Chapter 3

Plane Graphs and Planar
Graphs

3.1 Plane Graphs and Euler’s Formula

Surface Embedding of Graphs

Let S be a given surface such as the plane, the sphere, the torus and so on. If a
graph G can be drawn in S such that its edges intersect only at their end-vertices,
then @ is said to be embeddable on the surface S. Such a drawing of G in S is
called an embedding of G in S, denoted by G.

Planar Graphs and Plane Graphs

If a graph G is embeddable on the plane (or the sphere), G is called a planar
graph; otherwise GG is called a non-planar graph. If G is a planar graph, then
any embedding G of G on the plane can itself be regarded as a graph isomorphic to

G. Therefore, we refer to an embedding Gof G asa plane graph.
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Figure 3.1: K:;3 and its planar embedding

Figure 3.1 shows a planar graph Kj 5, obtained from K33 by deleting any one
edge, and its embedding on the boundary of a tetrahedron. Such an embedding of

K5 5 will be useful in the proof of Theorem 3.6 in the next section.
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106 Plane Graphs and Planar Graphs

Since the concept of embedding of a graph has no relation to orientations of
edges, in the following discussions, we will restrict ourselves to undirected graphs.
Furthermore, we consider the surface S as the plane or the sphere in this chapter.

In fact, we have the following result.

Theorem 3.1 A graph G is embeddable on the sphere S if
and only if it is embeddable on the plane P.

Proof: To show this theorem we make use of a mapping known as stereographic
projection. Consider a sphere S resting on a plane P, and denoted by z the point

of S that is diagonally opposite the point of contact of S and P. The mapping
¢: S—P,
defined by ¢(z) = oo and
¢(s) =p € P\ {oo} for any s € S\ {2} & z,s,p are collinear,

see Figure 3.2, is bijective clearly.

Figure 3.2: Stereographic projection

Suppose that GG is embeddable on the plane P and G is its embedding in P.
Then gb’l(é) is an embedding of G in the sphere S. Conversely, suppose that G’
is an embedding of GG in .S. Without loss of generality, suppose that z is not in Q.
Then gb(a) is an embedding of G in P. Thus, G is embeddable in S if and only if

it is embeddable on P. 1
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3.1. PLANE GRAPHS AND EULER’S FORMULA 107

Faces of Plane Graphs

Let G be a nonempty plane graph. It can partition the plane into several con-
nected regions, which are called faces. We use F/(G) and ¢(G) to denote the set

and the number of faces of G, respectively.

It is clear that ¢(G) > 1 for any plane graph G, and ¢(G) = 1 if and

only if GG is a forest.

For G shown in Figure 3.3, for example, we have

F(G) = {fo, f1, f2, f3, f1, 5} and ¢(G) = [F(G)| = 6.

Figure 3.3: The faces of a plane graph

Denote by B (f) the boundary of the face f € F(G), in general, which con-

sists of several edge-disjoint closed walks.

For example, the face fy of G shown in Figure 3.3 has boundary
Ba(fo) = x1 €22 e4 26 €7 13 €3 T5 €9 T'5 €3 T3 €1 T1.

The number of edges in Bg(f) is the degree of f, denoted by da(f). For G
shown in Figure 3.3, for example, we have dg(fo) =7, da(f1) = 1.
Any planar embedding of a planar graph has exactly one unbounded face, called

the exterior face; in the plane graph of Figure 3.3, fy is the exterior face.

For any vertex x or any edge ¢ of a planar graph G, G can be embedded
in the plane in such a way that = or ¢ is on the boundary of the exterior

face of the embedding (the exercise 3.1.2).
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108 Plane Graphs and Planar Graphs

For a given plane graph G, there is the following relations between the face
degrees and £(G), similar to one between the vertex degrees and (G) (see Corollary

1.1.1).

Theorem 3.2 For any plane graph G,

S da(f) = 2:(G).

fer(G)

Proof: If G is empty, then the conclusion holds clearly. Suppose now that G is
nonempty, and e is any edge of G. Then e either is on a common boundary of two
distinct faces (for example, the edge e; of the graph shown in Figure 3.3 is on the
boundary of fy and f2) or appears in a boundary of some face twice (for example,
the edge eg of the graph shown in Figure 3.3 appears on the boundary of f; twice).

Thus the conclusion follows. 1

There is a simple formula relating to the numbers of vertices v, the number of
edges ¢ and the number of faces ¢ of a connected plane graph. It is the well-known

Euler’s formula.

Theorem 3.3 (Euler, 1753) If G is a connected plane graph,
then

v—e+ =2

Proof: Let G be a connected plane graph and T be a spanning tree of G. Then
#(T) =1 and ¢(T) = € — v + 1. On the one hand, addition of each edge of T to
T, the number of faces increases by at least one by Theorem 2.3, which implies
#(G) > ¢(T) + & — v+ 1. On the other hand, to obtain a new face, one edge of T
must be added to T, which implies ¢(G) < ¢(T) + ¢ — v+ 1. Thus

PG =¢(T)+e—v+l=c—v+2,

as required. ]
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3.1. PLANE GRAPHS AND EULER’S FORMULA 109

Corollary 3.3.1 If G is a plane graph, then v—c+¢ =14w.

Corollary 3.3.2 All planar embeddings of a given connected

planar graph have the same number of faces.

Corollary 3.3.3 If G is a simple connected planar bipartite
graph of order v (> 3), then ¢ <2v — 4.

Proof: Let G be a planar embedding of G. If Gisa tree, then by Theorem

@ e=v—1<2v—4for v > 3. Suppose that G contains a cycle below. Since G

is a simple bipartite graph, then by Corollary 1.6.2, G' contains no odd cycle and so
d&(f) > 4 for each face f of G. Tt follows from Theorem 3.2 that

1p< > dg(f) =2e,

FEF(G)

that is, € > 2¢. It follows from Euler’s formula that ¢ < 2v — 4. 1

Corollary 3.3.4 K33 is non-planar.

Proof: Since K33 is simple and bipartite, ¢(K33) = 9 and v(K33) = 6. Sup-
pose to the contrary that K3 3 is planar, then we can deduce from Corollary 3.3.3 a

contradiction as follows.
9= E(K3)3) S 2U(K3)3) —4 =28.

Therefore, K3 3 is non-planar. ]
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110 Plane Graphs and Planar Graphs

Maximal Planar graphs

A simple planar graph G is called to be maximal if G + xy is non-planar for any
two nonadjacent vertices x and y of G. It is clear that each face of any planar em-
bedding of a maximal planar graph is a triangle. A planar embedding of a maximal

planar graph is called a plane triangulation.

Theorem 3.4 Let GG be a simple planar graph of order v > 3.

Then G is maximal if and only if ¢ = 3v — 6.

Proof: Let G be a simple planar graph of order v > 3 and G be a planar
embedding of G. Then it is clear that G is maximal if and only if dz(f) = 3 for any
f € F(G). Tt follows from Theorem 3.2 that

2e= Y da(f)=3¢.

FEF(G)

By Euler’s formula, we have
2
— — = 2
vV—¢€+ 3 € ,

as desired. 1

Corollary 3.4.1 If GG is a simple planar graph of order v > 3,
then ¢ < 3v — 6.

Corollary 3.4.2 Kj is non-planar.

Proof: If K5 is planar, then, by Corollary 3.4.1, we should have
10 = E(K5) S 3’1}(K5) —6=09.

But this is impossible. Thus, K35 is non-planar. ]

Corollary 3.4.3 If G is a simple planar graph, then § < 5.

Proof: The conclusion is clearly true for v = 1 or 2. For v > 3, by Corollary
1.1 and Corollary 3.4.1, we have

dv < ng(:z:) =2e < 6v — 12,
zeV

which implies that § < 5. 1


XUJM
矩形

XUJM
矩形

XUJM
矩形


3.1. PLANE GRAPHS AND EULER’S FORMULA 111

Planar Embedding with Straight Line Segments

The following feature of planar graphs is found by Wagner (1936) and, rediscov-
ered by Fary (1948).

Theorem 3.5 Any simple planar graph can be embedded

in the plane so that each edge is a straight line segment.

Proof: Omitted.

Figure 3.4 shows a planar graph and its planar embedding with straight line

segments.

(b)
Figure 3.4: a planar graph and its planar embedding with straight line segments
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3.2 Kuratowski’s Theorem

It is clearly of importance to know which graphs are planar and which are not. In
the preceding section we obtain some necessary conditions for a graph to be planar.
Making use of these conditions we have already shown that, in particular, both K5
and K33 are non-planar. We will, in this section, see that these two non-planar

graphs play an important role in the characterization of planarity of a graph.

A remarkably simple, useful criteria for graphs to be planar was found in 1930
by Kuratowski and Frink and Smith, independently. This criteria is called Kura-

towski’s theorem in the literature and textbooks on graph theory.

Before stating and proving Kuratowski’s theorem, we need to describe other

concepts on graphs.

An edge e is said to be subdivided when it is deleted and replaced by a single
path of length two connecting its end-vertices of e, the internal vertex of this single

path being a new vertex. This is illustrated in Figure 3.5.

Figure 3.5: Subdivision of an edge e of K5

A subdivision of a graph G is a graph obtained from G by a sequence of edge

subdivisions.

Figure 3.6 illustrates two subdivisions of K3 3.

Figure 3.6: Two subdivisions of K33
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3.2. KURATOWSKI’S THEOREM 113

Theorem 3.6 A graph is planar if and only if it contains

no subdivision of K; or K33 as its subgraph.

For this classical theorem, there are many simpler proofs than the original. The
first relatively simple proof was given by Dirac and Schuster (1954), and some
of other proofs have been given in Thomassen’s paper(1981), Klotz (1989) and
Makarychev (1997). A discussion of its history, the reader is referred to Kennedy,
Quintas and Syslo (1985). The proof presented here is due to Tverberg (1989).

Proof: Omitted.

As a direct consequence of Theorem 3.6, we have immediately that Petersen

graph is non-planar since it contains the subdivision of K3 5 shown in Figure 3.6.

There are several other characterizations of planar graphs. For example (the

exercise 3.2.4),

Wagner (1937) proved that a graph is planar if and only if it contains no
subgraph contractible to K5 or K3 3;

McLane (1937) proved that a graph is planar if and only if it has a funda-
mental cycles together with one additional cycle such that this collection

of cycles contains each edge of the graph exactly twice.

Another well-known characterization of planar graphs, due to Whitney(1932),

concerns with the concept of dual graphs, which will be presented in the next section.
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114 Plane Graphs and Planar Graphs

3.3 Dual Graphs

Geometric Dual

Let G be a plane graph with the edge-set {e1, ea,- - -, e.} and the face-set F(G) =
{f1, f2,- -+, fo}. We can define a graph G* with vertex-set V(G*) = {f{, f3, -+, f}}
and the edge-set {e],e3, -+, el }, and two vertices f and f; are linked by an undi-
rected edge e if and only if e; is on a common boundary of two faces f; and f; of

G. The graph G* is called the geometric dual of G.

A plane graph G and its geometric dual G* are shown in Figure 3.7, where G is

depicted by the light lines and G* by the heavy lines.

Figure 3.7: A plane graph and its geometric dual

It is a simple observation that the geometric dual G* of a plane graph G is planar

and satisfies the following relations:

u(G") = #(G),
e(G*) = €(G), (3.1)
dg-(f*) = da(f), V [feF(G).

It should be noted that isomorphic plane graphs may have non-isomorphic geo-

WK<=

Figure 3.8: Two isomorphic plane graphs with non-isomorphic geometric duals

metric duals.
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3.3. DUAL GRAPHS 115

It is easy to prove that G* is a connected plane graph, and G =~ G*" < if

and only if G is connected. (the exercise 3.3.1)

Theorem 3.7 Let GG be a plane graph and G* the geometric
dual of G, B C F(G) and B* = {e* € E(G*) : e € B}. Then
(a) G[B] is a cycle of G if and only if B* is a bond of G*;

(b) B is a bond of G if and only if G*[B*] is a cycle of G*.

Proof: Omitted.

Combinatorial Dual

Motivated by the facts in Theorem 3.7, Whitney (1932) formulated an abstract

notion of duality for general graphs, combinatorial dual of a graph.

Let G and G’ be two graphs. If there is a bijective mapping ¢ : E(G) — E(G')
such that for any B C E(G), G[B] is a cycle of G if and only if ¢(B) = {¢’ € E(G’) :

p(e) = €', e € B} is a bond of G/, then G’ is called the combinatorial dual of G.

Figure 3.9 shows a graph G and its combinatorial dual G’, where

¢: E(G) — E(G)
e; —ole)=¢el, i=1,2,---,9.

€4

el €9

Figure 3.9: A graph and its combinatorial dual
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116 Plane Graphs and Planar Graphs

Although, in general, it is difficult to find the combinatorial dual of a given graph,

the combinatorial definition coincides with the geometric definition for plane graphs

Theorem 3.8 Let GG be a plane graph and G* is its geometric
dual. Then G* is the combinatorial dual of G. Moreover, G is

the combinatorial dual of G*.

Proof: Omitted

We have noticed the definition of combinatorial dual makes no reference to pla-
narity of a graph. With this concept, however, Whitney (1932) obtained another

characterization of planar graphs.

Theorem 3.9 (Whitney’s theorem) A graph G is planar if

and only if it has combinatorial dual.

Proof: Omitted.
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3.4. REGULAR POLYHEDRA 117

Applications

3.4 Regular Polyhedra

Theorem 3.11 There are exactly five regular polyhedra. (see

Figure 3.10)

A e A
ty — @

IR/ AN
V@

Figure 3.10: The regular polyhedra and the corresponding plane graphs

The five regular polyhedra were known to the ancient Greeks, and were described

by Plato in his Timaeus ca. 350 BC, and so are called platonic solids
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3.5 Layout of Printed Circuits

There are many practical situations in which it is important to decide whether
a given graph is planar, and if so, to then find a planar embedding of the graph. For
example, a VLSI (very large scale integrated)-designer has to place the cells
on printed circuit boards according to several designing requirements. One of these
requirements is to avoids crossings since crossings lead to undesirable signals. One
is, therefore, interested in knowing if the graph corresponding to a given electrical
network is planar, where the vertices correspond to electrical cells and the edges
correspond to the conductor wires connecting the cells.

Several different O(v)-algorithms for solving this problem have been proposed
by different authors, for example, Hopcroft, Tarjan (1974) and Liu (1988) who used
different techniques. These algorithms require lengthy explanations and verification.
We therefore in this section describe a much simpler but nevertheless fairly efficient
algorithm due to Demoucron, Malgrange and Pertuiset (1964), DMP algorithm

for short.

3.1.16 The thickness ¥(G) of G, is the minimum number of planar graphs into
which the edges of G can be partitioned. It is clear that ¥(G) = 0 if and

only if GG is planar.

3.1.17 The crossing number 7(G) of G, is the minimum number of pairwise in-
tersections of its edges when G is drawn in the plane. Obviously, r(G) = 0

if and only if G is planar.

Exercises: 3.1.4; 3.1.6; 3.2.3

Thank You !
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