
1

Exercises in Chapter 1

Exercises 1.1

1.1.1 Drawing graphical presentations of the following five graphs without parallel
edges B, K,Q,D and G, respectively, where

(a) V (B) = {x1x2x3 : xi ∈ {0, 1}} and if x, y ∈ V (B), x = x1x2x3, then
(x, y) ∈ E(B) if and only if y = x2x3α, α ∈ {0, 1};

(b) V (K) = {x1x2x3 : xi ∈ {0, 1, 2}, x2 6= x1, x3 6= x2} and if x, y ∈
V (K), x = x1x2x3, then (x, y) ∈ E(K) if and only if y = x2x3α, α ∈ {0, 1, 2}
and α 6= x3;

(c) V (Q) = {x1x2x3 : xi ∈ {0, 1}}, if x, y ∈ V (Q), x = x1x2x3 and y =
y1y2y3, then xy ∈ E(Q) if and only if |x1 − y1|+ |x2 − y2|+ |x3 − y3| = 1;

(d) V (D) = {0, 1, · · · , 7}, and E(D) = {(i, j) : there exists some s ∈ {1, 2}
such that j − i ≡ s (mod 8) };

(e) V (G) = {0, 1, · · · , 7}, and E(G) = {ij : there exists some s ∈ {1, 4} such
that |j − i| ≡ s (mod 8) }.

1.1.2 Prove that for any simple graph G,

(a) ε ≤ v(v − 1) if G is directed;

(b) ε ≤ 1
2 v(v − 1) if G is undirected.

1.1.3 The symbols Dv and Gv denote the sets of all simple digraphs and all simple
undirected graphs of order v, respectively. Prove that

(a) |Dv| = 2v(v−1) ;

(b) |Gv| = 2v(v−1)/2.

1.1.4 Prove that there are 2ε different oriented graphs for any undirected graph.

1.1.5 The symbols D(v, ε) and G(v, ε) denote the sets of all simple digraph and
undirected graphs of order v and size ε, respectively. Prove that

(a) |D(v, ε)| =

(
v(v − 1)

ε

)
;

(b) |G(v, ε)| =

(
v(v − 1)/2

ε

)
.

Exercises 1.2

1.2.1 (a) Prove that if G ∼= H, then v(G) = v(H) and ε(G) = ε(H).

(b) Construct a graph to show that the converse of (a) is not true.
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1.2.2 Prove that if G is a bipartite simple graph G of order n, then

ε(G) ≤

{
1
4 n

2 if n is even;
1
4 (n2 − 1) if n is odd.

In Particular, ε(Km,n) = mn.

1.2.3 Write out definition of k-partite graph and prove that

ε(Kn(k)) = 1
2 k(k − 1)n2.

1.2.4 Prove that the following three graphs are isomorphic to Petersen graph.

(Exercise 1.2.4)

(the exercise 1.2.4)

1.2.5 The complement Gc of a simple graph G = (V,E) is the simple graph with
the vertex-set V , and (x, y) ∈ E(Gc)⇐⇒ (x, y) /∈ E(G). Prove that

(a) the complement of every tournament is a tournament;

(b) Gc ∼= Hc ⇐⇒ G ∼= H if both G and H are simple.

1.2.6 A simple graph G is self-complementary if G ∼= Gc. Prove that if G is self-
complementary, then

(a) ε(G) = 1
2 v(v − 1) if G is directed;

(b) ε(G) = 1
4 v(v − 1) and v ≡ 0, or 1 (mod 4) if G is undirected.

1.2.7 Construct that

(a) two self-complementary tournaments of order four;

(a) a self-complementary undirected graph of order five.

Exercises 1.3

1.3.1 Prove that δ ≤ 2ε/v ≤ ∆ for any undirected graph.

1.3.2 Prove that there are always two vertices with exactly the same degree for any
simple undirected graph of order at least two.

1.3.3 (a) Prove that if a digraph D is both δ+-regular and δ−-regular, then δ =
δ+ = δ−, and hence D is δ-regular.

(b) Construct a digraph that is δ+-regular but not δ−-regular.
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1.3.4 Let v ≥ 2. Prove that

(a) there exists a simple digraph D of order v such that for any two distinct
vertices x and y

d+
D(x) 6= d+

D(y) and d−D(x) 6= d−D(y);

(b) there exists a simple digraphD of order v such that the number of vertices
of odd out-degree and the number of vertices of odd in-degree both are odd;

(c) there exists a r-regular simple digraph for any integer r with r < v.

1.3.5 Prove that for any tournament D,
∑

x∈V
d+

D(x)2 =
∑

x∈V
d−D(x)2 =

∑
x∈V

(v − d−D(x))2 − v2.

1.3.6 Prove that

(a) any k (> 0)-regular bipartite graph is equally bipartite;

(b) any k-regular tournament has order v = 2k + 1.

1.3.7 Let X and Y be two subsets of V (G). Prove that

(a) d+
G(X ∩ Y ) + d+

G(X ∪ Y ) ≤ d+
G(X) + d+

G(Y ) if G is a digraph;

(b) d−G(X ∩ Y ) + d−G(X ∪ Y ) ≤ d−G(X) + d−G(Y ) if G is a digraph;

(c) dG(X ∩ Y ) + dG(X ∪ Y ) ≤ dG(X) + dG(Y ) if G is an undirected graph.

1.3.8 The symbol εmin denotes the minimum number of edges in a simple undirected
graph of order v that there is at least one edge among any three vertices.
Prove that

εmin =

{
k2 − k, if v = 2k;
k2, if v = 2k + 1.

Exercises 1.4

1.4.1 Prove that for any bipartite undirected graph G with ∆(G) = ∆,

(a) there exists a ∆-regular bipartite graph H such that G ⊆ H;

(b) there exists a ∆-regular bipartite simple graph F such that G ⊆ F if G
is simple.

1.4.2 Prove that any loopless undirected graph G contains a k-partite spanning
subgraph H such that (1− 1

k )dG(x) ≤ dH(x) for any x ∈ V (G).

1.4.3 (a) Let G be an undirected graph of order v, and n be an integer with
2 ≤ n < v − 1. Prove that if v ≥ 4 and all induced subgraphs by n vertices
in G have the same numbers of edges, then G is either complete or empty.

(b) Give an example to show that the conclusion in (a) is false for digraphs.

(c) Let G be a digraph of order v, and n be an integer with 2 ≤ n < v − 1.
Prove or disprove that if all induced subgraphs by n vertices in G are regular,
then G is either complete or empty.



4

1.4.4 Let L = L(G) be the line graph of G. Prove that

(a) L contains no parallel edges and contains a loop at vertex a if and only
if a is a loop in G;

(b) d+
L (a) = d+

G(y) and d−L (a) = d−G(x) for any a ∈ E(G) with ψG(a) = (x, y),
in particular, if G is d-regular, then so is L;

(c) if G is undirected then dL(e) = dG(x) + dG(y)− 2 for any e ∈ E(G) with
ψG(e) = xy, particularly, L is (2d− 2)-regular if G is d-regular;

(d) ε(L) =
∑

x∈V (G)

d+
G(x)d−G(x) if G is directed, and

(e) ε(L) = 1
2

∑
x∈V (G)

(dG(x))2 − ε(G) if G is undirected.

1.4.5 The join G1 ∨G2 of disjoint undirected graphs G1 and G2 is the undirected
graph obtained from G1 +G2 by joining each vertex of G1 to each vertex of
G2. Prove that

(a) Km, n
∼= Kc

m ∨K
c
n;

(b) ε(G1 ∨G2) = ε(G1) + ε(G2) + v(G1) v(G2).

1.4.6 Prove that the cartesian product G1 × G2 of two simple graphs G1 and G2

satisfies the following properties.

(a) v(G1 ×G2) = ν(G1)v(G2).

(b) For any xy ∈ V (G1 ×G2), where x ∈ V (G1) and y ∈ V (G2),

d+
G1×G2

(xy) = d+
G1

(x) + d+
G2

(y), d−G1×G2
(xy) = d−G1

(x) + d−G2
(y)

if G is directed, and

dG1×G2
(xy) = dG1

(x) + dG2
(y)

if G is undirected. In particular, G1 ×G2 is r1 + r2 regular if G1 and G2 are
r1- and r2-regular, respectively.

(c) ε(G1 ×G2) = v(G1)ε(G2) + v(G2)ε(G1).

(d) The cartesian product satisfies commutative and associative laws if we
identify isomorphic graphs, that is, G1×G2 = G2×G1 and (G1×G2)×G3 =
G1 × (G2 ×G3).

(e) Qn = K2 ×K2 × · · · ×K2 of n identical complete graph K2.

1.4.7 F.R.Ramsey [149] in 1930 proved the well-known Ramsey’s Theorem: For
given positive integers k and l, there exists a smallest integer r = r(k, l) such
that every simple undirected graph of order r contains either Kk or Kc

l as its
subgraph. The number r(k, l) is known as the Ramsey number. Prove that

(a) r(k, l) = r(l, k), r(1, k) = 1, r(2, k) = k and r(3, 3) = 6;

(b) r(k, l) ≤ r(k, l−1)+r(k−1, l), and the strict inequality holds if r(k, l−1)
and r(k − 1, l) are both even for k ≥ 3 and l ≥ 3;

(c) r(3, 4) = 9, R(3, 5) = 14, r(4, 4) = 18.

(Other Ramsey numbers known to date are r(3, 6) = 18 [102], r(3, 7) =
23 [77], r(3, 8) = 28 [126] and r(3, 9) = 36 [79].)
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1.4.8 Prove that if an undirected graph G with vertex set V contains no Kk+1 as
its subgraph, then there exists a complete k-partite graph H with vertex-set
V such that dG(x) ≤ dH(x) for every x ∈ V (G). Moreover, the equality holds
if and only if G ∼= H. (P.Erdös [54])

1.4.8 Prove that (Turán’s theorem) if an undirected graph G contains no Kk+1 as
its subgraph, then ε(G) ≤ ε(Tk,v). Moreover, the equality holds if and only
if G ∼= Tk,v. (P.Turán [161])

Exercises 1.5

1.5.1 (a) Prove that any xy-walk (resp. (x, y)-walk) necessarily contain an xy-trail
(resp. (x, y)-trail).

(b) Prove that any xy-trail (resp. (x, y)-trail) necessarily contain an xy-path
(resp. (x, y)-path).

(c) Prove that any directed closed walk can be expressed as the union of
several edge-disjoint closed trails, and construct an example to show that the
term “directed” can not be deleted.

(d) Prove that any (directed) circuit can be expressed as the union of several
edge-disjoint (directed) cycles.

1.5.2 Prove that any simple digraph contains a directed path of length at least
max{δ+, δ−}.

1.5.3 Prove that if G is a strongly connected digraph and x, y ∈ V (G), then there
exists an (x, y)-walk going through every vertex in G.

1.5.4 Prove that

(a) a graph is connected if and only if [S, S] 6= ∅ for any nonempty proper
subset S of V ;

(b) a digraph is strongly connected if and only if both (S, S) 6= ∅ and (S, S) 6=
∅ for any nonempty proper subset S of V ;

(c) a balanced digraph is strongly connected if and only if it is connected;

(d) a digraph contains a directed path from a vertex x0 to any other vertex
if and only if (S, S) 6= ∅ for any nonempty proper subset S of V containing
x0.

1.5.5 Prove that a graph G of order at least three is connected if and only if there
exist two vertices x and y in G such that G−x and G−y both are connected.

1.5.6 Let G be a simple undirected graph and ω = ω(G). Prove that

(a) ε(G) ≤ 1
2 (v − ω)(v − ω + 1);

(b) G is connected if ε(G) > 1
2 (v − 1)(v − 2);

(c) G is connected if dG(x) + dG(y) ≥ v− 1 for any two nonadjacent vertices
x and y.
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1.5.7 Let G be a simple digraph with ω strongly connected components. Prove
that

(a) ε(G) ≤ (v − ω)(v − ω + 1) + 1
2 (ω − 1)(2v − ω);

(b) ω = 1, that is, G is strongly connected if ε(G) > (v − 1)2.

1.5.8 Let G be a simple digraph of order v > 1. Prove that

(a) G is strongly connected if d+
G(x) + d−G(y) ≥ v − 1 for any two vertices x

and y satisfying (x, y) /∈ E(G);

(b) G is strongly connected if ε > v(v − 1)− (k + 1)(v − k − 1) and δ ≥ k.

1.5.9 Let G be an undirected graph. Prove that

(a) G contains no cut-edge if G contains no vertex of degree odd;

(b) G contains no cut-edge if G is k (≥ 2)-regular and bipartite;

(c) if bx denotes the number of blocks containing the vertex x in G, then the
number of all blocks in G

b(G) = ω(G) +
∑

x∈V (G)

(bx − 1).

1.5.10 Prove that

(a) any two longest paths in any connected graph must have a vertex in
common;

(b) all longest paths in the following graph have no vertex in common.

(Exercise 1.5.10)

(the exercise 1.5.10)

1.5.11 Let G be a simple undirected digraph. Prove that

(a) if G is disconnected, then Gc is connected;

(b) G and Gc both are connected if and only if G and Gc both contains no
complete bipartite graph as their spanning subgraph.

Exercises 1.6

1.6.1 Prove that dG(x, z) ≤ dG(x, y) + dG(y, z) for any three vertices x, y and z of
a strongly connected digraph G.
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1.6.2 Prove that if G is a (∆, k)-Moore digraph, then G is simple and ∆-regular,
contains no cycle of length at most k and there is only unique (x, y)-path of
length at most k for any pair (x, y) of vertices in G.

1.6.3 Let L(G) be the line graph of a graph G of order v ≥ 2. Prove that

(a) L(G) is strongly connected if and only if G is strongly connected;

(b) if G is strongly connected then L(G) ∼= G if and only if G is a directed
cycle;

(c) the above conclusions are true if G is undirected.

1.6.4 Let G be a simple undirected graph. Prove that

(a) if G is disconnected, then d(Gc) ≤ 2;

(b) if d(G) > 3, then d(Gc) < 3;

(c) if d(G) = 2 and ∆(G) = v − 2, then ε ≥ 2v − 4.

1.6.5 Prove that if G is a connected undirected graph of the maximum degree ∆
and diameter d, then

v ≤





2d+ 1, for ∆ = 2;
∆(∆− 1)d − 2

∆− 2
, for ∆ ≥ 3,

and, hence,

d ≥





⌊
1

2
v

⌋
, for ∆ = 2;

⌈
log(∆−1)

v(∆ − 2) + 2

∆

⌉
, for ∆ ≥ 3.

1.6.6 Prove that

(a) rad (G) ≤ d(G) ≤ 2 rad (G) for any undirected graph G;

(b) if Cn is an undirected cycle, then the mean distance of Cn

m(Cn) =





n+ 1

4
, if n is odd;

n2

4(n− 1)
, if n is even.

Exercises 1.7

1.7.1 Prove Corollary 1.6.2 and Corollary 1.6.3.

1.7.2 Prove that

(a) any graph with ε ≥ v contains a cycle;

(b) any connected 2-regular undirected graph is a cycle;

(c) any strongly connected 1-regular digraph is a directed cycle.
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1.7.3 Suppose that G is a simple digraph.

(a) Prove that if k = max{δ+, δ−} > 0, then G contains a directed cycle of
length at least k + 1.

(b) Prove that if ε > 1
2 v(v − 1), then G contains a directed cycle.

(c) Construct a simple digraph with ε = 1
2 v(v − 1) such that it contains no

directed cycle.

1.7.4 Suppose that T is a tournament. Prove that

(a) if k = max{δ+, δ−} > 0, then T contains a directed cycle of length at
least 2k + 1;

(b) if T is strongly connected and v ≥ 4, then there exists S ⊆ V (T ) such
that |S| ≥ 2 and T − x is strongly connected for any x ∈ S;

(c) if T contains a directed k-cycle, then T contains a directed l-cycle for each
l = 3, 4, · · · , k.

1.7.5 Prove that if G is a simple undirected graph with δ ≥ 3, then G contains even
cycle and the greatest common factor of all lengths of cycles in G is either 1
or 2.

1.7.6 Prove that if G is a connected simple undirected graph with v > 2δ, then G
contains a path of length at least 2δ.

1.7.7 Let G be a non-bipartite simple undirected graph and k be a given integer.

Prove that if k ≥ 2 and δ >

⌊
2v

2k + 1

⌋
, then G contains an odd cycle of length

at most (2k − 1).

1.7.8 Prove that a simple graph G of order v ≥ 4 contains two different cycles with
exactly one edge in common if it satisfies one of the following conditions:

(a) δ(G) ≥ 3; (b) ε(G) = 2v − 3.

1.7.9 A ∆-regular undirected graph of diameter k with the largest order is called
a maximum (∆, k)-graph. Used n(∆, k) to denote the order of a maximum
(∆, k)-graph. Exercise 1.6.5 gives an upper bound of n(∆, k) for ∆ ≥ 2.
Prove that

(a) n(∆, 1) = ∆ + 1 and a complete graph K∆+1 is, to up isomorphism, the
unique maximum (∆, 1)-graph;

(b) n(2, k) = 2k + 1 and a (2k + 1)-cycle is, to up isomorphism, the unique
maximum (2, k)-graph;

(c) n(3, 2) = 10 and the Petersen graph is a maximum (3, 2)-graph.

(In addition, Hoffman and Singleton [97] showed n(7, 2) = 50, and Elspas [53]
showed n(3, 3) = 20, n(4, 2) = 15 and n(5, 2) = 24. These are the only known
exact values of n(d, k) so far.)

1.7.10 A ∆-regular undirected graph with girth at least g having the least order
is called a (∆, g)-cage. Used f(∆, g) to denote order in a (∆, g)-cage. When
g ≥ 3, Example 1.7.2 gives a lower bound of f(∆, g).
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(a) Prove that the diameter d(G) ≤ g and the girth g(G) = g.

(b) Complete the proof of Example 1.7.2 for the case that g is even.

(c) Prove that v(G) ≤ ∆
∆−2(∆− 1)g.

(d) Prove that f(2, g) = g and a g-cycle is, to up isomorphism, the unique
(2, g)-cage.

(e) Verify that, to up isomorphism, K∆+1 is the unique (∆, 3)-cage and K∆,∆

is the unique (∆, 4)-cage.

(f) The Petersen graph is a (3, 5)-cage.

(g) Can you depict (3, 6)-, (3, 7)-, (4, 5)-cages and more?

1.7.11 Suppose that G is a digraph without a directed cycle. Prove that

(a) δ− = 0;

(b) there is an ordering x1, x2, · · · , xv of V such that every directed edge of
G with head xi has its tail in {x1, x2, · · · , xi−1} for each i = 1, 2, · · · , v.

1.7.12 The converse
←−
G of a digraph G is a digraph obtained from G by reversing

the orientation of each edge.

(a) Prove that (i) d+
←−
G

(x) = d−G(x); (ii) d←−
G

(x, y) = dG(y, x).

(b) By using part (ii) of (a), deduce from the exercise 1.7.11 (a) that if G is
a digraph without a directed cycle, then δ+ = 0.

1.7.13 Let G1, G2, · · · , Gω be all strongly connected components of a digraph G.
The condensation Ĝ of G is a simple digraph with ω vertices u1, u2, · · · , uω

and (ui, uj) ∈ E(Ĝ) if and only if EG(V (Gi), V (Gj)) 6= ∅. Prove that

(a) Ĝ contains no directed cycle;

(b) a simple digraph G contains no directed cycle if and only if G ∼= Ĝ.

1.7.14 A tournament T is called to be transmissible if, whenever (x, y) and (y, z)
are edges of T , then (x, z) is also an edge of T . A sequence (s1, s2, · · · , sn) of
nonnegative integers is called a score sequence of a tournament if there exists
a tournament T of order n whose vertices can be labelled as x1, x2, · · · , xn

such that d+
T (xi) = si for i = 1, 2, · · · , n. Prove that

(a) a tournament T is transmissible if and only if T contains no directed
cycle;

(b) if a tournament T is transmissible, then d+
T (x) 6= d+

T (y) and d−T (x) 6= d−T (y)
for any two vertices x and y of T ;

(c) A non-decreasing sequence S of n (≥ 1) nonnegative integers is a score se-
quence of a transmissible tournament of order n if and only if S = (0, 1, 2, · · · , n−
1);

(d) there exists exactly one transmissible tournament of order n;

(e) there exists exactly one tournament of order n without a directed cycle;

(f) the condensation of a tournament is transmissible;

(g) every transmissible tournament contains exactly one Hamilton directed
path;
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(h) if T is not a transmissible tournament, then T contains at least three
Hamilton directed paths;

(i) any tournament of order 2n−1 contains a transmissible tournament as its
subgraph.

Exercises 1.8

1.8.1 Prove that a digraph G is eulerian if and only if G is connected and there are
edge-disjoint directed cycles C1, C2, · · · , Cm such that G = C1⊕C2⊕· · ·⊕Cm.

1.8.2 Suppose that G is a connected digraph and satisfies the condition

∑

x∈V

|d+
G(x)− d−G(x)| = 2l, l ≥ 1.

Prove that there are l edge-disjoint directed trails T1, T2, · · · , Tl such that
G = T1 ⊕ T2 ⊕ · · · ⊕ Tl.

1.8.3 Suppose that G is a connected digraph, x and y two distinct vertices of G.
Prove that if

d+
G(x)− d−G(x) = l = d−G(y)− d+

G(y); and
d+

G(u) = d−G(u), ∀ u ∈ V \ {x, y},

then there are at least l edge-disjoint (x, y)-paths in G.

1.8.4 Suppose that G is an undirected graph. Prove that there is an oriented graph
D of G such that |d+

D(x)− d−D(x)| ≤ 1 for any x ∈ V .

1.8.5 Prove that the cartesian product of two eulerian graphs is an eulerian graph,
hence 2n-cube Q2n is an eulerian graph.

1.8.6 (a) Prove that if G is a connected digraph, |d+
G(x)−d−G(x)| ≤ 1 for any x ∈ V

and any edge of G is not contained in odd number of directed cycles, then G
is eulerian.

(b) Give an example to show that the converse of (a) is not true.

1.8.7 Prove that a connected undirected G is eulerian if and only if every edge of
G lies on an odd number of cycles. (The necessity is due to Toida [160] and
the sufficiency to McKee [127])

1.8.8 Let G be an eulerian graph and x be a vertex of G. Prove that every trail
of G with origin x (maybe closed trail) can be extended to an Euler circuit
of G if and only if G− x contains no cycle.

1.8.9 By making a little modification of the way in Example 1.8.2, prove that there
are d internally disjoint (x, y)-paths for any two distinct vertices x and y of
K(d, n), one of length at most n, d − 2 of length at most n + 1, and one of
length at most n+ 2. (Du, Hsu and Lyuu [43])
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Exercises 1.9

1.9.1 (a) Prove that every hamiltonian graph contains no cut-vertex.

(b) Prove that every hamiltonian digraph is strongly connected.

(c) Prove that every hamiltonian bipartite graph is an equally bipartite graph.

(d) Give examples to show that the converse propositions of (a), (b) and (c)
are not true.

1.9.2 (a) Prove the corollaries 1.10.1 ∼ 1.10.6 making use of Theorem 1.10.

(b) Give examples to show that the converse propositions of the corollaries
1.10.1 ∼ 1.10.6 are not true.

(c) Give examples to show that the degree-conditions in the corollaries 1.10.1
∼ 1.10.5 can be improved.

1.9.3 (a) Prove that every strongly connected simple digraph with v ≥ 3 and
ε > (v − 1)(v − 2) + 2 is hamiltonian.

(b) Construct a strongly connected and non-hamiltonian digraph with v ≥ 3
and ε = (v − 1)(v − 2) + 2.

1.9.4 (a) Prove that every connected simple undirected graph with v ≥ 3 and
ε > 1

2 (v − 1)(v − 2) + 1 is hamiltonian.

(b) Construct a connected and non-hamiltonian undirected graph with v ≥ 3
and ε = 1

2 (v − 1)(v − 2) + 1.

1.9.5 The closure c(G) of an undirected graph G is the graph obtained from G by
recursively joining pairs of nonadjacent vertices whose degree sum is at least
v until no such pair remains. Prove that c(G) is well defined and a simple
graph G is hamiltonian if and only if c(G) is hamiltonian.

(Bondy and Chvatal [17])

1.9.6 Let G be a simple undirected graph with v ≥ 3 and without a cut-vertex.
Prove, using the exercise 1.9.5, that if max{dG(x), dG(y)} ≥ 1

2 v for any two
vertices x and y with distance two in G, then G is hamiltonian. (Genghua
Fan [59])

1.9.7 Let G = (X ∪ Y,E) be a simple bipartite undirected graph with |X| =
|Y | = n (≥ 2). Prove that G is hamiltonian if it satisfies one of the following
conditions:

(a) dG(x) + dG(y) > n for any x ∈ X and y ∈ Y with xy /∈ E;

(b) δ > 1
2 n;

(c) ε > n2 − n+ 1.
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1.9.8 (a) Prove that a digraph G is Eulerian if and only if its line digraph L(G) is
hamiltonian.

(b) Prove that the de Bruijn digraph B(d, n) and the Kautz digraph K(d, n)
are hamiltonian.

(c) Construct a non-eulerian undirected graph G whose line graph L(G) is
hamiltonian.

1.9.9 Let n be an integer, G be a simple undirected graph, and F ⊆ E(G) with
|F | = n. Prove that if dG(x) + dG(y) ≥ 1

2(v + n) for any two nonadjacent
vertices x and y of G, and G[F ] is the union of several disjoint paths, then G
contains a Hamilton cycle C with F ⊆ E(C).

1.9.10 Prove that the following five problems are equivalent: To determine whether
or not (Nash-Williams [139])

(a) an undirected graph contains a Hamilton cycle;

(b) an undirected graph contains a Hamilton path;

(c) a digraph contains a Hamilton directed cycle;

(d) a digraph contains a Hamilton directed path;

(e) a bipartite graph contains a Hamilton cycle.

Exercises 1.10

1.10.1 Write out the adjacency and incidence matrices of the following graphs

x4

x6

x2

x1

x5

x3

a8

a9

a7

a4

a3

a1 a2

a5

a6

x4

x6

x2

x1

x5

x3

e8

e9

e7

e4

e3

e1 e2

e5

e6

(Exercise 1.10.1)

1.10.2 Let A be the adjacency matrix of a graph. Question that

(a) what do the row sum and column sum of A represent, respectively?

(b) what does the sum of all elements in A represent?

1.10.3 Let M be the incidence matrix of a digraph D or an undirected graph G
with the vertex-set {x1, x2, · · · , xv}. Prove that

(a) the sum of all positive (resp. negative) entries on ith row of M(D) is
d+

D(xi) (resp. d−D(xi)); the sum of all entries on ith row of M(G) is dG(xi);
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(b) the jth column sum of M(D) is 0, while the jth column sum of M(G) is
2;

(c) rank (M)≤ v − ω;

(d) M is permutation equivalent to

(
M11 O

O M22

)
⇐⇒ D (or G) is discon-

nected.

1.10.4 Let A be the adjacency matrix of a digraph D or an undirected graph G.
Prove that

(a) A is permutation similar to

(i)

(
O A12

A21 O

)
⇐⇒ D (or G) is bipartite,

(ii)

(
A11 O

O A22

)
⇐⇒ D (or G) is disconnected,

(iii)

(
A11 A12

O A22

)
⇐⇒ D is not strongly connected,

(iv) an upper triangular matrix ⇐⇒ D contains no directed cycle

of length at least 2;

(b) D is strongly connected ⇐⇒ I + A + A2 + · · ·+ Av−1 > 0;

(c) if D is a strongly connected tournament with v ≥ 5, then Ad+3 > 0,
where d = d(D) is diameter of D.

1.10.5 Let A be the adjacency matrix of an undirected graph G with the vertex-set
{x1, x2, · · · , xv}, M the incidence matrix of any oriented graph D of G, and
let B be the v× v diagonal matrix with main diagonal elements bii = dG(xi).

(a) Prove MM
T

= B−A.

(b) Prove that algebraic cofactors of all entries in MM
T

are identical.

(c) Verify (a) for the graph shown in Exercise 1.10.1 and count the algebraic

cofactor of the entry (1, 1) in MM
T

(the value is 66).

(d) Prove that B−A is semi-positive definite, and that G is connected if and
only if rank (B−A) = v − 1. (D.Raghavarao, 1977)

1.10.6 Let A be the adjacency matrix of a graph G (undirected or directed). The
eigenvalues of A is referred to as the eigenvalues of G; the characteristic
polynomial det (λI −A) is referred to as the characteristic polynomial of G.
Suppose that characteristic polynomial of G is

PG(λ) = det(λI −A) = λv + c1λ
v−1 + · · ·+ cv−1λ+ cv.

(a) Count the characteristic polynomials of the following two graphs.

(Exercise 1.10.6)
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(b) Prove

ck =
∑

H∈Hk

(−1)ω(H), k = 1, 2, · · · , v,

where Hk is the set of (1-) 2-regular subgraphs with order k of (di)graphs of
G. (M.Milic (1964), H. Sachs (1964), L.Spialter (1964))

(c) Prove that c1 = 0; −c2 = ε; and −c3 is equal to twice the number of
triangles in G.

(d) Prove that if λ1, λ2, · · · , λv are all eigenvalues of G, then

(i) λ1 + λ2 + · · ·+ λv = −c1;

(ii) the number of different directed closed walks of length k in G is

(λk
1 + λk

2 + · · · + λk
v).

(e) Let λ be the maximum eigenvalue of G. Prove that

(i) δ+ ≤ λ ≤ ∆+, and δ− ≤ λ ≤ ∆− (or δ ≤ λ ≤ ∆),

and the equalities hold if and only if G is regular;

(ii) if G is strongly connected and regular, then λ has the

multiplicity 1.

(f) Prove that a strongly connected digraph of diameter d has at leat d + 1
distinct eigenvalues.

1.10.7 (a) Let A be the adjacency matrix of a digraph G. Prove that there is a
polynomial p (x) such that J = p (A) if and only if G is strongly connected
and regular.

(b) Let Cn be a directed cycle of order n, A be the adjacency matrix of Cn.
Find a polynomial p (x) such that J = p (A).

1.10.8 (a) Let G be an undirected graph of diameter 2. Prove that if ∆ 6= 2, 3, 7
or 57, then v ≤ ∆2.

(This result is due to Hoffman and Singleton [97]. In fact, Erdös, Fajtlowicz
and Hoffman [55] have shown v ≤ ∆2 − 1.)

(b) Construct two undirected graphs with diameter 2 and the maximum
degree ∆ = 2 and 3, respectively, such that v = ∆2 + 1.

(Hoffman and Singleton [97] have constructed such a graph for ∆ = 7. How-
ever, whether there exists an undirected graph of order v = ∆2 + 1 and
maximum degree ∆ = 57 is unknown.)

Exercises 1.11

1.11.1 Let matrices

A =




0 1 0 0
1 0 1 0
0 0 0 1
1 0 0 0


 , B =




0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0


 .
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(a) Drawing associated digraphs with A and B, respectively.

(b) Prove that A is not primitive, but B is primitive and e(B) = 9.

1.11.2 Prove that

(a) every strongly connected digraph with a loop must be primitive;

(b) e(G) ≤ d(G), and hence e(G) ≤ n−1, for any strongly connected digraph
G with a loop at every vertex, where d(G) is diameter of G of order n.

1.11.3 Prove e(A) = n+ 2, where A is an n(≥ 5)-square matrix

A =




0 0 1 1 1 1 · · · 1 1 1
1 0 0 1 1 1 · · · 1 1 1
0 1 0 0 1 1 · · · 1 1 1
0 0 1 0 0 1 · · · 1 1 1
· · · · · · · · · · · ·
0 0 0 0 0 0 · · · 1 0 0
0 0 0 0 0 0 · · · 0 1 0




.

1.11.4 Let Tn be a strongly connected tournament of order n (≥ 4). Prove that

(a) e(Tn) ≥ 3;

(b) e(Tn) 6= 3 for n ≤ 6;

(c) there is T5 such that e(T5) = k for any k with 4 ≤ k ≤ 7;

(d) there is T6 such that e(T6) = k for any k with 4 ≤ k ≤ 8;

(e) if there is Tn such that e(Tn) = k, then there are Tn+1 and T ′
n+1 such

that e(Tn+1) = k and e(T ′
n+1) = k + 1 for any n and k with n ≥ 5 and

3 ≤ k ≤ n+ 2;

(f) there is Tn such that e(Tn) = k for any n and k with n ≥ 7 and 3 ≤ k ≤
n+ 2.

1.11.5 An n-square matrix A is called to be reducible if there is a permutation
matrix P such that

PAP
T

=

(
A11 O

A21 A22

)
,

where A11 is an l-square matrix, 1 ≤ l ≤ n−1; and to be irreducible otherwise.
Prove that

(a) a nonnegative n(> 1)-square matrix A is irreducible if and only if G(A)
is strongly connected;

(b) if A is irreducible nonnegative n-square matrix with at least k (≥ 1)
non-zero diagonal elements, then A is primitive and e(A) ≤ 2n− k − 1.


