ∼=
B n −2 [ X n −2 ,k −1 ] ∼= 

Q k −1 . Similarly, B (n −1) n 
n −2 

[ N n (X n,k )] ∼= 

B n −2 [ N n −2 (X n −2 ,k −1 )] . Using induction in B (n −1) n 
n −2 

, by (2.1) we have

| N(v ) ∩ N n −2 (X n −2 ,k −1 ) | ≤ f (n − 2 , k − 1) ≤ 2 . Now we consider the (n − 1) -neighbor and n -neighbor of the vertex v . Note

that there is a perfect matching between B (n −1) n 
n −2 

and B n (n −1) 
n −2 

, which are the whole (n − 2)! edges between B n 
n −1 

and B (n −1) 
n −1 

.

By the definition of U 0 , for the vertex v in U 0 , the unique n -neighbor of v should also be in U 0 . In addition, the vertex v
has no (n − 1) -neighbor in N n ( X n , k ), otherwise there exists a vertex w in N n ( X n , k ) has two (n − 1) -neighbors, a contradiction.

Thus the vertex v has no (n − 1) -neighbor or n -neighbor in N n ( X n , k ) (see Fig. 2 ). Therefore, we have 

| N(v ) ∩ N n (X n,k ) | = | N(v ) ∩ N n −2 (X n −2 ,k −1 ) | ≤ 2 . 

For a vertex v in U 1 , by symmetry, assume v ∈ V (B (n −2) n 
n −2 

) . By Lemma 2.5 , since the vertices of B (n −2) n 
n −2 

∩ N n (X n,k ) induced

a Q n −2 in B (n −2) n 
n −2 

, | N(v ) ∩ B (n −2) n 
n −2 

∩ N n (X n,k ) | ≤ 1 . Note that the n -external neighbor of v should not be in B (n −1) 
n −1 

, then v has

at most one (n − 1) -external neighbor in N n ( X n , k ), therefore we have | N(v ) ∩ N n (X n,k ) | ≤ 2 . 

For a vertex v in U 2 , v has at most one n -external or (n − 1) -external neighbor in N n ( X n , k ), then | N(v ) ∩ N n (X n,k ) | ≤ 1 . 

That is to say, | N(v ) ∩ N n (X n,k ) | ≤ 2 for arbitrary vertex v in X n,k , then f ( n , k ) ≤ 2. The lemma follows. �

Lemma 2.7. If n ≥ 3 and 0 ≤ k ≤ n /2, then κk (B n ) ≤ 2 k (n − k − 1) and λk (B n ) ≤ 2 k (n − k − 1) . 

Proof. When k = 0 , the assertion is correct by Lemma 2.3 , we assume k ≥ 1 below. Let H denotes the induced subgraph

B n [ X n , k ], thus H 

∼= 

Q k . Let F denotes all the edges between X n , k and N n ( X n , k ). 

Assume v is a vertex in X n , k , | N(v ) ∩ N n (X n,k ) | = (n − k − 1) since H 

∼= 

Q k . Moreover, by Lemma 2.5 , for a vertex v ∈
N n (X n,k ) , we have | N(v ) ∩ X n,k | ≤ 1 . Therefore, we have 

| F | = | N n (X n,k ) | = 2 

k (n − k − 1) . 
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Fig. 2. The neighbors of a Q k in B n . 

 

 

 

 

 

 

 

 

 

 

 

If (n, k ) �∈ { (3 , 1) , (4 , 2) } , by Lemma 2.6 , then δ( X n,k ) ≥ (n − 1) − 2 ≥ k . If ( n , k ) ∈ {(3, 1), (4, 2)}, it can be check straightly

that f (3 , 1) = 1 and f (4 , 2) = 1 (see Fig. 1 ), thus δ( X n,k ) ≥ (n − 1) − 1 ≥ k . Therefore we have N n ( X n , k ) is a k -vertex-cut in

B n , thus κk (B n ) ≤ | N n (X n,k ) | = 2 k (n − k − 1) . 

For a vertex v ∈ N n (X n,k ) , since | N(v ) ∩ X n,k | ≤ 1 , we have | N(v ) ∩ (B n − H) | ≥ n − 2 ≥ k . Then F is a k -edge-cut, thus

λk (B n ) ≤ | F | = 2 k (n − k − 1) . 

This completes the proof. �

In the following, we give some properties about the subgraph X of B n with δ( X ) ≥ k . By the recursive structure of B n , we

partition B n into B 1 
n −1 

, B 2 
n −1 

, . . . , B n 
n −1 

, let X i = X ∩ V (B i 
n −1 

) for i ∈ [ n ]. 

Lemma 2.8. If X is a subgraph with minimum degree at least k in B n , then | X | ≥ 2 k . 

Proof. We use induction on n ( ≥ 2), the conclusion is trivial for k = 0 or n = 2 , assume k ≥ 1 and n ≥ 3 below. 

If there is an i ∈ [ n ] such that X ⊆ B i 
n −1 

, note that B i 
n −1 

is isomorphic to B n −1 , then we have k ≤ δ(X ) ≤ n − 2 . By the

induction hypothesis, we have | X | ≥ 2 k . 

If there exist at least two i ∈ [ n ] such that X i � = ∅ . Since δ( X ) ≥ k and each vertex in B i 
n −1 

has only one n -external neighbor,

δ(X i ) ≥ k − 1 if X i � = ∅ . By the induction hypothesis, | X i | ≥ 2 k −1 . It follows that | X| = 

∑ n 
i =1 | X i | ≥ 2 · 2 k −1 = 2 k . 

This completes the proof by the induction principles. �

Let g n (X ) = | X| + | N n (X ) | . 
Lemma 2.9. Suppose 0 ≤ k ≤ n − 1 and X is a subgraph of B n , if δ( X ) ≥ k , then g n (X ) ≥ 2 k (n − k ) . 

Proof. We can straightly check the conclusion holds for n ≤ 2 or k = 0 , assume n ≥ 3 and k ≥ 1 below. The proof is by in-

duction on n with k ≤ n − 1 . If δ(X ) ≥ n − 1 , X must be B n , then | X| = n ! ≥ 2 n −1 , therefore, the conclusion also holds for

k = n − 1 . We assume the induction hypothesis for n − 1 with k ≤ n − 2 . 

If there exists an i ∈ [ n ] such that X ⊆ B i 
n −1 

, note that B i 
n −1 

is isomorphic to B n −1 , then we have k ≤ δ(X i ) ≤ n − 2 . By

the induction hypothesis, we have g n −1 (X ) ≥ 2 k (n − 1 − k ) . Note that each vertex has just one n -external neighbor, together

with Lemma 2.8 , it follows that | N n (X ) − N n −1 (X ) | = | X| ≥ 2 k . Then 

g n (X ) = g n −1 (X ) + | N n (X ) − N n −1 (X ) | ≥ 2 

k (n − k − 1) + 2 

k = 2 

k (n − k ) . 

If there does not exist i ∈ [ n ] such that X ⊆ B i 
n −1 

, then there exist two distinct i 1 , i 2 ∈ [ n ] such that X i � = ∅ for i ∈ { i 1 , i 2 }.

Using the induction hypothesis in B i 
n −1 

respectively, we have 

g n −1 (X i ) ≥ 2 

k −1 (n − k ) for each i ∈ { i 1 , i 2 } . 
Hence, 

g n (X ) ≥ ∑ 

i ∈{ i 1 ,i 2 } g n −1 (X i ) ≥ 2 

k (n − k ) . 
The lemma follows by the induction principle. �
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3. Main results 

Theorem 3.1. If n ≥ 3 and 0 ≤ k ≤ n /2, then κk (B n ) = λk (B n ) = 2 k (n − k − 1) . 

Proof. By Lemma 2.7 , it suffices to prove for any k with k ≤ n /2, 

κk (B n ) ≥ 2 

k (n − k − 1) and λk (B n ) ≥ 2 

k (n − k − 1) . (3.1)

We use induction on n to prove (3.1) . 

If k = 0 , by Lemma 2.3 , we have κ0 (B n ) = κ(B n ) ≥ n − 1 and λ0 (B n ) = λ(B n ) ≥ n − 1 , that is the conclusion holds for

k = 0 . If n = 3 , then B n is C 6 , it is easy to see that κ1 (C 6 ) ≥ κ(C 6 ) = 2 . Similarly, we have λ1 ( B 3 ) ≥ 2. Then the conclusion is

correct for n = 3 , we suppose n ≥ 4 and k ≥ 1 below. 

Assume (3.1) holds for n − 1 with k − 1 ≤ (n − 1) / 2 . Thus for any k with 1 ≤ k ≤ n /2, 

κk −1 (B n −1 ) ≥ 2 

k −1 (n − k − 1) and λk −1 (B n −1 ) ≥ 2 

k −1 (n − k − 1) . (3.2)

Let T be a k -vertex-cut (or k -edge-cut) of B n with minimum cardinality, it suffices to show that 

| T | ≥ 2 

k (n − k − 1) for 1 ≤ k ≤ n/ 2 . (3.3)

Suppose X be the minimum connected component of B n − T , Y = B n − X − T . 

By Lemma 2.2 , we partition B n into B 1 
n −1 

, B 2 
n −1 

, . . . , B n 
n −1 

. For any i ∈ [ n ], let 

X i = X ∩ V (B 

i 
n −1 ) , Y i = Y ∩ V (B 

i 
n −1 ) , 

T i = 

{
T ∩ V (B 

i 
n −1 ) , if T is a vertex-cut ;

T ∩ E(B 

i 
n −1 ) , if T is an edge-cut . 

Let 

J X = { i ∈ [ n ] : X i � = ∅} , J Y = { i ∈ [ n ] : Y i � = ∅} and J 0 = J X ∩ J Y . 

It is easy to see, if i ∈ J 0 � = ∅ then X i � = ∅ and Y i � = ∅ . By the definition of T , note that every vertex has unique external

neighbor, we have δ(X i ) ≥ k − 1 and δ(Y i ) ≥ k − 1 . Therefore, T i disconnects B i 
n −1 

and δ(B i 
n −1 

− T i ) ≥ k − 1 . Note that B i 
n −1 

is

isomorphic to B n −1 , by induction hypothesis (3.2) , we have 

| T i | ≥ 2 

k −1 (n − k − 1) for each i ∈ J 0 . (3.4)

If | J 0 | ≥ 2 then, by (3.4) , we obtain that 

| T | ≥
∑ 

i ∈ J 0 
| T i | ≥ 2 

k (n − k − 1) . 

Thus, (3.3) holds, and assume that | J 0 | ≤ 1 below. 

If there exists some i ∈ [ n ] such that V (B i 
n −1 

) ⊆ T , thus 

| T | ≥ | B 

i 
n −1 | = (n − 1)! ≥ 2 

k (n − k − 1) . (3.5)

The last inequality in (3.5) follows since (n − 1)! = (n − 1)(n − 2)! ≥ (n − 1)(2 k − 2)! = 2 k −1 (k − 1)!(n − 1) ≥ 2 k (n − k −
1) for k ≥ 3, and it is also easy to check the truth directly for k ≤ 2. 

If ( X i ∪ Y i ) � = ∅ for each i ∈ [ n ]. Let a = | J X − J 0 | , b = | J Y − J 0 | , then a + b = n − | J 0 | . Note that | X | ≤ | Y |, hence b � = 0. 

Let E C denotes all the edges between ∪ j 1 ∈ J X −J 0 
B 

j 1 
n −1 

and ∪ j 2 ∈ J Y −J 0 
B 

j 2 
n −1 

. All those edges are independent since they are

in M n . By Lemma 2.2 , for j 1 ∈ J X and j 2 ∈ J Y , there are (n − 2) ! independent crossing edges between B 
j 1 
n −1 

and B 
j 2 
n −1 

. Hence

| E C | ≥ ab(n − 2) ! . All the edges in E C must be in T provided T is an edge-cut; every edge in E C has at least one of its

end-vertices in T provided T is a vertex-cut. Therefore, we always have 

| T | ≥ | E C | ≥ ab(n − 2)! . (3.6)

If a ≥ 1, note that b = n − a − | J 0 | � = 0 and | J 0 | ≤ 1, by (3.6) , we have 

| T | ≥ (n − 2)(n − 2)! ≥ 2 

k (n − k − 1) . (3.7)

If a = 0 , then | J 0 | = 1 and J X = J 0 . We assume J 0 = { 1 } without loss of generality, thus X ⊂ B 1 
n −1 

. Since δ( X ) ≥ k and B 1 
n −1

is isomorphic to B n −1 , using Lemma 2.9 , we have | X| + | N 

B 1 
n −1 

(X ) | = g n −1 (X ) ≥ 2 k (n − k − 1) . 

First assume T is a k -vertex-cut, then N B n (X ) ⊂ T . Note that each vertex in X has a neighbor linked by M n , T must contain

this neighbor, we have 

| T | ≥ | N B n (X ) | ≥ | X | + | N B 1 
n −1 

(X ) | ≥ 2 

k (n − k − 1) . (3.8)
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Now assume T is a k -edge-cut, thus any edge between X and N 

B 1 
n −1 

(X ) should be contained in T 1 , and hence we have

| T 1 | ≥ | N 

B 1 
n −1 

(X ) | . Recall that X ⊂ B 1 
n −1 

, thus the n -external neighbor of each vertex in X can not be in X , therefore | E C | ≥ | X |.

Hence 

| T | ≥ | E C | + | T 1 | ≥ | X | + | N B 1 
n −1 

(X ) | ≥ 2 

k (n − k − 1) . (3.9)

By (3.5),(3.7) –(3.9) , we have that the inequality (3.3) holds. Therefore we complete the proof by induction principles. �

In Theorem 3.1 , let k = 1 , 2 and 3, we have the following. 

Corollary 3.2 [3,15,21] . κ1 (B n ) = 2 n − 4 for n ≥ 3 ; κ2 (B n ) = 4 n − 12 for n ≥ 4 ; κ3 (B n ) = 8(n − 4) for n ≥ 6 . 

4. Concluding remarks 

Two generalized measures of fault tolerance, κk and λk for the bubble sort graphs B n have been investigated. We show

that κk (B n ) = λk (B n ) = 2 k (n − k − 1) provided 0 ≤ k ≤ n /2, which also resolves a conjecture proposed by Shi and Wu [15] .

When n/ 2 < k ≤ n − 2 , to determine the κk and λk for the bubble sort networks B n is quite interesting, and is worth studying

further. It should be mention that there does not exists a Q k in B n provided that k > n /2, to study κk ( B n ) and λk ( B n ), we need

to find a new technique. 

In addition, there are other generalized measures of fault-tolerance for networks, such as generalized r -connectivity κ r ( G ),

r -component connectivity c κ r ( G )(see [23,24] ). To study this two generalized measures for bubble sort networks also is of

interest. 
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