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Exercises in Chapter 3

Exercises 3.1

3.1.1 Prove that

(a) a graph G is planar if and only if each of its components is planar;

(b) if G is a plane graph, then v − ε+ φ = ω + 1.

3.1.2 Let G be a graph. Prove that

(a) if G is planar, x ∈ V (G) and e ∈ E(G) then G can be embedded in the
plane in such a way that x (resp. e) is on the boundary of the exterior face
of the embedding;

(b) G is planar if and only if each block of G is planar.

3.1.3 Prove that each simple planar graph of order v ≥ 3 is a spanning subgraph
of some plane triangulation.

3.1.4 Let G be a graph of order v ≥ 4, and vi be the number of i-degree vertices
of G. Prove that

(a) if G is a plane triangulation, then

3v3 + 2v4 + v5 = v7 + 2v8 + · · ·+ (∆ − 6)v∆ + 12;

(b) if δ(G) = 5, then G contains at least 12 vertices of degree 5;

(c) if G is a tree, then

v1 = v3 + 2v4 + 3v5 + · · ·+ (∆− 2)v∆ + 2.

3.1.5 Prove that, if G is a connected plane graph and each of its faces has degree
four, then ε = 2v − 4.

3.1.6 Let G be a connected 3-regular plane graph, and φi be the number of the
faces of i-degree of G. Prove that

(a) 12 = 5φ1 + 4φ2 + 3φ3 + 2φ4 + φ5 − φ7 − 2φ8 − · · ·;

(b) G contains a face of degree fewer than 6.

3.1.7 Prove that

(a) if G is a connected planar graph with girth g ≥ 3, then

ε ≤ g(v − 2)/(g − 2);

(b) Petersen graph is non-planar.

3.1.8 (a) Prove that, if G is a simple planar graph of order v ≥ 11, then Gc is
non-planar. (W. T. Tutte (1973) showed that the assertion is true for v ≥ 9.)

(b) Construct a simple planar graph G of order 8 such that Gc is also planar.
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3.1.9 Let G be a simple planar graph. Prove that

(a) G contains at least 4 vertices of degree fewer than 6 if v ≥ 4;

(b) there exists exactly one 4-regular plane triangulation.

3.1.10 Let S = {x1, x2, · · · , xn} be a set of n (≥ 3) points in the plane such that
the distance between any two points is at least one. Prove that there are at
most 3n − 6 pairs of points at distance exactly one.

3.1.11 Prove that if G is a simple planar graph with v ≥ 5 and ∆ = v − 1 then G
contains two nonadjacent vertices of degree at most 3.

(N.Alon and Y.Caro, 1984)

3.1.12 Find a planar embedding of the following graphs in which each edge is a
straight line segment.

(Exercise 3.1.12)

3.1.13 A graph G is called a minimal non-planar graph if G is non-planar and each
subgraph of G is planar. Prove that

(a) both K5 and K3,3 are minimal non-planar;

(b) each minimal non-planar graph is a block.

3.1.14 Let G be a simple planar graph of order v. Prove that

(a)
∑

x∈V

dG(x)2 ≤ 2(v + 3)2 − 62 if v ≥ 4;

(b)
∑

x∈V

dG(x)2 < 2(v + 3)2 − 62 if δ ≥ 4.

3.1.15 If a graph G can be drawn in the 3-dimensional space R3, then G is said
to be embeddable in R3 so that its edges intersect only at their end-vertices.
Prove that

(a) all graphs are embeddable in R3;

(b) all simple graphs are embeddable in R3 so that each edge is a straight
line segment.

3.1.16 The thickness of G, ϑ(G), is the minimum number of planar graphs into
which the edges of G can be partitioned. It is clear that ϑ(G) = 0 if and only
if G is planar. Prove that

(a) if G is a simple graph of order v ≥ 3 then ϑ(G) ≥

⌈
ε

3v − 6

⌉
, and the

equality holds for all Kv’s with 3 ≤ v ≤ 8;

(b) ϑ(K9) = ϑ(K10) = 3;
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(c) ϑ(Kv) ≥

⌊
v + 7

6

⌋
.

(It has been shown that the equality holds for all Kv’s with v ≥ 3 and
v 6= 9, 10 by L. W. Beineke and F. Harary (1965), V. B. Alekeev and V. S.
Gonchakov (1976).)

3.1.17 The crossing number of G, r(G), is the minimum number of pairwise inter-
sections of its edges when G is drawn in the plane. Obviously, r(G) = 0 if
and only if G is planar. Prove that r(K5) = r(K3,3) = 1 and r(K6) = 3.

(It has been prove that

r(Km,n) =
⌊m

2

⌋⌊
m− 1

2

⌋⌊n
2

⌋⌊
n− 1

2

⌋

for min{m, n} ≤ 6 by Kleitman [?] and

r(Kv) =
1

4

⌊v
2

⌋⌊
v − 1

2

⌋⌊
v − 2

2

⌋⌊
v − 3

2

⌋

for v ≤ 10 by Guy [?]. Moreover, it has been conjectured that the two
equalities hold for any positive integers m,n and v.)

Exercises 3.2

3.2.1 Prove that (a) any subdivision of a non-planar graph is also non-planar;

(b) any subgraph of a planar graph is also planar.

3.2.2 Prove that G is planar if either ε < 9 or v < 5.

3.2.3 Prove that for any three vertices x, y, z of a simple planar graph G,

dG(x) + dG(y) + dG(z) ≤ 2v + 2.

3.2.4 Prove that if G is a minimal planar graph, then G has a basic cycles together
with one additional cycle such that this collection of cycles contains each edge
of G exactly twice.

3.2.5 Prove that if C is a cycle of a planar graph G, then G has a planar embedding
G̃ such that C partitions all faces of G̃ into two parts, IntC and Ext C, one
part is contained in Int C and the other in Ext C.

3.2.6 Prove that if G is a plane graph of odd order and contains a Hamilton cycle,
then G has even (≥ 2) faces of odd-degree.

3.2.7 Prove that

(a) if G is a loopless plane graph with a Hamilton cycle C, then

v∑

i=1

(i− 2)(φ′i − φ
′′
i ) = 0
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where φ′i and φ′′i are the numbers of faces of degree i contained in IntC and
Ext C, respectively; (È. Ja. Grinberg [?])

(b) Grinberg graph is non-planar;
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(Exercise 3.2.7 (b) Grinberg graph)

(c) the following graph contains no xy-Hamilton path;

(d) Tutte graph is non-planar.

x y

(Exercise 3.2.7 (c)) (Exercise 3.2.7 (d) Tutte graph)

Exercises 3.3

3.3.1 Let G be a plane graph and G∗ be the geometric dual of G.

(a) Prove that G∗ is a connected plane graph.

(b) Prove that G is isomorphic to the geometric dual G∗∗ of G∗ if and only
if G is connected.
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(c) Construct a plane graph G such that G is not isomorphic to the geometric
dual G∗∗ of G∗.

(d) Construct an example to show that isomorphic plane graphs may have
non-isomorphic geometric duals.

3.3.2 Prove that

(a) G has the geometric ( combinatorial ) dual if and only if every connected
component of G has the geometric ( combinatorial ) dual;

(b) G has the geometric ( combinatorial ) dual if and only if every subdivision
of G has the geometric ( combinatorial ) dual.

3.3.3 Prove that

(a) Theorem 3.2 using (3.1) and Theorem 3.7 (b);

(b) the geometric dual of any plane graph without odd-vertices is bipartite;

(c) any plane graph has even faces of odd degree.

3.3.4 Prove that if G is a connected plane graph then ς(G) = ς(G∗), where G∗ is
the geometric dual of G.

3.3.5 A plane graph is self-dual if it is isomorphic to its geometric dual.

(a) Prove that if G is self-dual plane graph then ε = 2v − 2.

(b) Find a self-dual plane graph of order v for each v ≥ 4.

(c) Prove that a wheel Wn (= K1 ∨Cn−1) is self-dual.

3.3.6 A bond B of a connected graph G is called a Hamilton cut if two connected
components of G−B both are trees. Prove that

(a) a connected plane graph G contains a Hamilton cycle if and only if the
geometric dual G∗ contains a Hamilton cut;

(b) if G contains a Hamilton cut B, then

∆∑

i=1

(i− 2)(v′i − v
′′
i ) = 0

where v′i and v′′i are the numbers of i-degree vertices of G in two connected
components G1 and G2 of G−B, respectively.

Exercises 3.4

3.4.1 Prove that there is no such convex polyhedron that has odd faces of odd
degree.

3.4.2 Prove that any convex polyhedron contains at least 6 edges.

3.4.3 Prove that there is no such convex polyhedron that has 7 edges.

3.4.4 Prove that excepting the tetrahedron there is no such convex polyhedron that
each of its vertices is adjacent to all of others.
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3.4.5 Prove that any convex polyhedron contains either a face of degree three or a
vertex of degree three.

Exercises 3.5

3.5.1 Preprocess the following graph by applying the way described in the begin-
ning of this section.

(Exercise 3.5.1)

3.5.2 Test planarity of the following graph by applying the DMP algorithm.

(Exercise 3.5.2)

3.5.3 Prove that the Petersen graph, K5 and K3,3 are non-planar by applying the
DMP algorithm.

3.5.4 (a) Describe the main operations involved in the DMP algorithm.

(b) Show that the DMP algorithm is efficient.


