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5.5 The Travelling Salesman Problem

The Travelling Salesman Problem

A travelling salesman, starting in his own town, has to visit each of towns where

he should go to precisely or at least once and return his home by the shortest route.

This is known as the travelling salesman problem.

Contrast with the Chinese Postman Problem

At first glance, this problem is extremely similar to the Chinese postman problem.

However, in contrast with the Chinese postman problem, no efficient algorithm for

solving the travelling salesman problem is known as far. We will here describe an

algorithm of Christofides (1976) for approximately solving the travelling salesman

problem, following a comprehensive treatment of Gibbons (1985).

Graphic Models-Two Definitions

Use a connected undirected weighted graph (G,w) to model the traffic system

that the travelling salesman has to visit. We call a closed walk that contains each

vertex of G at least once to be a salesman route. In the graph theoretic language,

the travelling salesman problem can be stated as finding a minimum

weight Hamilton cycle or a minimum weight salesman route in (G,w).

Such a Hamilton cycle, if exists, is called an optimal cycle; such a salesman route,

which exists certainly, is called an optimal route.

In general, the two definitions of the travelling salesman problem may

have two different solutions even if optimal cycles exist. For example, for the

weighted graph (G,w) in Figure 5.15, it clearly contains an optimal cycle (x, y, z, x)

of weight 5 and an optimal route (x, z, x, y, x) of weight 4. As his travelling route,

any wise salesman would choose the latter rather than the former.
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Figure 5.15: (a) An optimal cycle; (b) an optimal route
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5.5. THE TRAVELLING SALESMAN PROBLEM 203

Generally speaking, a connected weighted graph contains no optimal cy-

cle perhaps, but contains an optimal route certainly. In the following discus-

sion of the travelling salesman problem, we always adopt the second definition,

that is, to find an optimal route in a given weighted graph.

Let (G,w) be a connected undirected weighted graph. If for any two distinct

vertices x and y of G, the weighted distance w(x,y), the minimum-weight of any

xy-path in (G,w), satisfies

w(x, y) ≤ w(x, z) + w(z, y), ∀ z ∈ V (G) \ {x, y},

then we will say that the triangle inequality is satisfied in (G,w).

Weighted Complete Graphs

For an undirected graph G, we can construct a weighted complete graph (Kv,w
′)

with vertex-set as the same as G, where the weight w′(xy) of the edge xy of Kv is

the weighted distance w(x, y) between x and y in (G,w). It is clear that the triangle

inequality is satisfied in (Kv,w
′), and each edge xy of Kv corresponds to an xy-path

P in G with w(P ) = w′(xy) or an edge xy in G with w(xy) = w′(xy).

For example, see Figure 5.15, (K3,w
′) in (b) is constructed from (G,w) in (a)

by the above way.
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204 Matchings and Independent Sets

Basic Theory-Relationships

Lemma 5.12 (i) For any Hamilton cycle C in (Kv,w
′), there exists a

salesman route R in (G,w) with w(R) = w′(C).

(ii) For any optimal route R in (G,w), there exists a Hamilton cycle C

in (Kv,w
′) with w′(C) = w(R).

Proof: (i) A required salesman route R in (G,w) can be constructed as follows.

For xy ∈ E(C),

if xy ∈ E(G), then w(xy) = w′(xy), and set xy ∈ R;

if xy /∈ E(G), then G contains an xy-path P with w(P ) = w′(xy), and set

P ⊆ R.

(ii) A required Hamilton cycle in Kv can be constructed as follows. Trace R,

starting at a vertex x, and delete the vertex that has visited before in turn. Then re-

maining vertices, in the original order in R, institute a Hamilton cycle C in (Kv,w
′),

which satisfies w′(C) = w(R).

Theorem 5.12 An optimal route R in (G,w) corresponds to an optimal

cycle C in (Kv,w
′) with w′(C) = w(R), and vice versa.

Proof: Suppose that R is an optimal route in (G,w). By Lemma 5.12(ii), there

exists a Hamilton cycle C in (Kv,w
′) with w′(C) = w(R). If C is not optimal, let

C∗ be an optimal cycle in (Kv,w
′), then w′(C∗) < w′(C). Thus, by Lemma 5.12(i),

there exists a salesman route R′ in (G,w) such that w(R′) = w′(C∗). Thus,

w(R) ≤ w(R′) = w′(C∗) < w′(C) = w(R).

This contradiction implies that C is an optimal cycle in (Kv,w
′).

Conversely, suppose that C is an optimal cycle in (Kv,w
′). Then, by Lemma

5.12(i), there exists a salesman route R in (G,w) with w(R) = w′(C). If R is not

optimal, and let R′ be an optimal route in (G,w). Then w(R′) < w(R). By Lemma

5.12(ii), there is a Hamilton cycle C′ in (Kv,w
′) with w′(C′) = w(R′). Thus,

w′(C′) = w(R′) < w(R) = w′(C) ≤ w′(C′).

This contradiction implies that R be an optimal route in (G,w).
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5.5. THE TRAVELLING SALESMAN PROBLEM 205

Transform of Problem

By Theorem 5.12, finding an optimal route in (G,w) can be referred to

finding an optimal cycle in (Kv,w
′) within which the triangle inequality

is satisfied.

If the triangle inequality is satisfied in (G,w), then G is a spanning subgraph of

Kv, and w = w′|E(G).

Thus, if C is an optimal cycle in (G,w), then C is certainly a Hamilton cycle

in (Kv,w
′), and w(C) = w′(C). Conversely, suppose that C is an optimal cycle

in (Kv,w
′). If C ⊆ G, then C is an optimal cycle in (G,w); if C 6⊆ G, then, by

Theorem 5.12, there is an optimal route R in (G,w) such that w(R) = w′(C).

This shows that if the triangle inequality is satisfied in (G,w), then an

optimal cycle in (Kv,w
′) corresponds to either an optimal cycle or an

optimal route in (G,w).

However, if the triangle inequality is not satisfied in (G,w), then an

optimal cycle in (Kv,w
′) would correspond to an optimal route rather

than an optimal cycle in (G,w).

Thus, we only need to find an optimal cycle in (Kv,w
′) within which

the triangle inequality is satisfied.

Intractability: NP-completeness

An immediately obvious method is to enumerate all Hamilton cycles and then by

comparison to find the minimum. This approach, although straightforward, presents

us with an unacceptably large amount of computation. For a complete undirected

graph Kv, there are 1
2 (v − 1) ! essentially different Hamilton cycles. Unfortunately,

as far no efficient algorithm is known for finding an optimal cycle in a weighted

complete graph. In fact, it has been proved to be an NP -hard problem (see,

for example, Garey and Johnson (1979)), even if weight of every edge is restricted

to one and two, see Papadimitriou and Yannakakis (1993).
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206 Matchings and Independent Sets

Necessarity of Approximation Algorithms

For the travelling salesman problem, as indeed for any other intractable problem,

it is useful to have a polynomial-time algorithm which will produce, within known

bound, an approximation to the required result. Such algorithms are called approx-

imation algorithms. We now describe the best one in these known algorithms for

solving the travelling salesman problem, discovered by Christofides in 1976.

Christofides’ Approximation Algorithm

1. Find the weighted distance matrix W′ of (G,w) and construct (Kv,w
′).

2. Find a minimum tree T in (Kv,w
′).

3. Find the set V ′ of vertices of odd degree in T and a minimum weight perfect

matching M in G′ = Kv[V
′].

4. Find an Euler circuit C0 = (x, y, z, · · · , x) in G∗ = T ⊕M .

5. Starting at vertex x, we trace C0 and delete the vertex that has visited before

in turn. Then remaining vertices, in the original order in C0, determine a

Hamilton cycle C in Kv, which is a required approximation optimal cycle.

In the algorithm,

the Dijsktra’s (see Section 2.5) algorithm can be used in Step 1;

the Prim’s algorithm (see Section 2.4) can be used in Step 2.

In Step 3, V ′ is nonempty certainly, and |V ′| is even by Corollary 1.1. Since

G′ = Kv[V
′] is a complete graphs of even order, it must contain a perfect matching

M by Corollary 5.2.1. Edmonds and Johnson (1970) have presented an efficient

algorithm for finding minimum weight perfect in any weighted graph.

In Step 4, every vertex ofG∗ is even degree and, hence, G∗ is eulerian by Corollary

1.7.2. Using the Edmonds and Johnson’s algorithm can find an Euler circuit C0 in

G∗.

All of the above-mentioned algorithms are efficient, thus, Christofides’

approximation algorithm is efficient.
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Example 5.5.1 Consider the weighted graph (G,w) in Figure 5.16 (a), within

which the triangle inequality is satisfied. (b) shows its weighted distance ma-

trix W′; (c) shows (K6,w
′) and a minimum tree T . V ′ = {x2, x3, x4, x6} is

the set of vertices of odd degree in T , M = {x2x3, x4x6} is a minimum weight

perfect matching of K6[V
′]. G∗ = T ⊕ M , shown in (d), has an Euler circuit

C0 = (x1, x5, x2, x3, x2, x4, x6, x1). Deleting a repeated vertex x2 from C0 results

in a Hamilton cycle C = (x1, x5, x2, x3, x4, x6, x1) in (K6,w
′) with w′(C) = 12.

Because the edge x3x4 of C is not in G, C corresponds a salesman route P =

(x1, x5, x2, x3, x2, x4, x6, x1) with w(P ) = 12 which visits each vertex of G at least

once.

Notice that G contains only one Hamilton cycle C shown in (a), and so is optimal.

However, w(C) = 13 > 12 = w(P ).
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(a) (G,w) and an optimal cycle C

W′ =

0BBBBB� 0 2 2 4 1 1
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(b) the weighted distance matrix of (G, w)
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(c) (K6, w′) and a minimum tree
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(d) G∗ = T ⊕ M

Figure 5.16: An application of Christofides’ algorithm
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Performance Ratio of Approximation Algorithms

A quality measurement of an approximation algorithm is the performance ra-

tio. Let L be a value obtained by an approximation algorithm and L0 be an exact

value. We require a quality guarantee for the approximation algorithm which could,

for a minimization (resp. maximization) problem, be stated in the form:

1 ≤ L

L0
≤ α (resp. 1 ≤ L0

L
≤ α). (5.10)

We would, of course, like α to be as close to one as possible. For an approximation

algorithm, if there exists a constant α such that (5.10) holds, then the approximation

algorithm is called an α-approximation algorithm.

Theorem 5.13 Christofides’ algorithm is a 3
2 -approximation algorithm.

Proof: Suppose that the triangle inequality is satisfied in a weighted complete

graph (Kv,w), C0 and C are an Euler circuit and a Hamilton cycle, respectively,

obtained by Christofides’ approximation algorithm. Then

w(C) ≤ w(C0) = w(T ) + w(M), (5.11)

where T is a minimum spanning tree of (Kv,w), M is a minimum weight perfect

matching in G′ = Kv[V
′], and V ′ is the set of vertices of odd degree in T .

Let C∗ be an optimal cycle in (Kv,w) and T ′ be a spanning tree of Kv obtained

by deleting any one edge from C∗. Then

w(T ) ≤ w(T ′) < w(C∗) (5.12)

Let C′ be a Hamilton cycle in G′ = Kv[V
′] obtained by following C∗. Because

the triangle inequality is satisfied in (Kv,w), w(C′) ≤ w(C∗). Since C′ is an even

cycle, the set of edges of C′ can be divided into two edge-disjoint perfect matchings

M1 and M2. Without loss of generality, suppose w(M1) ≤ w(M2). Thus, M1 is a

perfect matching in G′ and

w(M) ≤ w(M1) ≤
1

2
w(C′) ≤ 1

2
w(C∗). (5.13)

By (5.11), (5.12) and (5.13), we have

w(C) < w(C∗) +
1

2
w(C∗) =

3

2
w(C∗),

that is,

L0

L
=

w(C)

w(C∗)
<

3

2

as desired.
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Remarks

No such an approximation algorithm for the travelling salesman problem is as

far found whose performance ratio is smaller than one of Christofides’ algorithm.

Although this algorithm can efficiently solve one class of travelling salesman problem,

Sahni and Gonzalez (1976) have proved that unless the NP -complete problems have

solutions in polynomial-time, there is no algorithm with a constant of performance

ratio for the optimal cycle problem in (Kv,w) within which the triangle inequality

is not satisfied.

There is a great volume of literature associated with the travelling salesman

problem. See, for example, Bellmore and Nemhauser (1968) for a survey of earlier

works and Lawler et al. (1985) for more.

Exercise 5.5.4: Solve the travelling salesman problem in the following traffic system

(the minimum weight is 8117)(cited from Mathematics Today, 1978).
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(Exercise 5.5.5)

Thank You !
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