Generalized measures of fault tolerance for bubble sort networks ${ }^{\text {* }}$

Xiang-Jun Li ${ }^{\text {a,*, }}$, Xue-Qian Zeng ${ }^{\text {a }}$, Jun-Ming Xu ${ }^{\text {b }}$
${ }^{a}$ School of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434023, China
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China

ARTICLE INFO

MSC:

05C40
68M15
68R10

Keywords:

Interconnection networks
Fault tolerance
k-connectivity
Bubble sort graphs

Abstract

The κ^{k} and λ^{k} are two generalized measurements for fault tolerance of large-scale processing system. For the bubble sort networks B_{n}, this paper determines $\kappa^{k}\left(B_{n}\right)=\lambda^{k}\left(B_{n}\right)=$ $2^{k}(n-k-1)$ for $k \leq n / 2$. The results show that to disconnect B_{n} with each vertex in resulting graph has at least k fault-free neighbors, at least $2^{k}(n-k-1)$ faulty vertices or faulty edges have to occur. In particular, the results also settle affirmatively a conjecture proposed by Shi and Wu (Acta Math. Appl. Sin-E., 33 (4)(2017), 933-944).

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In large parallel computing and communication systems, processors are connected by communication links according to some interconnection networks, where the processors and communication links correspond to the vertices and edges in the networks respectively. In the large-scale interconnection networks, it can not avoid faulty vertex and faulty edge occurred, thus estimating the fault tolerance for networks is of crucial importance. The connectivity $\kappa(G)$ is the smallest size of vertices whose deletion disconnects the graph G. The edge-connectivity $\lambda(G)$ is defined similarly, with vertices replaced by edges (see [20]). But, these two definitions are based on any subset of interconnection network can be faulty with equal possibility, which just occur in the worst case. Thus κ and λ underrate the fault tolerance of the large-scale networks. Motivated by this weakness, Harary [5] introduced the concept of conditional connectivity by imposing a number of additional requirements on the remaining networks. Thereafter, Latifi et al. [8] generalized this concept in some sense and proposed restricted k-connectivity by restricting each vertex has at least k fault-free neighbors. These generalized measurements can more accurately estimate the fault tolerance of an interconnection network in real applications.

Suppose G is a connected graph, and T is a subset in $V(G)$. If $G-T$ is disconnected and $\delta(G-T) \geq k$, we call T a k -vertex-cut of G. The k-connectivity $\kappa^{k}(G)$ is defined as the cardinality of a minimum k-vertex-cut of G. The k-edge-cut and k-edge-connectivity $\lambda^{k}(G)$ can be defined similarly, with T a set of edges. It is obvious that $\kappa^{0}=\kappa$ and $\lambda^{0}=\lambda$.

For a graph G, to determine $\kappa^{k}(G)$ and $\lambda^{k}(G)$ for any integer k is not a easy task. For hypercubes Q_{n}, κ^{k} and λ^{k} were determined for any k about two decades ago (see $[14,18,19]$). For the other networks except Q_{n}, people concentrate upon on κ^{k} and λ^{k} for some small k^{\prime} s at long durations [4]. Recently, using some new methods, κ^{k} and λ^{k} have been established for

[^0]

Fig. 1. 2,3,4 dimensional bubble sort networks.
some well-known networks and for any k [11,17]. For instance, κ^{k} and λ^{k} were given for exchanged hypercubes [12], star networks [13] and hierarchical cubic networks [10].

The bubble sort network B_{n} was first presented by Akers and Krishnamurthy [1], it has drawn considerable attention in recent years since it has high symmetry and simple hierarchical structure [1,7]. Much properties for B_{n} have been investigated, such as Hamiltonian laceability [2], bipancyclicity [6], embedded connectivity [9,22], subnetwork fault tolerance [16], conditional diagnosibility [25]. For $n \geq 3$, Cheng and Lipták [3] determined $\kappa^{1}\left(B_{n}\right)=2 n-4$; afterwards, Yang et al. [21] shown that $\kappa^{2}\left(B_{n}\right)=4(n-3)$ for $n \geq 4$; Shi and Wu [15] recently determined that $\kappa^{3}\left(B_{n}\right)=8(n-4)$ for $n \geq 6$. Furthermore, it has been conjectured by Shi and Wu [15] that for $n \geq 3$ and $k \leq n / 2, \kappa^{k}\left(B_{n}\right)=2^{k}(n-k-1)$. In this paper, we prove that for $k \leq n / 2, \kappa^{k}\left(B_{n}\right)=\lambda^{k}\left(B_{n}\right)=2^{k}(n-k-1)$, which generalize the aforementioned results and also give an affirmative answer for the conjecture.

This paper proceeds as follows. Some structure properties of B_{n} and useful lemmas are given in Section 2, the main result and the proof are in Section 3. We conclude the paper in Section 4.

2. Preliminaries

Suppose integer $n \geq 2$, let [n] denotes the set $\{1,2, \ldots, n\}$, and $P(n)$ denotes all the permutations on [n], that is, $P(n)=$ $\left\{p_{1} p_{2} \ldots p_{n}: p_{i} \in[n], p_{i} \neq p_{j}, 1 \leq i \neq j \leq n\right\}$. For convenience, we do not distinguish the subset X of $V(G)$ and the induced subgraph $G[X]$. We follow Xu [20] for graph terminology and notation not defined here.

Definition 2.1 [1]. The n-dimensional bubble sort graph B_{n} has n ! vertices with each vertex represented by a permutation in $P(n)$. Two vertices u and v are linked in B_{n} if and only if u and v differ in exactly two consecutive digits.

It is clear that B_{n} is $(n-1)$-regular. The bubble sort graphs B_{2}, B_{3} and B_{4} are shown in Fig. 1. Akers and Krishnamurthy [1] shown that the bubble sort graph B_{n} is Cayley graph, bipartite, furthermore, B_{n} contains n disjoint subgraphs B_{n-1}. For each $i \in[n]$, all the vertices of the last digit fixed with i induced a subgraph B_{n-1} (see Fig. 1), denoted by B_{n-1}^{i}. Similarly, let $B_{n-2}^{i j}$ denotes the subgraph of B_{n} induced by all the vertices whose the last two digits are $i j$. It is easy to see that $B_{n-2}^{i j} \cong B_{n-2}$ for each two distinct elements $i, j \in[n]$.

Lemma 2.2 [1]. B_{n} can be partitioned into n disjoint subgraphs B_{n-1}^{j} isomorphic to B_{n-1} for each $j \in[n]$; moreover, for two distinct $j_{1}, j_{2} \in[n]$, there are $(n-2)$! independent edges between $B_{n-1}^{j_{1}}$ and $B_{n-1}^{j_{2}}$.

We call the independent edges between $B_{n-1}^{j_{1}}$ and $B_{n-1}^{j_{2}}$ crossing edges. By Lemma 2.2, all the crossing edges form a perfect matching in B_{n}, we denote the matching as M_{n}. If u is linked with v by an edge in M_{n}, call u an n-external neighbor of v, shorted as n-neighbor of v. Then every vertex in B_{n} has just one n-neighbor.

Lemma 2.3 [1]. $\kappa\left(B_{n}\right)=\lambda\left(B_{n}\right)=n-1$ for $n \geq 2$.
Lemma 2.4 [21]. Two distinct vertices in B_{n} have at most two common neighbors, if they have any.
The k-dimensional hypercube Q_{k} is a graph with 2^{k} vertices, each vertex is represented by a k-digits binary sequence. Two vertices u and v being adjacent in Q_{k} if the sequences of u and v differ in exactly one digit [20]. In the next, we will see that there exists Q_{k} as subgraph in the bubble sort networks B_{n}.

Assume $n \geq 3$ and $1 \leq k \leq n / 2, K$ be a subset of $\{n-1, n-3, \ldots, n-2 k+1\}$. For a vertex $u=12 \ldots(n-1) n$ in B_{n}, let u^{K} denotes the set of vertices obtained from u by exchanging i and ($i+1$) for all $i \in K$. Note that K could be empty, and u^{\emptyset} is u itself. Let

$$
X_{n, k}=\left\{u^{K}: K \subseteq\{n-1, n-3, \ldots, n-2 k+1\}\right\}
$$

Define a mapping ϕ from $X_{n, k}$ to $V\left(Q_{k}\right)$:

$$
\phi\left(u^{K}\right)=x_{1} x_{2} \ldots x_{k}
$$

where for each $j \in[k]$,

$$
x_{j}= \begin{cases}1, & \text { if } n-2 j+1 \in K \\ 0, & \text { otherwise }\end{cases}
$$

By definition, the mapping ϕ is bijective. Let $u^{K_{1}}, u^{K_{2}}$ be two vertices in $X_{n, k}$, by the definition, if $u^{K_{1}}$ and $u^{K_{2}}$ are linked in B_{n}, then $K_{2} \subset K_{1}$ and $\left|K_{1}-K_{2}\right|=1$ or $K_{1} \subset K_{2}$ and $\left|K_{2}-K_{1}\right|=1$, then $\phi\left(u^{K_{1}}\right)$ and $\phi\left(u^{K_{2}}\right)$ differ in exactly one coordinate, thus $\phi\left(u^{K_{1}}\right)$ and $\phi\left(u^{K_{2}}\right)$ are linked in Q_{k}, and vice versa. Then the mapping ϕ preserves adjacency. Therefore we have the subgraph induced by $X_{n, k}$ in B_{n} is isomorphic to Q_{k}, that is, $B_{n}\left[X_{n, k}\right] \cong Q_{k}$ and $\left|X_{n, k}\right|=2^{k}$.

Lemma 2.5 [15]. Let Q_{k} be a hypercube in B_{n}. Then any two distinct vertices in Q_{k} have no common neighbors in $B_{n}-Q_{k}$.
For a subgraph X in $B_{n}, N_{n}(X)$ denotes the set of neighbors of X in $B_{n}-X$. By the definition of $X_{n, k}$, we have that $X_{n, k} \subset$ $B_{n-2}^{(n-1) n} \cup B_{n-2}^{n(n-1)}$. Let $\overline{X_{n, k}}=V\left(B_{n}\right)-\left(X_{n, k} \cup N_{n}\left(X_{n, k}\right)\right)$ and

$$
f(n, k)=\max \left\{\left|N(v) \cap N_{n}\left(X_{n, k}\right)\right|: v \in \overline{X_{n, k}}\right\}
$$

Lemma 2.6. If $n \geq 3$ and $1 \leq k \leq n / 2$, then $f(n, k) \leq 2$.
Proof. We apply induction on $n \geq 3$. Note that for $k=1, X_{n, 1}$ is an edge $x y$. It is easy to see that each vertex in $\overline{X_{n, 1}}$ can not have neighbors both in $N(x)$ and $N(y)$, otherwise there exists a C_{5} in B_{n}, contradicts to B_{n} is bipartite. Then by Lemma 2.4, we have $f(n, 1) \leq 2$. And it is straight to know that $f(4,2)=1$ (see Fig. 1). So for $n \leq 4$, the conclusion holds. In the next, we assume that $n \geq 5$ and $2 \leq k \leq n / 2$. Assume the assertion holds for $n-2$ with $k-1 \leq(n-2) / 2$, thus we have

$$
\begin{equation*}
f(n-2, k-1) \leq 2 \tag{2.1}
\end{equation*}
$$

By Lemma 2.2, B_{n} can be partitioned into n disjoint B_{n-1} 's, and B_{n-1} can be partitioned into ($n-1$) disjoint B_{n-2} 's similarly. For an arbitrary vertex v in $\overline{X_{n, k}}$, we consider the neighbors of v and let

$$
\begin{aligned}
& U_{0}=V\left(B_{n-2}^{(n-1) n} \cup B_{n-2}^{n(n-1)}\right)-X_{n, k}-N_{n}\left(X_{n, k}\right), \\
& U_{1}=V\left(B_{n-2}^{(n-2) n} \cup B_{n-2}^{(n-3) n} \cup B_{n-2}^{(n-2)(n-1)} \cup B_{n-2}^{(n-3)(n-1)}\right)-N_{n}\left(X_{n, k}\right), \\
& U_{2}=\overline{X_{n, k}}-U_{0}-U_{1} .
\end{aligned}
$$

For a vertex v in U_{0}, by symmetry, assume $v \in V\left(B_{n-2}^{(n-1) n}\right)$. Note that $B_{n-2}^{(n-1) n} \cong B_{n-2}$, by Definition 2.1 , we have the subgraph of $B_{n-2}^{(n-1) n}$ induced by $X_{n, k}$ is isomorphic to the subgraph of B_{n-2} induced by $X_{n-2, k-1}$, that is $B_{n-2}^{(n-1) n}\left[X_{n, k}\right] \cong$ $B_{n-2}\left[X_{n-2, k-1}\right] \cong Q_{k-1}$. Similarly, $B_{n-2}^{(n-1) n}\left[N_{n}\left(X_{n, k}\right)\right] \cong B_{n-2}\left[N_{n-2}\left(X_{n-2, k-1}\right)\right]$. Using induction in $B_{n-2}^{(n-1) n}$, by (2.1) we have $\left|N(v) \cap N_{n-2}\left(X_{n-2, k-1}\right)\right| \leq f(n-2, k-1) \leq 2$. Now we consider the $(n-1)$-neighbor and n-neighbor of the vertex v. Note that there is a perfect matching between $B_{n-2}^{(n-1) n}$ and $B_{n-2}^{n(n-1)}$, which are the whole $(n-2)$! edges between B_{n-1}^{n} and $B_{n-1}^{(n-1)}$. By the definition of U_{0}, for the vertex v in U_{0}, the unique n-neighbor of v should also be in U_{0}. In addition, the vertex v has no ($n-1$)-neighbor in $N_{n}\left(X_{n, k}\right)$, otherwise there exists a vertex w in $N_{n}\left(X_{n, k}\right)$ has two ($n-1$)-neighbors, a contradiction. Thus the vertex v has no ($n-1$)-neighbor or n-neighbor in $N_{n}\left(X_{n, k}\right)$ (see Fig. 2). Therefore, we have

$$
\left|N(v) \cap N_{n}\left(X_{n, k}\right)\right|=\left|N(v) \cap N_{n-2}\left(X_{n-2, k-1}\right)\right| \leq 2
$$

For a vertex v in U_{1}, by symmetry, assume $v \in V\left(B_{n-2}^{(n-2) n}\right)$. By Lemma 2.5, since the vertices of $B_{n-2}^{(n-2) n} \cap N_{n}\left(X_{n, k}\right)$ induced a Q_{n-2} in $B_{n-2}^{(n-2) n},\left|N(v) \cap B_{n-2}^{(n-2) n} \cap N_{n}\left(X_{n, k}\right)\right| \leq 1$. Note that the n-external neighbor of v should not be in $B_{n-1}^{(n-1)}$, then v has at most one $(n-1)$-external neighbor in $N_{n}\left(X_{n, k}\right)$, therefore we have $\left|N(v) \cap N_{n}\left(X_{n, k}\right)\right| \leq 2$.

For a vertex v in U_{2}, v has at most one n-external or ($n-1$)-external neighbor in $N_{n}\left(X_{n, k}\right)$, then $\left|N(v) \cap N_{n}\left(X_{n, k}\right)\right| \leq 1$.
That is to say, $\left|N(v) \cap N_{n}\left(X_{n, k}\right)\right| \leq 2$ for arbitrary vertex v in $\overline{X_{n, k}}$, then $f(n, k) \leq 2$. The lemma follows.
Lemma 2.7. If $n \geq 3$ and $0 \leq k \leq n / 2$, then $\kappa^{k}\left(B_{n}\right) \leq 2^{k}(n-k-1)$ and $\lambda^{k}\left(B_{n}\right) \leq 2^{k}(n-k-1)$.
Proof. When $k=0$, the assertion is correct by Lemma 2.3, we assume $k \geq 1$ below. Let H denotes the induced subgraph $B_{n}\left[X_{n, k}\right]$, thus $H \cong Q_{k}$. Let F denotes all the edges between $X_{n, k}$ and $N_{n}\left(X_{n, k}\right)$.

Assume v is a vertex in $X_{n, k},\left|N(v) \cap N_{n}\left(X_{n, k}\right)\right|=(n-k-1)$ since $H \cong Q_{k}$. Moreover, by Lemma 2.5, for a vertex $v \in$ $N_{n}\left(X_{n, k}\right)$, we have $\left|N(v) \cap X_{n, k}\right| \leq 1$. Therefore, we have

$$
|F|=\left|N_{n}\left(X_{n, k}\right)\right|=2^{k}(n-k-1) .
$$

Fig. 2. The neighbors of a Q_{k} in B_{n}.

If $(n, k) \notin\{(3,1),(4,2)\}$, by Lemma 2.6 , then $\delta\left(\overline{X_{n, k}}\right) \geq(n-1)-2 \geq k$. If $(n, k) \in\{(3,1),(4,2)\}$, it can be check straightly that $f(3,1)=1$ and $f(4,2)=1$ (see Fig. 1), thus $\delta\left(\overline{X_{n, k}}\right) \geq(n-1)-1 \geq k$. Therefore we have $N_{n}\left(X_{n, k}\right)$ is a k-vertex-cut in B_{n}, thus $\kappa^{k}\left(B_{n}\right) \leq\left|N_{n}\left(X_{n, k}\right)\right|=2^{k}(n-k-1)$.

For a vertex $v \in N_{n}\left(X_{n, k}\right)$, since $\left|N(v) \cap X_{n, k}\right| \leq 1$, we have $\left|N(v) \cap\left(B_{n}-H\right)\right| \geq n-2 \geq k$. Then F is a k-edge-cut, thus $\lambda^{k}\left(B_{n}\right) \leq|F|=2^{k}(n-k-1)$.

This completes the proof.
In the following, we give some properties about the subgraph X of B_{n} with $\delta(X) \geq k$. By the recursive structure of B_{n}, we partition B_{n} into $B_{n-1}^{1}, B_{n-1}^{2}, \ldots, B_{n-1}^{n}$, let $X_{i}=X \cap V\left(B_{n-1}^{i}\right)$ for $i \in[n]$.

Lemma 2.8. If X is a subgraph with minimum degree at least k in B_{n}, then $|X| \geq 2^{k}$.
Proof. We use induction on $n(\geq 2)$, the conclusion is trivial for $k=0$ or $n=2$, assume $k \geq 1$ and $n \geq 3$ below.
If there is an $i \in[n]$ such that $X \subseteq B_{n-1}^{i}$, note that B_{n-1}^{i} is isomorphic to B_{n-1}, then we have $k \leq \delta(X) \leq n-2$. By the induction hypothesis, we have $|X| \geq 2^{k}$.

If there exist at least two $i \in[n]$ such that $X_{i} \neq \emptyset$. Since $\delta(X) \geq k$ and each vertex in B_{n-1}^{i} has only one n-external neighbor, $\delta\left(X_{i}\right) \geq k-1$ if $X_{i} \neq \emptyset$. By the induction hypothesis, $\left|X_{i}\right| \geq 2^{k-1}$. It follows that $|X|=\sum_{i=1}^{n}\left|X_{i}\right| \geq 2 \cdot 2^{k-1}=2^{k}$.

This completes the proof by the induction principles.
Let $g_{n}(X)=|X|+\left|N_{n}(X)\right|$.
Lemma 2.9. Suppose $0 \leq k \leq n-1$ and X is a subgraph of B_{n}, if $\delta(X) \geq k$, then $g_{n}(X) \geq 2^{k}(n-k)$.
Proof. We can straightly check the conclusion holds for $n \leq 2$ or $k=0$, assume $n \geq 3$ and $k \geq 1$ below. The proof is by induction on n with $k \leq n-1$. If $\delta(X) \geq n-1, X$ must be B_{n}, then $|X|=n!\geq 2^{n-1}$, therefore, the conclusion also holds for $k=n-1$. We assume the induction hypothesis for $n-1$ with $k \leq n-2$.

If there exists an $i \in[n]$ such that $X \subseteq B_{n-1}^{i}$, note that B_{n-1}^{i} is isomorphic to B_{n-1}, then we have $k \leq \delta\left(X_{i}\right) \leq n-2$. By the induction hypothesis, we have $g_{n-1}(X) \geq 2^{k}(n-1-k)$. Note that each vertex has just one n-external neighbor, together with Lemma 2.8, it follows that $\left|N_{n}(X)-N_{n-1}(X)\right|=|X| \geq 2^{k}$. Then

$$
g_{n}(X)=g_{n-1}(X)+\left|N_{n}(X)-N_{n-1}(X)\right| \geq 2^{k}(n-k-1)+2^{k}=2^{k}(n-k) .
$$

If there does not exist $i \in[n]$ such that $X \subseteq B_{n-1}^{i}$, then there exist two distinct $i_{1}, i_{2} \in[n]$ such that $X_{i} \neq \emptyset$ for $i \in\left\{i_{1}, i_{2}\right\}$. Using the induction hypothesis in B_{n-1}^{i} respectively, we have

$$
g_{n-1}\left(X_{i}\right) \geq 2^{k-1}(n-k) \text { for each } i \in\left\{i_{1}, i_{2}\right\}
$$

Hence,

$$
g_{n}(X) \geq \sum_{i \in\left\{i_{1}, i_{2}\right\}} g_{n-1}\left(X_{i}\right) \geq 2^{k}(n-k) .
$$

The lemma follows by the induction principle.

3. Main results

Theorem 3.1. If $n \geq 3$ and $0 \leq k \leq n / 2$, then $\kappa^{k}\left(B_{n}\right)=\lambda^{k}\left(B_{n}\right)=2^{k}(n-k-1)$.
Proof. By Lemma 2.7, it suffices to prove for any k with $k \leq n / 2$,

$$
\begin{equation*}
\kappa^{k}\left(B_{n}\right) \geq 2^{k}(n-k-1) \text { and } \lambda^{k}\left(B_{n}\right) \geq 2^{k}(n-k-1) \tag{3.1}
\end{equation*}
$$

We use induction on n to prove (3.1).
If $k=0$, by Lemma 2.3, we have $\kappa^{0}\left(B_{n}\right)=\kappa\left(B_{n}\right) \geq n-1$ and $\lambda^{0}\left(B_{n}\right)=\lambda\left(B_{n}\right) \geq n-1$, that is the conclusion holds for $k=0$. If $n=3$, then B_{n} is C_{6}, it is easy to see that $\kappa^{1}\left(C_{6}\right) \geq \kappa\left(C_{6}\right)=2$. Similarly, we have $\lambda^{1}\left(B_{3}\right) \geq 2$. Then the conclusion is correct for $n=3$, we suppose $n \geq 4$ and $k \geq 1$ below.

Assume (3.1) holds for $n-1$ with $k-1 \leq(n-1) / 2$. Thus for any k with $1 \leq k \leq n / 2$,

$$
\begin{equation*}
\kappa^{k-1}\left(B_{n-1}\right) \geq 2^{k-1}(n-k-1) \text { and } \lambda^{k-1}\left(B_{n-1}\right) \geq 2^{k-1}(n-k-1) \tag{3.2}
\end{equation*}
$$

Let T be a k-vertex-cut (or k-edge-cut) of B_{n} with minimum cardinality, it suffices to show that

$$
\begin{equation*}
|T| \geq 2^{k}(n-k-1) \text { for } 1 \leq k \leq n / 2 \tag{3.3}
\end{equation*}
$$

Suppose X be the minimum connected component of $B_{n}-T, Y=B_{n}-X-T$.
By Lemma 2.2, we partition B_{n} into $B_{n-1}^{1}, B_{n-1}^{2}, \ldots, B_{n-1}^{n}$. For any $i \in[n]$, let

$$
\begin{aligned}
& X_{i}=X \cap V\left(B_{n-1}^{i}\right), Y_{i}=Y \cap V\left(B_{n-1}^{i}\right), \\
& T_{i}= \begin{cases}T \cap V\left(B_{n-1}^{i}\right), & \text { if } T \text { is a vertex-cut; } \\
T \cap E\left(B_{n-1}^{i}\right), & \text { if } T \text { is an edge-cut. }\end{cases}
\end{aligned}
$$

Let

$$
J_{X}=\left\{i \in[n]: X_{i} \neq \emptyset\right\}, J_{Y}=\left\{i \in[n]: Y_{i} \neq \emptyset\right\} \quad \text { and } J_{0}=J_{X} \cap J_{Y} .
$$

It is easy to see, if $i \in J_{0} \neq \emptyset$ then $X_{i} \neq \emptyset$ and $Y_{i} \neq \emptyset$. By the definition of T, note that every vertex has unique external neighbor, we have $\delta\left(X_{i}\right) \geq k-1$ and $\delta\left(Y_{i}\right) \geq k-1$. Therefore, T_{i} disconnects B_{n-1}^{i} and $\delta\left(B_{n-1}^{i}-T_{i}\right) \geq k-1$. Note that B_{n-1}^{i} is isomorphic to B_{n-1}, by induction hypothesis (3.2), we have

$$
\begin{equation*}
\left|T_{i}\right| \geq 2^{k-1}(n-k-1) \text { for each } i \in J_{0} \tag{3.4}
\end{equation*}
$$

If $\left|J_{0}\right| \geq 2$ then, by (3.4), we obtain that

$$
|T| \geq \sum_{i \in J_{0}}\left|T_{i}\right| \geq 2^{k}(n-k-1)
$$

Thus, (3.3) holds, and assume that $J_{0} \mid \leq 1$ below.
If there exists some $i \in[n]$ such that $V\left(B_{n-1}^{i}\right) \subseteq T$, thus

$$
\begin{equation*}
|T| \geq\left|B_{n-1}^{i}\right|=(n-1)!\geq 2^{k}(n-k-1) . \tag{3.5}
\end{equation*}
$$

The last inequality in (3.5) follows since $(n-1)!=(n-1)(n-2)!\geq(n-1)(2 k-2)!=2^{k-1}(k-1)!(n-1) \geq 2^{k}(n-k-$ 1) for $k \geq 3$, and it is also easy to check the truth directly for $k \leq 2$.

If $\left(X_{i} \cup Y_{i}\right) \neq \emptyset$ for each $i \in[n]$. Let $a=\left|J_{X}-J_{0}\right|, b=\left|J_{Y}-J_{0}\right|$, then $a+b=n-\left|J_{0}\right|$. Note that $|X| \leq|Y|$, hence $b \neq 0$.
Let E_{C} denotes all the edges between $\cup_{j_{1} \in J_{X}-J_{0}} B_{n-1}^{j_{1}}$ and $\cup_{j_{2} \in J_{Y}-J_{0}} B_{n-1}^{j_{2}}$. All those edges are independent since they are in M_{n}. By Lemma 2.2, for $j_{1} \in J_{X}$ and $j_{2} \in J_{Y}$, there are $(n-2)$! independent crossing edges between $B_{n-1}^{j_{1}}$ and $B_{n-1}^{j_{2}}$. Hence $\left|E_{C}\right| \geq a b(n-2)$!. All the edges in E_{C} must be in T provided T is an edge-cut; every edge in E_{C} has at least one of its end-vertices in T provided T is a vertex-cut. Therefore, we always have

$$
\begin{equation*}
|T| \geq\left|E_{C}\right| \geq a b(n-2)! \tag{3.6}
\end{equation*}
$$

If $a \geq 1$, note that $b=n-a-\left|J_{0}\right| \neq 0$ and $\left|J_{0}\right| \leq 1$, by (3.6), we have

$$
\begin{equation*}
|T| \geq(n-2)(n-2)!\geq 2^{k}(n-k-1) \tag{3.7}
\end{equation*}
$$

If $a=0$, then $\left|J_{0}\right|=1$ and $J_{X}=J_{0}$. We assume $J_{0}=\{1\}$ without loss of generality, thus $X \subset B_{n-1}^{1}$. Since $\delta(X) \geq k$ and B_{n-1}^{1} is isomorphic to B_{n-1}, using Lemma 2.9, we have $|X|+\left|N_{B_{n-1}^{1}}(X)\right|=g_{n-1}(X) \geq 2^{k}(n-k-1)$.

First assume T is a k-vertex-cut, then $N_{B_{n}}(X) \subset T$. Note that each vertex in X has a neighbor linked by M_{n}, T must contain this neighbor, we have

$$
\begin{equation*}
|T| \geq\left|N_{B_{n}}(X)\right| \geq|X|+\left|N_{B_{n-1}^{1}}(X)\right| \geq 2^{k}(n-k-1) \tag{3.8}
\end{equation*}
$$

Now assume T is a k-edge-cut, thus any edge between X and $N_{B_{n-1}^{1}}(X)$ should be contained in T_{1}, and hence we have $\left|T_{1}\right| \geq\left|N_{B_{n-1}^{1}}(X)\right|$. Recall that $X \subset B_{n-1}^{1}$, thus the n-external neighbor of each vertex in X can not be in X, therefore $\left|E_{C}\right| \geq|X|$. Hence

$$
\begin{equation*}
|T| \geq\left|E_{C}\right|+\left|T_{1}\right| \geq|X|+\left|N_{B_{n-1}^{1}}(X)\right| \geq 2^{k}(n-k-1) . \tag{3.9}
\end{equation*}
$$

By (3.5),(3.7)-(3.9), we have that the inequality (3.3) holds. Therefore we complete the proof by induction principles.
In Theorem 3.1, let $k=1,2$ and 3, we have the following.
Corollary $3.2[3,15,21] . \kappa^{1}\left(B_{n}\right)=2 n-4$ for $n \geq 3 ; \kappa^{2}\left(B_{n}\right)=4 n-12$ for $n \geq 4 ; \kappa^{3}\left(B_{n}\right)=8(n-4)$ for $n \geq 6$.

4. Concluding remarks

Two generalized measures of fault tolerance, κ^{k} and λ^{k} for the bubble sort graphs B_{n} have been investigated. We show that $\kappa^{k}\left(B_{n}\right)=\lambda^{k}\left(B_{n}\right)=2^{k}(n-k-1)$ provided $0 \leq k \leq n / 2$, which also resolves a conjecture proposed by Shi and Wu [15]. When $n / 2<k \leq n-2$, to determine the κ^{k} and λ^{k} for the bubble sort networks B_{n} is quite interesting, and is worth studying further. It should be mention that there does not exists a Q_{k} in B_{n} provided that $k>n / 2$, to study $\kappa^{k}\left(B_{n}\right)$ and $\lambda^{k}\left(B_{n}\right)$, we need to find a new technique.

In addition, there are other generalized measures of fault-tolerance for networks, such as generalized r-connectivity $\kappa_{r}(G)$, r-component connectivity $c \kappa_{r}(G)($ see $[23,24])$. To study this two generalized measures for bubble sort networks also is of interest.

Acknowledgments

The authors would like to express their gratitude to the anonymous referees for their kind comments and valuable suggestions on the original manuscript, which resulted in this version.

References

[1] S.B. Akers, B. Krishnamurthy, A group theoretic model for symmetric interconnection networks, IEEE Trans. Comput. 38 (4) (1989) $555-566$.
[2] T. Araki, Y. Kikuchi, Hamiltonian laceability of bubble-sort graphs with edge faults, Inf. Sci. 177 (13) (2007) 2679-2691.
[3] E. Cheng, L. Lipták, Structural properties of Cayley graphs generated by transposition trees, Congressus Numerantium 180 (2006) 81-96.
[4] Y.-Q. Feng, R.-X. Hao, J.-X. Zhou, On computing of a conditional edge connectivity of alternating group network, Linear Multilinear Algebr. 65 (12) (2017) 2494-2507.
[5] F. Harary, Conditional connectivity, Networks 13 (1983) 347-357.
[6] Y. Kikuchi, T. Araki, Edge-bipancyclicity and edge-fault-tolerant bipancyclicity of bubble-sort graphs, Inform. Process. Lett. 100 (2) (2006) 52-59.
[7] S. Lakshmivarahan, J.S. Jwo, S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parall. Comput. 19 (1993) 361-407.
[8] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Trans. Comput. 43 (2) (1994) $218-222$.
[9] X.-J. Li, Q.-Q. Dong, Z. Yan, J.-M. Xu, Embedded connectivity of recursive networks, Theor. Comput. Sci. 653 (2016) 79-86.
[10] X.-J. Li, M. Liu, Z. Yan, J.-M. Xu, On conditional fault tolerance of hierarchical cubic networks, Theor. Comput. Sci. 761 (2019) 1-6.
[11] X.-J. Li, J.-M. Xu, Edge-fault tolerance of hypercube-like networks, Inf. Process. Lett. 113 (19-21) (2013a) 760-763.
[12] X.-J. Li, J.-M. Xu, Generalized measures of fault tolerance in exchanged hypercubes, Inf. Process. Lett. 113 (14-16) (2013b) 533-537.
[13] X.-J. Li, J.-M. Xu, Generalized measures for fault tolerance of star networks, Networks 63 (3) (2014) 225-230.
[14] A.D. Oh, H. Choi, Generalized measures of fault tolerance in n-cube networks, IEEE Trans. Parallel. Distrib. Syst. 4 (1993) $702-703$.
[15] L.-S. Shi, P. Wu, Conditional connectivity of bubble sort graphs, Acta Math. Appl. Sin E. 33 (4) (2017) 933-944.
[16] S. Wang, Y. Yang, Fault tolerance in bubble-sort graph networks, Theoret. Comput. Sci. 421 (2012) 62-69.
[17] C.-C. Wei, S.-Y. Hsieh, h-restricted connectivity of locally twisted cubes, Discrete Appl. Math. 217 (2) (2017) 330-339.
[18] J. Wu, G. Guo, Fault tolerance measures for m-ary n-dimensional hypercubes based on forbidden faulty sets, IEEE Trans. Comput. 47 (1998) $888-893$.
[19] J.-M. Xu, On conditional edge-connectivity of graphs, Acta Math. Appl. Sin. 16 (4) (2000) 414-419.
[20] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
[21] W.-H. Yang, H.-Z. Li, J.-X. Meng, Conditional connectivity of Cayley graphs generated by transposition trees, Inf. Process. Lett. 110 (2010) $1027-1030$.
[22] Y. Yang, S. Wang, J. Li, Conditional connectivity of recursive interconnection networks respect to embedding restriction, Inf. Sci. 279 (2014) $273-279$.
[23] S.-L. Zhao, R.-X. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput. 347 (2019) 342-353.
[24] S.-L. Zhao, R.-X. Hao, E. Cheng, Two kinds of generalized connectivity of dual cubes, Discrete Appl. Math. 257 (2019) 306-316.
[25] S. Zhou, J. Wang, X. Xu, J.-M. Xu, Conditional fault diagnosis of bubble sort graphs under the PMC model. intelligence computation and evolutionary computation, Adv. Intell. Syst. Comput. 180 (2013) 53-59.

[^0]: ㄱ This work was supported by NNSF of China (11571044, 91647204, 61673006, 11601041), YTFY(2015cqr23).

 * Corresponding author.

 E-mail addresses: franklxj@mail.ustc.edu.cn (X.-J. Li), xujm@ustc.edu.cn (J.-M. Xu).

