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4.6 The Chinese Postman Problem

Chinese Postman Problem

In his job, a postman picks up mail at the post office, delivers it, and then returns

to the post office. He must, of course, cover each street in his area at least once.

Subject to this condition, he wishes to choose his route in such a way that walks as

little as possible. This problem is known as the Chinese postman problem, since

it was first considered by a Chinese mathematician, Guan in 1960.

Graphic Model

We refer to the street system as a weighted graph (G,w) whose vertices represent

the intersections of the streets, whose edges represent the streets (one-way or two-

way), and the weight represents the distance between two intersections, of course, a

positive real number. A closed walk that covers each edge at least once in G is called

a postman tour. Clearly, the Chinese postman problem is just that of finding a

minimum-weight postman tour. We will refer to such a postman tour as an optimal

tour.

There are many real-world situations that can be reduced as the Chinese postman

problem. For example, a driver of a watering car or a garbage truck, he wishes to

choose his route in such a way that traverses as little as possible. In this section,

we introduce an efficient algorithm for solving the Chinese postman problem, due

to Edmonds and Johnson (1973).

First consider simple case that G is eulerian.

Then any an Euler circuit is an optimal tour since it traverses each edge exactly

once. The Chinese postman problem is easily solved in this case, since there exists

an efficient algorithm determining an Euler circuit in an eulerian graph, no matter

that it is directed or undirected.

We here consider G a directed eulerian graph. Then G is strongly connected,

and so there must be a spanning out-tree rooted at x0 in G for any x0 ∈ V (G)

(by the exercise 2.1.10). Making use of Dijsktra’s algorithm, we can find a

spanning out-tree T rooted at x0. Based on this tree T , Edmonds and Johnson’s

algorithm can find an Euler directed circuit in G.
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154 Flows and Connectivity

Edmonds and Johnson’s Algorithm

1. Choose arbitrarily a vertex x0 in G, find a spanning out-tree T rooted at x0

in G, and set P0 = x0.

2. Suppose that a directed trail Pi = xiaixi−1ai−1 · · · a2x1a1x0 has been chosen.

Then choose an edge ai+1 from E(G) \ {a1, a2, · · · , ai} in such a way that

(i) ψG(ai+1) = (xi+1, xi);

(ii) ai+1 /∈ E(T ) unless there is no alternative.

3. Stop when Step 2 can no longer be implemented.
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Figure 4.14: A spanning out-tree T rooted at x1 in G

Theorem 4.11 If G is an eulerian digraph, then any directed trail in

G constructed by the above algorithm is an Euler directed circuit in G.

Proof: Let G be an eulerian digraph, and let Pn = xnanxn−1an−1 · · ·a2x1 a1x0

be a directed trail in G constructed by the above algorithm. Since G is eulerian, G

is balanced by Theorem 1.7, and so xn = x0.

Suppose, now, that Pn is not an Euler circuit of G. Then there is b1 ∈ E(G), but

b1 /∈ E(Pn). Let ψG(b1) = (xi, xj). Then, by Step 2 (ii), without loss of generality

suppose b1 ∈ E(T ). Since xi is balanced in G and Pn, there is b2 ∈ E(G), but

b2 /∈ E(Pn) with ψG(b2) = (xk, xi) ∈ E(T ). Similarly, there is b3 ∈ E(G), but
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4.6. THE CHINESE POSTMAN PROBLEM 155

b3 /∈ E(Pn) with ψG(b3) = (xl, xk) ∈ E(T ) and so on. Thus, there is a sequence of

edges b1, b2, b3, · · ·, which can be traced back to x0 = xn along an (x0, xj)-path of T

in reverse direction. Since xn is balanced in G and Pn, there is a ∈ E(G) with head

xn, but a /∈ E(Pn). This contradicts Step 3. Therefore, Pn is an Euler circuit of G.

Example 4.6.1 Consider the digraph G in Figure 4.14. Since G is connected

and balanced, by Theorem 1.7, G is eulerian. A spanning out-tree T rooted at x1

in G is denoted by heavy edges. An Euler circuit constructed by Edmonds and

Johnson’s algorithm is as follows:

P = x1 a15 x2 a14 x3 a13 x4 a12 x5 a11 x2 a10 x4 a9

x5 a8 x3 a7 x4 a6 x5 a5 x1 a4 x3 a3 x4 a2 x5 a1 x1.

We, now, suppose that G is not eulerian. The digraph G in Figure 4.15 has

no postman tour since it contains no directed path from {y1, y2, y3} to {x1, x2, x3}.

Thus, we first discuss the existence of post-tours.

x3 y3

x1 y1

x2 y2

Figure 4.15: A digraph that contains no postman tour

Theorem 4.12 A digraph G contains a postman tour if and only if G

is strongly connected.

Proof: The necessity holds clearly. We suppose that G is strongly connected.

Then G must contains a directed cycle. Choose a closed directed walk C that

contains as many edges of G as possible. If C were not a postman tour, there should

be a ∈ E(G) \ E(C). Let ψG(a) = (x, y) and choose arbitrarily a vertex u in C.

There are a (u, x)-path P and a (y, u)-path Q. Then C′ = C⊕(P +a)⊕Q is a closed

directed walk in G that contains edges of G more than C does, a contradiction.
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156 Flows and Connectivity

Suppose, now, that (G,w) is a non-balanced and strongly connected

weighted digraph, P is a postman tour in G. Thus, P must traverse each edge of

G once or more. We denote by p(a) the number of times that the edge a repeatedly

occurs in P . Let G∗ denote the supergraph of G obtained by adding extra p(a)

copies of a for each edge a ∈ E(G) to G. Clearly, G∗ is balanced and the postman

tour P in G corresponds to an Euler circuit in G∗.

Thus, a basic outline of solving the Chinese postman problem can be

described as follows.

For a given strongly connected weighted digraph (G,w),

(i) construct a balanced supergraph G∗ of G such that the added edges have as

little sum of weight as possible;

(ii) finding an Euler directed circuit in G∗.

Edmonds and Johnson’s algorithm described above solves (ii). We

will introduce an algorithm for solving (i), also due to Edmonds and Johnson

(1973).
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4.6. THE CHINESE POSTMAN PROBLEM 157

For x ∈ V (G), let ρ(x) = d−G(x)− d+
G(x), and let

X = {x ∈ V (G) : ρ(x) > 0}, and Y = {y ∈ V (G) : ρ(y) < 0}.

Since G is non-balanced, by Theorem 1.1, we have X 6= ∅, Y 6= ∅ and

∑

x∈X

ρ(x) = −
∑

y∈Y

ρ(y).

Denote by ρ(G) the above value.

For example, for the digraph G in Figure 4.16 (a), we have

ρ(x1) = −1, ρ(x2) = 0, ρ(x3) = 2, ρ(x4) = 1, ρ(x5) = −2,

and so

X = {x3, x4}, Y = {x1, x5}, and ρ(G) = 3.
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Figure 4.16: (a) A weighted digraph (G, w); (b) (G∗, w∗); (c) H = G∗[E∗]

Suppose that, subject to (i), a supergraph G∗ and the collection E∗

of added edges have been chosen. Let H = G∗[E∗]. Then H consists of

ρ(G) edge-disjoint (x, y)-paths for some x ∈ and y ∈ Y . See, for example,

Figure 4.16, a supergraph G∗ of G in (a) is in (b), where E∗ consists of the curved

lines, H is in (c), which consists of three edge-disjoint directed paths:

P1 = x3 a1 x4 a2 x5 a3 x1, P2 = x3 a4 x4 a5 x5, P3 = x4 a6 x5.
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158 Flows and Connectivity

Conversely, the set of edges E∗ of any ρ(G) edge-disjoint (X,Y )-paths

with minimum weight (if some edge a is used m times, then the weight

of a must be computed m times) is a solution of (i) (since, in the present

case, G∗ is balanced).

Thus, the solution of (i) is reduced to choosing ρ edge-disjoint paths

P1, P2, · · · , Pρ from X to Y in G such that the sum of their weights w(P1)+

w(P2) + · · ·+ w(Pρ) is as little as possible, where ρ = ρ(G).

Settled Method

To the end, we construct a cost-capacity network N = (G′
x
0
y
0
,b, c), where G′

is obtained from G by adding two new vertices x0 and y0, then joining x0 to each

vertex x in X by a directed edge with cost 0 and capacity ρ(x); joining each vertex

y in Y to y0 by a directed edge with cost 0 and capacity −ρ(y); b(a) = w(a) and

c(a) =∞ for each a ∈ E(G).

Figure 4.17 (a) illustrates G′ and N = (G′
x0y0

,b, c), where G is shown in Fig-

ure 4.16 (a).

Thus, each unit of (x0, y0)-flow f0 in N denotes an (x, y)-path P0 in G, where

x ∈ X and y ∈ Y , w(P0) = b(f0). Since both E+
G′(x0) and E−

G′(y0) are (x0, y0)-cuts

in G′ and admit capacity ρ(G), but all of other (x0, y0)-cuts admit capacity ∞, it

follows that E+
G′(x0) and E−

G′(y0) are minimum (x0, y0)-cuts in G′. By Theorem 4.1,

there exists a maximum (x0, y0)-flow f with value val f = ρ(G). Thus,

finding a solution of (i) is reduced to finding a minimum-cost maximum-

flow in N ,

The latter has been solved by Klein’s algorithm described in the preceding sec-

tion.
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4.6. THE CHINESE POSTMAN PROBLEM 159

Summing up the above statement, for a given weighted digraph (G,w), we can

describe Edmonds-Johnson algorithm for solving the Chinese postman problem as

follows.

Edmonds-Johnson’s Algorithm

1. Construct G′ and N = (G′
x0y0

,b, c);

2. Find a minimum-cost maximum-flow in N ;

3. Construct a supergraph G∗ of G;

4. Find an Euler directed circuit in G∗, which is an optimal postman tour in

(G,w).

Example 4.6.2 Consider the weighted digraph (G,w) in Figure 4.16 (a). G′

and N = (G′
x
0
y
0
,b, c) are shown in Figure 4.17 (a). A minimum-cost maximum-flow

f is shown in Figure 4.17 (b), where f(a) denotes the times that the edge a appears

in E∗. A supergraph G∗ of G is shown in Figure 4.14 or Figure 4.16 (b); an optimal

tour is

P = (x1, x2, x3, x4, x5, x2, x4, x5, x3, x4, x5, x1, x3, x4, x5, x1)

with weight w(P ) = 44.
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Figure 4.17: (a) N = (G′

x
0

y
0
, b, c); (b) a minimum-cost maximum-flow in N

It is not difficult to see the algorithm is efficient since execution of its each step

can be completed in a polynomial time, the detail is left to the reader as an exercise

(the exercise 4.6.3).
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160 Flows and Connectivity

4.7 Construction of Squared Rectangles

In this section, we will introduce a famous combinatorial problem, squared rec-

tangles (squares), arising from recreational mathematics whose solution is related to

connectivity of planar graphs and theory of network flows.

A squared rectangle (square) is a rectangle (square) dissected into a finitely

many ( but at least two ) squares. A squared rectangle is called to be perfect if no

two of the squares in the dissection have the same size. The order of a squared

rectangle is the number of squares into which it is dissected. A squared rectangle

is simple if it does not contains a rectangle which is self squared. Clearly, every

squared rectangle is composed of ones that are simple.
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Figure 4.18: The perfect squaring of the 33 × 32 rectangle of order 9

Figure 4.18 shows a perfect rectangle of order 9, due to by Moroń (1925), in

which the digit associated with a square is the length of its side.

Since the beginning of the 20th century, the problem of squared rectangles

(squares) has received much attention. In 1940, with the aid of theory of graphs,

Brooks et al. developed a systematic method for constructing of a squared rectangle,

proved the lowest order of a perfect squared rectangle is 9 and gave a list of perfect

squared rectangles of order 9 through 11. In 1964, Bouwkamp et al. gave a list of

all perfect squared rectangles of order 9 through 18 by computers. The number of

perfect squared rectangles of lower order is as follows.

Order 9 10 11 12 13 14 15 16 17 18
Number 2 6 22 67 213 744 2609 9016 31427 110384
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For a long time no perfect square was known, and it was conjectured that such

squares might not exist. In 1939, Sprague was the first to publish an example of

a perfect 4205-square of order 55 obtained by a make-up of several known perfect

squared rectangles. In 1940, in this manner Brooks et al. constructed a perfect

608-square of order 26. Wilson constructed a perfect 112-square of order 25 by a

computer. In 1978, Duijvestijn found a perfect 112-square of order 21 also with the

help of a computer, shown in Figure 4.19. There are none below order 21 and only

one of order 21.
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Figure 4.19: The perfect 112-square of order 21

The number of known perfect squares of lower order is as follows.

Order 21 22 23 24 25 26 27 28 29 30 31
Number 1 ? ? ? 8 28 6 ? ? ? 4
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We now introduce the method of Brooks et al. for constructing a perfect squared

rectangle.

We first show how a simple digraph D can be associated with a given squared

rectangle R of order n. A horizontal line segment of the dissection of R is called a

horizontal dissector of R. For example, In Figure 4.20 (a), the horizontal dissec-

tors are indicated by solid line segments.
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Figure 4.20: A squared rectangle and an associated digraph

Let H1, H2, · · · , Hm be all horizontal dissectors of R. Define a simple digraph

D = (V,E) as follows. V = {x1, x2, · · · , xm} and (xi, xj) ∈ E if and only if Hi and

Hj are the upper and lower sides of some square of in R. The vertices corresponding

to the upper and lower sides of R are denoted by x and y, respectively. Clearly,

ε(D) = n. Figure 4.20 (b) shows the digraphD associated with the squared rectangle

R in Figure 4.20 (a).

Define a vector p ∈ V (D) with p(xi) equal to the height (above the lower side

of R) of the corresponding horizontal dissector, see Figure 4.20 (c). We can regard

D as a network with enough large capacity and the source x and the sink y. It is
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easily verified (the exercise 4.7.2) that the bond-vector g ∈ E (D) defined by

g(a) = p(xi)− p(xj), ∀ a = (xi, xj) ∈ E(D) (4.14)

is an (x, y)-flow. See Figure 4.20 (c), for example, the digits nearby edges determine

an (x, y)-flow g with value 69.

Let D be the digraph corresponding to a squared rectangle R, and let G be the

underlying graph of D. The graph G + xy is called the horizontal graph of R.

Brooks et al. showed that the horizontal graph of any simple squared rectangle is a

3-connected planar graph. They also showed that, conversely, if H is a 3-connected

planar graph and xy ∈ E(H), then an (x, y)-flow defined by any bond-vector in

E (H − xy) determines a squared rectangle. Thus, a possible way of searching for

perfect rectangles of order n is to

1. list all 3-connected planar graphs with n+ 1 edges, and

2. for each such graph H and each edge xy of H , determine an (x, y)-flow defined

by a bond-vector in E (H − xy).

We now introduce how to compute such an (x, y)-flow in D. Suppose g ∈ B(D)

is an (x, y)-flow with value σ. Then

∑

a∈E(D)

mx(a)g(a) = σ, (4.15)

and for any xi ∈ V (D) \ {x, y},
∑

a∈E(D)

mxi
(a)g(a) = 0. (4.16)

By Theorem 2.7, g is orthogonal to every cycle-vector of E (D), that is,

Cg
T

= 0, (4.17)

where C is a basis matrix of the cycle-space C (D) corresponding to a spanning tree

T of D and g
T

is the transpose of the vector g. Equations (4.15) – (4.17) together

give the matrix equation (
K

C

)
g

T

=

(
σ

O

)
, (4.18)

where K is the matrix obtained from the incidence matrix M of D by deleting the

row my. The equation can be solved using Cramér’s rule. Note that, since (the

exercise 2.3.1)

det

(
K

C

)
= ±ς(D),
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164 Flows and Connectivity

we can obtain an integral solution if σ = ς(D). Thus, in computing the (x, y)-flow

g, it is convenient to take valg = ς(D).
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Figure 4.21: An illustration in Example 4.7.1

We illustrate the above procedure.

Example 4.7.1 Consider the 3-connected planar graph in Figure 4.21 (a).

On deleting the edge xy and orienting each edge we obtain the digraph D of Fig-

ure 4.21 (b). The matrix

K =




0 0 0 0 0 −1 1 1 0
−1 1 0 0 0 0 0 −1 0

1 0 0 −1 0 0 −1 0 1
0 0 1 1 −1 0 0 0 0
0 0 0 0 1 1 0 0 0



.

It has been computed in Example 2.3.3 that ς(D) = detKK
T

= 66.

Choose the spanning tree T of D induced by the set of edges {a5, a6, a7, a8, a9}.

Then the basis matrix C of the cycle-space C (D) corresponding to a spanning tree

T of D is

C =




1 0 0 0 0 0 1 −1 0
0 1 0 0 0 0 −1 1 −1
0 0 1 0 1 −1 −1 0 0
0 0 0 1 1 −1 −1 0 0


 .

Suppose that the required bond-vector g ∈ E (D) is

g = (g1, g2, g3, g4, g5, g6, g7, g8, g9),

where

gi = g(ai), for i = 1, 2, · · · , 9.
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We obtain the following nine equations, as in (4.18):




0 0 0 0 0 −1 1 1 0
−1 1 0 0 0 0 0 −1 0

1 0 0 −1 0 0 −1 0 1
0 0 1 1 −1 0 0 0 0
0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 −1 0
0 1 0 0 0 0 −1 1 −1
0 0 1 0 1 −1 −1 0 0
0 0 0 1 1 −1 −1 0 0







g1
g2
g3
g4
g5
g6
g7
g8
g9




=




66
0
0
0
0
0
0
0
0




The solution to this system of equations is given by

g = (g1, g2, g3, g4, g5, g6, g7, g8, g9) = (36, 30, 14, 16, 20, 2, 18, 28, 8).

The squared rectangle based on this (x, y)-flow is just the one in Figure 4.18 with

all dimensions doubled.

Exercises: No

Thank You !

XUJM
椭圆形

XUJM
多边形




