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Recall

Vertex Colorings:

A vertex k-coloring of G is an assignment of k colors, 1, 2, · · · , k, to the vertices

of G such that adjacent vertices are assigned different colors. In other words, a k-

vertex coloring of G is a mapping

π : V (G)→ {1, 2, · · · , k}

such that for each i = 1, 2, · · · , k,

Vi = {x ∈ V (G) : π(x) = i}

is an independent set of G or an empty set. The subset Vi is called a color class of

π. We often write π = (V1, V2, · · · , Vk) for a k-vertex coloring.

G is said to be vertex k-colorable if it has a vertex k-coloring. The (vertex-)

chromatic number

χ(G) = min{k : G is vertex k− colorable}.

A graph G is called to be k-chromatic if χ(G) = k, and to be critical k-

chromatic if χ(G) = k and χ(H) < k for every proper subgraph H of G.

Basic Results

Theorem 6.1 (Dirac, 1952) λ(G) ≥ k − 1 for any critical k (≥ 2)-

chromatic graph G.

Corollary χ(G) ≤ ∆(G) + 1 for any simple graph G.

Theorem 6.2 (Brooks, 1941) If G is a connected simple graph and is

neither an odd cycle nor a complete graph, then χ(G) ≤ ∆(G).
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220 Coloring Theory

6.2 Edge Colorings

Definitions

Let G be a loopless graph. An edge k-coloring of G is an assignment of k

colors, 1, 2, · · · , k, to the edges of G such that adjacent edges are assigned different

colors. In other words, an edge k-coloring of G is a mapping

π′ : E(G)→ {1, 2, · · · , k}

such that for each i = 1, 2, · · · , k,

Ei = {e ∈ E(G) : π′(e) = i}

is a matching of G or empty set. We often write π′ = (E1, E2, · · · , Ek) for an edge

k-coloring, where Ei is called an edge-color class of π′.

The concept of edge-coloring bears no relation to orientations of edges. There-

fore, in discussing edge colorings, we will restrict ourselves to undirected graphs.

Figure 6.3 illustrate a 3-edge coloring of odd cycle C5 and a 4-edge coloring of

Petersen graph, respectively.
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Figure 6.3: Two illustrations of edge colorings

G is said to be edge k-colorable if it has an edge k-coloring. The edge-

chromatic number

χ′(G) = min{k : G is edge k− colorable}.

Clearly,

χ′(G) ≥ ∆(G) for any loopless graph G. (6.1)

From definition, if χ′(G) = k then each edge-color class Ei of any edge k-coloring

π = (E1, E2, · · · , Ek) is a nonempty matching of G. In other words, the edge-

chromatic number k of G may be defined alternatively as the minimum number of

matchings into which E(G) may be partitioned. Each such matching is then an

edge-color class in the edge k-coloring of G so defined.
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6.2. EDGE COLORINGS 221

Applications

A number of real-world problems can be described by edge coloring of a graph.

For example, in a school, there arem teachers x1, x2, · · · , xm and n classes y1, y2, · · · , yn.

Given that the teacher xi is required to teach the class yj for pij periods, schedule

a complete timetable in the minimum possible number of periods.

Construct a bipartite graph G with bipartition {X,Y }, where X = {x1, x2, · · · , xm}

and Y = {y1, y2, · · · , yn}, and vertices xi and yj are jointed by pij undirected edges.

Now, in any one period, each teacher can teach at most one class, and each class

can be taught by at most one teacher. Thus a teaching schedule for one period

corresponds to a matching of G and, conversely, each matching of G corresponds to

a possible assignment of teachers to classes for one period. Our problem, therefore,

is to partition the edges of G into as few matchings as possible or, equivalently, to

color the edges of G with as few colors as possible. This the minimum number is

χ′(G).

For several special classes of graphs, the edge-chromatic number is quite easy to

determine. For example,

χ′(Cn) is equal to 2 if n is even, and 3 if n is odd;

χ′(Kn) is equal to n− 1 if n is even, and n if n is odd; and

for a bipartite graph H , χ′(H) = ∆(H) by Corollary 5.9.1.

Relations between Two Colorings

From definition, the problem of determining the edge-chromatic number of a

graphG can be immediately transformed into that of dealing with chromatic number

by considering its line graph L(G), namely, if G is nonempty,

χ′(G) = χ(L(G)).

This observation appears to be of little value in computing edge-chromatic num-

ber, however, since chromatic numbers are extremely difficult to evaluate in general.
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222 Coloring Theory

Vizing’s Theorem

In what must be introduced the fundamental result on edge colorings is the

following theorem, known as Vizing’s theorem in the literature, first found by Vizing

(1964).

Theorem 6.3 (Vizing’s theorem) For any loopless nonempty simple graph,

∆(G) ≤ χ′(G) ≤ ∆(G) + 1. (6.2)

Proof: Deleted for details.

Classification Problem

Vizing’s theorem, or the inequality (6.2), gives us a simple way of classifying

simple graphs into two classes.

A simple graph G is said to belong to class one if χ′(G) = ∆(G), and to class

two if χ′(G) = ∆(G) + 1. The problem of deciding which graphs belong to which

class is the so-called classification problem.

For example: a complete graph K2n and a bipartite graph belong to class one,

and an odd cycle C2n+1 and a complete graph K2n+1 belong to class two, but the

general classification problem has been proved to be NP-hard by Holyer (1981).

Figure 6.4: All connected simple graphs of order at most six of class two

It seems that graphs of class two are relatively scarce. For example, of the 143

connected simple graphs of order at most six, only eight belong to class two (see

Figure 6.4). A more general result of this kind is due to Erdös and Wilson (1977),

who proved that almost all nonempty simple graphs belong to class one, that is,

lim
v→∞

|C1(v)|
|C1(v) ∪ C2(v)| = 1,
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6.2. EDGE COLORINGS 223

where C1(v) and C2(v) are the set of all nonempty simple graphs of order v belonging

to class one and two, respectively.

No progress has been made on the more difficult problem of deciding which class

contains almost all graphs with a given maximum degree ∆, even for ∆ = 3 this is

unknown.

Classification of Planar Graphs

There exist planar graphs of class one with the maximum degree ∆ for any

∆ ≥ 2. For example, the star graph K1,∆ is such a graph. There exist also planar

graphs of class two with the maximum degree ∆ for ∆ = 2, 3, 4, 5. For example,

χ′(K3) = 3 = ∆(K3) + 1; other three planar graphs of class two are shown in

Figure 6.5.

Figure 6.5: Three planar graphs of class two

Vizing (1965) has proved that there are no planar graphs of class two with the

maximum degree ∆ ≥ 8. In his another paper, Vizing (1968) conjectured that there

is no planar graph of class two with the maximum degree ∆ = 6 or 7. Zhang (2000)

has proved that Vizing’s conjecture is true for ∆ = 7. We have not, however, known

whether or not Vizing’s conjecture is true for ∆ = 6.
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6.3 The Four-Color Problem

Four-color Problem

This problem can be traced back to 1852. While coloring a map of the counties of

England, Francis Guthrie, a London student, noticed that four colors are sometimes

needed, and then proposed a conjecture to his brother Frederick that

four colors are always sufficient to color the countries of any map so

that no two countries which have a common boundary are assigned the

same color.

But Frederick was unable to prove this and brought the problem to the attention

of Augustus De Morgan, Professor of Mathematics at University College, London,

who mentioned it on a number of occasion, giving credit to Francis Guthrie for

proposing it. However, it was not until 1878 (after De Morgan’s death) that the

problem became widely known. At a meeting of the London Mathematical Society

in that year, Arthur Cayley asked whether the problem had been solved, and shortly

afterwards wrote a note (1879) in which he attempted to explain where the difficulty

lies.

Face-colorings of Plane Graphs

Note that a map can be regarded as a plane graph with its countries as the faces

of the graph. This leads to a concept of face-colorings of a plane graph.

A face k-coloring π∗ of a plane graph G is an assignment of k colors, 1, 2, · · · , k,

to the faces of G such that no two faces which have a common boundary are assigned

the same color. We write π∗ = (F1, F2, · · · , Fk) for a face k-coloring, where Fi =

{f ∈ F (G) : π∗(f) = i}. A plane graph G is said to be face k-colorable if it has

a face k-coloring. The face-chromatic number of G

χ∗(G) = min{k : G is face k− colorable}.

For example χ∗(K4) = 4.

From definition, by making use of the geometric dual G∗ of a plane graph G, we

immediately obverse the following relationship between the face-chromatic number

of G and the vertex-chromatic number of G∗:

χ∗(G) = χ(G∗). (6.3)
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6.3. THE FOUR-COLOR PROBLEM 225

Four-Color Conjecture

By Corollary 3.3.2, all planar embeddings of a given connected planar graph

have the same number of faces. By (6.4), therefore, the four-color conjecture can be

equivalently stated as the following formula.

Four-Color Conjecture Every plane graph is face 4-colorable or every planar

graph is vertex 4-colorable.

The four-color conjecture is one of the best-known conjecture in the whole of

mathematics. The problem of deciding whether the four-color conjecture is true or

not is called the four-color problem.

Kempe’s Ideas

The first serious attempt at a proof of the four-color conjecture seems to have

been made by Kempe (1879), a barrister and keen amateur mathematician who

was Treasurer, and later President, of the London Mathematical Society. In 1879,

he published a “ proof ” of the four-color conjecture. In order to describe Kempe’s

ideas in his proof in modern terminology, we need a few definitions.

Clearly, it is sufficient to consider plane triangulations for the four-color con-

jecture. A plane graph is called a configuration if each of its bounded faces is

a triangle. The four graphs shown in Figure 6.6, for example, are configurations,

denoted by O,P,Q,R, respectively. A set F consisting of finite configurations is

called unavoidable complete if every plane triangulation must contain at least

one element of F . By Corollary 3.4.3, it is clear that the set F = {O,P,Q,R} is

an unavoidable complete set.

u

O

u

P

u

Q

u

R

Figure 6.6: An unavoidable complete set F

Suppose that there exists a counterexample to the four-color conjecture. We may

choose a counterexample with order as small as possible, such a plane triangulation

G is called a minimal graph. So χ(G) = 5 and χ(H) ≤ 4 for any plane graph H

with fewer vertices than G.
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226 Coloring Theory

Kempe attempted to prove there exists no minimal graph.

Suppose that G is a minimal graph. So G must contain at least one of configu-

rations in F = {O,P,Q,R}. If G contains either O or P , then χ(G− u) ≤ 4. Since

dG(u) ≤ 3, there is always a spare color that can be used to color u for any 4-vertex

coloring of G − u. This implies χ(G) ≤ 4, a contradiction. Therefore, G contains

neither O nor P .

Suppose that G contains the configuration Q. Let NG(u) = {u1, u2, u3, u4}, and

let π = {V1, V2, V3, V4} be a 4-vertex coloring of G−u. Without loss of generality, we

may suppose ui ∈ Vi for each i = 1, 2, 3, 4. Then either u1 and u4 are not connected

in G14 = G[V1∪V4] or u2 and u3 are not connected in G23 = G[V2∪V3]; for otherwise,

a u1u4-path in G14 and a u2u3-path in G23 have a common vertex with two different

colors, see Figure 6.7, where the digit i nearby a vertex indicates the color used in

the vertex. Without loss of generality, suppose that u1 and u4 are not connected in

G14. By interchanging the colors 1 and 4 in the component containing u1 of G14,

we can obtain a spare color 1 that can be used to color u, which results is a 4-vertex

coloring of G, a contradiction. Therefore, G can not contain the configuration Q.
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Figure 6.7: An illustration of Kempe’s argument

Using the same way, Kempe “ proved” that G can not contain the configuration

R. Thus, G contains none of elements of F , which contradicts to the fact that

F = {O,P,Q,R} is an unavoidable complete set. So Kempe regarded he had

proved the four conjecture.
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Heawood’s Counterexample

Eleven years later, in 1890, Heawood gave a counterexample, shown in Figure 6.8,

showing that Kempe’s discussion of the configuration R is incorrect.
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Figure 6.8: A counterexample to Kempe’s proof

Therefore, Kempe’s proof is invalid. Making use of Kempe’s argument, Heawood

proved the following theorem, known as the five-color theorem on planar graphs.

Theorem 6.4 χ(G) ≤ 5 for any planar graph G.
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228 Coloring Theory

Development of Kempe’s Method

For some years afterwards, the flaw in Kempe’s proof seems not to have been

recognized as serious, but as the years went by and nobody found a satisfactory

way around the difficulty, it gradually became realized that the problem was much

harder than originally supposed. Since then, many mathematicians have intended to

prove the conjecture. Although Kempe’s proof was fallacious, his several important

ideas contributed in the proof has became the foundation for almost all subsequent

attempts on the problem.

A configuration is called to be reducible if it can not be contained in any minimal

graph. Kempe only proved that the configurations O,P,Q all are reducible, but he

was unable to prove that the configuration R is reducible. Kempe’s ideas showed

that in order to prove the four-color conjecture, it suffices to find an unavoidable

complete set of reducible configurations. Since the last of the configurations in F =

{O,P,Q,R} has not been shown to be reducible, it is natural to ask whether it can

be replaced by any other configurations to form another unavoidable complete set. In

1904, Wernicke found an unavoidable complete set, and, in 1913, Birkhoff, shown in

Figure 4.9 (a) and (b), respectively. Unfortunately, they were unable to show that

the last two configurations are reducible. Since then, many mathematicians have

joined the search for reducible configuration, and thousand of such configurations

are found.

(a)

(b)

Figure 6.9: Two unavoidable complete sets

In 1969, Heesch developed the two main ingredients needed for the ultimate

proof - reducibility and discharging. It was he who conjectured that a suitable

development of this method would solve the four-color problem.
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Proofs by Computers

Using Heesch’s idea, in 1976, Appel and Haken announced a proof of the four-

color conjecture by using a computer to exhibited an unavoidable set of 1936 re-

ducible configurations.

Another similar proof of the conjecture, but simpler than Appel and Haken’s in

several respects, in 1997, was given by Robertson et al. who exhibited an unavoid-

able set of 633 reducible configurations.

Problem ???

However, their proof has not been fully accepted. There has remained a certain

amount of doubt about it validity, basically for a main reason: part of the proof

uses a computer and can not be verified by hand. Thus, the proof of the four-color

conjecture by hand is still necessary.

Thank You !
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