
Chapter 6

Coloring Theory

Origin of Coloring Theory

1. Color of Maps: In the history of graph theory, the problems involving the

coloring of graphs have received considerable attention – mainly because of one

problem, the four-color problem proposed in 1852: whether four colors will be enough

to color the countries of any map so that no two countries which have a common

boundary are assigned the same color. Since more than 150 years, in the process of

attempt at the four-color problem, one has greatly developed and enriched coloring

theory of graphs.

2. Graph Theory Self: How many is the least number of independent subsets (resp.

matchings) into which the vertex-set (resp. edge-set) of the graph can be partitioned.

In view of this, the coloring theory provided in this chapter is a continuation and

extensions of theory concerning independent sets and matchings.

3. Applications: Apart from its own theoretical interest, the study of coloring of

graphs is also motivated by its increasing importance in applications of the real-

world problems. Unfortunately, as far no efficient algorithm is known for solving

these problems.

In this chapter, we will introduce basic concepts of vertex-coloring and edge-

coloring of a graph and two graphic parameters, chromatic number and edge-chromatic

number, closely related to the two types of colorings. We will present two classical

results on coloring theory of graphs, Brooks’ theorem and Vizing’s theo-

rem. We will also present the equivalence of certain problems concerning

vertex-coloring and edge-coloring with the four-color problem by Tait’s

theorem.
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6.1 Vertex Colorings

Definitions

Let G be a loopless graph. A k-vertex coloring of G is an assignment of

k colors, 1, 2, · · · , k, to the vertices of G such that adjacent vertices are assigned

different colors. In other words, a k-vertex coloring of G is a mapping

π : V (G)→ {1, 2, · · · , k}

such that for each i = 1, 2, · · · , k,

Vi = {x ∈ V (G) : π(x) = i}

is an independent set of G or an empty set. The subset Vi is called a color class of

π. We often write π = (V1, V2, · · · , Vk) for a k-vertex coloring.

The concept of coloring bears no relation to orientations of edges, loops

and parallel edges. In discussing vertex colorings, therefore, we will restrict our-

selves to simple undirected graphs. Figure 6.1 illustrates a 3-vertex coloring of C5

and a 3-vertex coloring of Petersen graph, respectively.
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Figure 6.1: Two illustrations of 3-vertex colorings

G is said to be k-vertex-colorable if it has a k-vertex coloring. The (vertex-)

chromatic number

χ(G) = min{k : G is k − vertex− colorable}.

From definition, for a loopless graph G, if χ(G) = k then each color class Vi of

a k-vertex coloring π = (V1, V2, · · · , Vk) is a nonempty independent set of G and

{V1, V2, · · · , Vk} is a partition of V (G). In other words, the chromatic number of G

may be defined alternatively as the minimum number k of independent subsets into

which V (G) can be partitioned. Each such independent set is then a color class in

the k-vertex coloring of G so defined.
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Applications

A number of real-world problems show that determining chromatic number is

of great importance. For example, suppose that a school assigns end-of-term ex-

aminations for several subjects for its students. It is imperative, of course, that

two subjects should not be scheduled at the same time if some student is to attend

both subjects. Furthermore, it is more efficient to minimize the number of periods

used for examinations. This situation can be represented by a simple undirected

graph G whose vertices represent the subjects and two vertices are linked by an

undirected edge if and only if there is at least one student who is to attend both of

the corresponding subjects. The least number of the periods required is then χ(G).

Simple Examples

For several special classes of graphs, the chromatic number is quite easy to de-

termine. For example,

χ(G) = 1⇐⇒ G ∼= Kc
v;

χ(G) = 2⇐⇒ G is a nonempty bipartite graph;

χ(G) = v ⇐⇒ G ∼= Kv, and

χ(C2n+1) = 3 for n ≥ 1.

Critical k-chromatic Graphs

A graph G is called to be k-chromatic if χ(G) = k. A graph G is said to be critical

k-chromatic if χ(G) = k and χ(H) < k for every proper subgraph H of G.

Simple Examples

Kc
v is 1-chromatic;

a nonempty bipartite graph is 2-chromatic and

an odd cycle is 3-chromatic and

Kv is v-chromatic.

G is critical 1-chromatic ⇐⇒ G ∼= K1;

G is critical 2-chromatic ⇐⇒ G ∼= K2;

G is critical 3-chromatic ⇐⇒ G ∼= K3.
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Basic Properties of Critical k-chromatic graphs

Clearly, from definition, any critical k-chromatic graph is simple certainly.

Generally, no necessary and sufficient condition for a graph to be k-chromatic

or critical k-chromatic has been known so far. However, it is clear that any k-

chromatic graph contains a critical k-chromatic subgraph.

Theorem 6.1 λ(G) ≥ k − 1 for any critical k (≥ 2)-chromatic graph G.

Proof: Suppose that G is a critical k-chromatic graph with k ≥ 2. If k = 2

then theorem holds clearly since, in this case, G ∼= K2, and so λ(G) = 1. Suppose

below k ≥ 3 and suppose to the contrary that λ(G) < k − 1. There exists a subset

S ⊂ V (G) such that |[S, S]| = λ(G) < k − 1. Since G is critical k-chromatic, both

G1 = G[S] and G2 = G[S] are (k − 1)-vertex-colorable. Suppose that

π1 = (U1, U2, · · · , Uk−1) and π2 = (W1,W2, · · · ,Wk−1)

are (k− 1)-vertex colorings of G1 and G2, respectively. Construct a bipartite simple

graph H with bipartition {X,Y } as follows. X = {x1, x2, · · · , xk−1} and Y =

{y1, y2, · · · , yk−1}, xiyj ∈ E(H)⇐⇒ EG(Ui,Wj) = ∅. It follows from |EG(S, S)| =

λ(G) < k − 1 that

ε(H) > (k − 1)2 − (k − 1) = (k − 1)(k − 2).

By Corollary 5.3 of König’s theorem, H contains a perfect matching, say

M = {xiyji
: i = 1, 2, · · · , k − 1}. Thus, Vi = Ui ∪Wji

is an independent set of

G for each i = 1, 2, · · · , k − 1. Therefore, π = (V1, V2, · · · , Vk−1) is a (k − 1)-vertex

coloring of G, which contradicts the hypothesis of χ(G) = k. Thus, λ(G) ≥ k − 1,

and theorem follows.

Corollary 6.1.1 δ(G) ≥ k − 1 for any critical k-chromatic graph G.

Proof: It is immediate from Theorem 4.4 and Theorem 6.1.

Corollary 6.1.2 χ(G) ≤ ∆(G) + 1 for any simple graph G.

Proof: Suppose that χ(G) = k and H is a critical k-chromatic subgraph of G.

By Corollary 6.1.1, δ(H) ≥ k − 1. Thus

∆(G) ≥ ∆(H) ≥ δ(H) ≥ k − 1 = χ(G)− 1,

and the corollary follows.
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Sequential Coloring Algorithm

A heuristic algorithm for ∆-vertex coloring of a graph is called sequential col-

oring.

Example 6.1.1 Consider the Grótzsch graph G, shown in Figure 6.2 We can

give a 4-vertex coloring by the sequential coloring.
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Figure 6.2: The sequential coloring of Grótzsch graph

Arbitrarily choose a vertex z of the Grótzsch graphG and then count the distance

dG(z, x) for every x ∈ V (G), indicated by the digits nearby vertices in Figure 6.2 (a).

Label each vertex of G by x1, x2, · · · , x11 such that x1, x2 ∈ NG(z) and x1x2 /∈ E(G)

(such two vertices must exist since dG(z) ≥ 3 and G contains no triangle) and

dG(z, xi) ≥ dG(z, xi+1) for each i = 3, 4, · · · , 11, and so z = x11, see Figure 6.2 (a)

or (c).

First assign the color 1 to both x1 and x2; then successively color x3, x4, · · · , x11,

each with the first available color in the list 1, 2, 3, 4. The resulting coloring, a

4-vertex coloring, is shown in (b).
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Brooks’ Theorem

We have seen χ = ∆ + 1 for any odd cycle and any complete graph. In fact, it

has been prove that odd cycles and complete graphs are only two types of graphs for

which χ = ∆+1. This is the following classical theorem, known as Brooks’ theorem,

the proof given here is due to Lovász (1975).

Theorem 6.2 (Brooks, 1941) If G is a connected simple graph and is

neither an odd cycle nor a complete graph, then χ(G) ≤ ∆(G).

Proof: Suppose that χ(G) = k and H is a critical k-chromatic subgraph of G.

If H ∼= Kk, then ∆(H) = ∆(Kk) = k − 1. Thus χ(G) = k = ∆(H) + 1 ≤ ∆(G). If

H is an odd cycle, then χ(G) = χ(H) = 3 ≤ ∆(G) since G is not an odd cycle.

Suppose now that H is neither an odd cycle nor a complete graph. Then k ≥ 4

and v(H) = p ≥ 5. Moreover, δ(H) ≥ 3 by Corollary 6.1.1. Subject to these

hypotheses, we will prove that H is ∆(H)-vertex-colorable.

Since H is not a complete graph, there are x, y, z ∈ V (H) such that xy /∈ E(H),

but xz, yz ∈ E(H). Let x = x1, y = x2 and let x3, x4, · · · , xp be an ordering of

the vertices in H − {x, y} such that dH(xi, z) ≥ dH(xi+1, z) for each i = 3, 4, · · · , p.

Then z = xp. Let h = ∆(H). Then h ≤ ∆(G).

We can now describe an h-vertex coloring of G: assign color 1 to both x1 and x2;

then successively color x3, x4, · · · , xp, each with the first available color in the list

1, 2, · · · , h. By the construction of the sequence x1, x2, · · · , xp, each vertex xi (i =

1, 2, · · · , p − 1) is adjacent to some vertex xj with j > i, and therefore to at most

h − 1 vertices xℓ with ℓ < i. It follows, when its turn comes to be colored, xi is

adjacent to at most h− 1 colors, and thus that one of the colors 1, 2, 3, · · · , h will be

available. Finally, since xp is adjacent to both x1 and x2 that have been assigned

the color 1, it is adjacent to at most h− 2 other vertices and can be assigned one of

the colors 2, 3, · · · , h, and so theorem follows.

Example 6.1.2 Consider Petersen graph G. Since it contains odd cycles, G is

not bipartite, and so χ(G) ≥ 3. On the other hand, G is neither an odd cycle nor a

complete graph, then, by Theorem 6.2, χ(G) ≤ ∆(G) = 3. Thus, Petersen graph is

a 3-chromatic graph.
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Example 6.1.3 (Roy ,1967; Gallai, 1968) Let G be a digraph with χ(G) = χ.

Then G contains a directed path of length at least χ− 1.

Proof: Let E′ be a minimal subset of E(G) such that G′ = G − E′ contains

no directed cycle, which implies that G′ + e contains a directed cycle for any e ∈ E′.

Suppose that the length of a longest directed path in G′ is k. It is sufficient to prove

χ ≤ k + 1. We can do this by constructing a (k + 1)-vertex coloring of G.

For each i = 1, 2, · · · , k + 1, let Vi be a subset of V (G): x ∈ Vi if and only if the

length of a longest directed path in G′ with origin x is i−1. Then {V1, V2, · · · , Vk+1}

is a partition of V (G). We first prove that Vi satisfies the following properties.

(i) G′ contains no directed path whose origin and terminus both are in Vi for

any i (1 ≤ i ≤ k + 1). For otherwise, consider a directed (x, y)-path P in G′ with

x, y ∈ Vi. Then G′ contains a directed path Q of length i − 1 with origin y. Since

G′ contains no directed cycle, P ∪Q is a directed path in G′ whose length is at least

i. This contradicts the choice of x ∈ Vi.

(ii) Vi is an empty set or an independent set of G for each i = 1, 2, · · · , k + 1.

By contradiction. Suppose that x and y are two distinct vertices in some Vi and are

adjacent in G. Thus there exists e ∈ E(G) such that ψ(e) = (x, y). Then e ∈ E′

since G′ contains no (x, y)-path by (i). Thus G′ + e contains a directed cycle, say

C. However, C − e is a (y, x)-path, which contradicts (i).

By (ii), π = (V1, V2, · · · , Vk+1) is a (k + 1)-vertex coloring of G, that is, χ(G) ≤

k + 1.

Example 6.1.4 (V. Chvátal and J. Komlós, 1971) Let G be a simple di-

graph with χ(G) > mn and f ∈ V (G). Then G contains either a directed path

(x0, x1, · · · , xm) such that f(x0) ≤ f(x1) ≤ · · · ≤ f(xm) or a directed path (y0, y1, · · · , yn)

such that f(y0) > f(y1) > · · · > f(yn).

Proof: Construct two spanning subgraphs G1 and G2 of G as follows. For

(x, y) ∈ E(G),

(x, y) ∈ E(G1)⇐⇒ f(x) ≤ f(y) or

(x, y) ∈ E(G2)⇐⇒ f(x) > f(y).

Clearly, G = G1 ⊕ G2. Suppose that χ(G1) ≤ m and χ(G2) ≤ n, and let

π1 = (V1, V2, · · · , Vm) and π2 = (V ′
1 , V

′
2 , · · · , V ′

n) be an m-vertex coloring of G1 and
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an n-vertex coloring of G2, respectively. Set

Vij = {x ∈ V (G) : x ∈ Vi ∩ V ′
j }, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Vi and V ′
j are either an independent set or an empty set of G, so is Vij . Thus,

π = {Vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is an mn-vertex coloring of G. This implies χ(G) ≤ mn, which contradicts the

hypothesis. Therefore, we have either χ(G1) > m or χ(G2) > n.

If χ(G1) > m, then, by Example 6.1.3, G1 contains a directed path P of length

at least χ(G) − 1 ≥ m. Let (x0, x1, · · · , xm) be a section of P of length m. By

construction of G1, we have f(x0) ≤ f(x1) ≤ · · · ≤ f(xm).

Similarly, if χ(G2) > n, then G2 contains a directed path (y0, y1, · · · , yn) such

that f(y0) > f(y1) > · · · > f(yn).

Example 6.1.5 (P. Erdös and G. Szekeres, 1935) Any sequence of mn + 1

distinct integers contains either an increasing subsequence ofm terms or a decreasing

subsequence of n terms.

Proof: Let (a1, a2, · · · , amn+1) be any sequence of mn + 1 distinct integers.

Construct a simple digraph G = (V,E) as follows. V (G) = {a1, a2, · · · , amn+1},

and (ai, aj) ∈ E(G) ⇐⇒ ai < aj. It is easy to see that G is a tournament and

χ(G) = mn + 1. Let f ∈ V (G) such that f(ai) = ai for each i = 1, 2, · · · ,mn + 1.

The conclusion follows immediately from Example 6.1.4.

Exercises: 6.1.4; 6.1.5

Thank You !
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