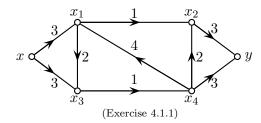
Exercises in Chapter 4

Exercises 4.1

4.1.1 Find all (x, y)-cuts and an (x, y)-flow **f** with value 2 in the following integral capacity network, and prove that **f** is maximum.



- 4.1.2 (a) Prove that the equality (4.3).
 - (b) Prove that for any (x, y)-flow **f** in a capacity network $N = (G_{xy}, \mathbf{c})$ and $\emptyset \neq S \subset V(G)$,

$$\sum_{u \in S} (\mathbf{f}^+(u) - \mathbf{f}^-(u)) = \mathbf{f}^+(S) - \mathbf{f}^-(S).$$

(c) Construct an example to show

$$\sum_{u \in S} \mathbf{f}^+(u) \neq \mathbf{f}^+(S), \qquad \sum_{u \in S} \mathbf{f}^-(u) \neq \mathbf{f}^-(S).$$

- 4.1.3 Prove that (a) the assertion in the proof of Theorem 4.1: \mathbf{f}' is an (x, y)-flow and val $\mathbf{f}' = \text{val } \mathbf{f} + \sigma$; (b) the equality (4.5).
- 4.1.4 Prove that (a) the corollary 4.1;

(b) for any nonnegative real capacity network, there must be a maximum flow.

4.1.5 Let **f** be an (x, y)-flow in N and $B = (S, \overline{S})$ an (x, y)-cut. Prove that val $\mathbf{f} = \operatorname{cap} B \Leftrightarrow \mathbf{f}(a) = \begin{cases} \mathbf{c}(a), & a \in (S, \overline{S}); \\ 0, & a \in (\overline{S}, S) \end{cases}$

 \Leftrightarrow **f** is maximum and *B* is minimum.

4.1.6 Let (S,\overline{S}) and (T,\overline{T}) be two minimum (x,y)-cuts in N. Prove that both $(S \cup T, \overline{S \cup T})$ and $(S \cap T, \overline{S \cap T})$ are minimum (x,y)-cuts in N.

Exercises 4.2

- 4.2.1 (Menger's theorem) Let G be an undirected graph with two distinct vertices x and y. Prove that
 - (a) $\eta_G(x,y) = \lambda_G(x,y);$
 - (b) $\zeta_G(x, y) = \kappa_G(x, y)$ if x and y are not adjacent in G.

4.2.2 Construct digraphs with two distinct x and y to show that the following statements are not true.

(a) If any two (x, y)-path and (y, x)-path have a common edge, then there is an edge which is contained in all of these paths.

(b) If $\eta_G(x, y) \ge k (\ge 1)$, then $\eta_G(y, x) \ge k$.

(c) If $\eta_G(x, y) \ge k (\ge 1)$ and $\eta_G(y, x) \ge k$, then there are k edge-disjoint (x, y)-paths P_1, P_2, \dots, P_k and k edge-disjoint (y, x)-paths Q_1, Q_2, \dots, Q_k which are pairwise-edge-disjoint.

4.2.3 Let G be a digraph with two distinct vertices x and y. Prove that

(a) if G is connected and each vertex of G other than x and y is balanced, and $d_G^+(x) - d_G^-(y) = k$, then $\eta_G(x, y) \ge k$;

- (b) if G is balanced, then three statements in the exercise 4.2.2 are true.
- 4.2.4 Let G be undirected graph with two distinct vertices x and y. Prove that if G has diameter two, then there are $\min\{d_G(x), d_G(y)\}$ edge-disjoint xy-paths of length at most 4. (Peyrat [?])
- 4.2.5 Let G be a k-regular graph, $k \ge 2$. Prove that if there are k internally disjoint paths between any two vertices in G, then there are two vertices x and y such that at least one is of length at least d(G) + 1 among any k internally disjoint (x, y)-paths.
- **4.2.6** Let G be a k-regular bipartite graph with bipartition $\{X, Y\}$. Prove that

(a) if G is undirected, then for any $x \in X$ there is $y \in Y$ such that $\eta_G(x, y) \ge k$; (Y.O.Hamidoune and M.Las Vergnas (1988))

(b) if G is directed, then for any $x \in X$ there is $y \in Y$ and k edge-disjoint (x, y)-paths and k edge-disjoint (y, x)-paths such that all 2k of them are pairwise edge-disjoint. (Xu [?])

Exercises 4.3

4.3.1 Prove the conclusion (b) in Theorem 4.5.

4.3.2 Let G be a graph with $\lambda(G) = \lambda > 0$, and B be a λ -cut of G.

(a) Prove that there exists $\emptyset \neq S \subset V(G)$ such that $B = [S, \overline{S}]$ and two subgraph G[S] and $G[\overline{S}]$ of G are connected if G is undirected.

(b) Construct a digraph to show that (a) is not always true.

4.3.3 Let k be an integer with $1 \le k \le v - 1$.

(a) Prove that, if G is a simple undirected graph of order v and $\delta(G) \geq \lfloor \frac{1}{2}(v+k-2) \rfloor$, then $\kappa(G) \geq k$.

(b) Find a simple undirected graph G of order v such that $\delta(G) = \left\lceil \frac{1}{2} (v + k - 3) \right\rceil$ and $\kappa(G) < k$. 4.3.4 (a) prove that, if G is a simple undirected graph and $\delta(G) \ge v - 2$, then $\kappa(G) = \delta(G)$.

(b) Find a simple undirected graph G of order $v \ge 4$ such that $\delta(G) = v - 3$ and $\kappa(G) < \delta(G)$.

4.3.5 (a) Prove that, if G is a simple undirected graph with order v and $\delta(G) \ge \lfloor \frac{v}{2} \rfloor$, then $\lambda(G) = \delta(G)$.

(b) Find a simple undirected graph G of order v such that $\delta(G) = \lfloor \frac{v}{2} \rfloor - 1$ and $\lambda(G) < \delta(G)$.

- 4.3.6 Prove that (a) if L is the line graph L(G) of G, then $\kappa(L) \ge \lambda(G)$; (b) $\kappa(B(d,n)) = d - 1$ and $\kappa(K(d,n)) = d$.
- 4.3.7 Prove that, if G is a 2-connected undirected graph with order at least 3, then there exist two adjacent vertices x and y in G such that $G \{x, y\}$ is connected.
- 4.3.8 Prove that, if G is a plane triangulation of order at least 4, then the geometric dual G^* is simple, 3-regular and 2-edge-connected.
- 4.3.9 Prove that, if G is a 3-connected undirected graph with order at least 5, then there exists $e \in E(G)$ such that $\kappa(G \cdot e) \ge 3$. (W.T.Tutte, 1961)
- 4.3.10 Prove that, if G is a k-connected graph, $\{x, x_1, x_2, \dots, x_k\}$ is any k+1 vertices of G, then there exist k internally disjoint (x, x_i) -paths $(i = 1, 2, \dots, k)$. (Such a set of paths is called an x-fan.)
- 4.3.11 Prove that, if G is a $k \ge 2$ -connected undirected graph, then any k vertices of G is contained in a cycle of G. (G.A.Dirac 1960)
- 4.3.12 Prove that the girth $g(G) \leq \left|\frac{v}{k}\right|$ for a $k \geq 1$ -connected digraph G of order v. (This result is due to Hamidoune [?], who solved a special case of a conjecture of Behzad *et al.* [?] that $g(G) \leq \left\lceil \frac{v}{k} \right\rceil$ for any k-regular digraph G of order v.)
- 4.3.13 Prove that, if G is a strongly connected simple digraph with connectivity κ and diameter d, then $v \geq \kappa(d-3) + \delta^+ + \delta^- + 2$.
- 4.3.14 Let G be an undirected graph. Prove that
 - (a) if D is a k-connected oriented graph of G, then $\lambda(G) \ge 2k$;
 - (b) if $\lambda(G) \geq 2$, then G has a strongly connected orientation;

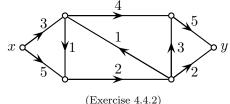
(c) if G eulerian and $\lambda(G) \geq 2k$ for some $k \geq 1$, then G has an orientation D such that $\lambda(D) \geq k$. (The conclusion (b) is due to Robbins [?]; and generalized by Nash-Williams [?] who showed that, if $\lambda(G) \geq 2k$, then G has an orientation D such that $\lambda(D) \geq k$.)

- 4.3.15 Let v, δ, κ and λ be given nonnegative integers. Prove that there exists a simple graph G of order v such that $\delta(G) = \delta, \kappa(G) = \kappa, \lambda(G) = \lambda$ if and only if one of the following condition holds:
 - (a) $0 \le \kappa \le \lambda \le \delta \le \lfloor \frac{v}{2} \rfloor$;

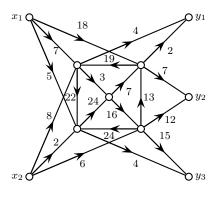
- (b) $1 \le 2\delta + 2 v \le \kappa \le \lambda \le \delta < v 1;$ (c) $\kappa = \lambda = \delta = v - 1.$
- 4.3.16 The k-diameter of a k-connected graph G, denoted by $d_k(G)$, is the maximum integer d for which for any two vertices x and y in G, there exist k internally disjoint (x, y)-paths of length at most d. Prove that
 - (a) $d_k(G) \leq v k + 1$ for any k-connected undirected graph G;
 - (b) $d_k(G) \ge d(G) + 1$ for any $k (\ge 2)$ -regular k-connected graph G;
 - (c) $d_{d-1}(B(d,n)) = n+1$ and $d_d(K(d,n)) = n+2$ by making use of Example 1.8.2 and the exercises 1.8.9.

Exercises 4.4

- 4.4.1 Prove that the $\tilde{\mathbf{f}} \in \mathscr{E}(G)$ given in the expression (4.10) is an (x, y)-flow in N with val $\tilde{\mathbf{f}} = \text{val } \mathbf{f} + \sigma_{P}(y)$.
- 4.4.2 Find a maximum (x, y)-flow and a minimum (x, y)-cut in the following network.



4.4.3 Some commodities will be shipped from their producing areas x_1 and x_2 to their markets y_1, y_2, y_3 by the following transport system. Design transport scheme by which freight volume is as large as possible.



(Exercise 4.4.3)

4.4.4 Prove that the labelling method is avail for a nonnegative rational capacity.

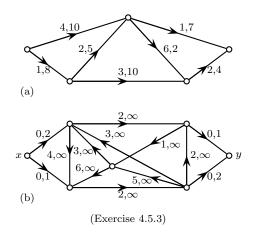
4.4.5 Let N be an integral capacity network. Prove that

(a) if the revised flow $\tilde{\mathbf{f}}$ is obtained from a shortest **f**-incrementing path in the labelling method, then a maximum flow can be obtained by execution of the algorithm at most $\frac{1}{2} v \varepsilon$ times;

(b) the labelling method is an efficient algorithm and its complexity is $O(v \varepsilon^2)$.

Exercises 4.5

- 4.5.1 Prove that the function $\tilde{\mathbf{f}} \in \mathscr{E}(G)$ defined by (4.11) is an (x, y)-flow in N, and val $\tilde{\mathbf{f}} = \text{val } \mathbf{f}$.
- 4.5.2 Prove Theorem 4.10 and prove that Klein's algorithm is efficient.
- 4.5.3 Use Klein's algorithm to find minimum-cost maximum (x, y)-flows in the following networks, respectively, where the ordered pair (b, c) of digits nearby the edge a denotes the values of the cost function **b** and the capacity function **c** on a, respectively, that is, $b = \mathbf{b}(a)$ and $c = \mathbf{c}(a)$.



- **4.5.4** Suppose that **f** is an (x, y)-flow in a network $N = (G_{xy}, \mathbf{b}, \mathbf{c})$, P an **f**-incrementing path with cost as little as possible, $\tilde{\mathbf{f}}$ the revised flow based on P.
 - (a) Prove that, if **f** is a minimum-cost maximum-flow, then so is $\tilde{\mathbf{f}}$.

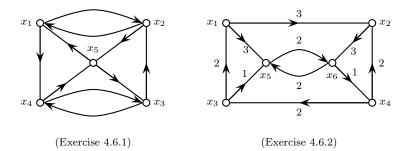
(b) Prove that finding an **f**-incrementing path with minimum cost in N is equivalent to finding a shortest xy-path in $G(\mathbf{f})$.

(c) Using (a) and (b), design an algorithm for finding a minimum-cost maximum-flow in N, and by which shows that the flow obtained by the exercise 4.5.3 is a minimum-cost maximum-flow.

(R.G.Busacker and P.J.Gowen, 1961)

Exercises 4.6

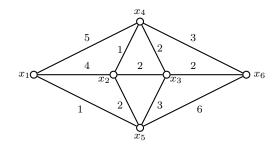
- 4.6.1 Find an Euler directed circuit in the following digraph, applying the first Edmonds-Johnson's algorithm.
- 4.6.2 Find an optimal tour of the following weighted digraph and its weight-sum.
- 4.6.3 Prove that Edmonds-Johnson's algorithm for finding an optimal postman tour in a non-eulerian weighted digraph is efficient.



- 4.6.4 Prove that a postman tour P of a weighted undirected graph (G, \mathbf{w}) is optimal if and only if it satisfies the following conditions:
 - (i) no edge in G appears in P than two times;

(ii) for any cycle C of G, the weight-sum of the edges in C that belong to multiple-edges is at most $\frac{1}{2}$ w(C). (M.G.Guan, 1960)

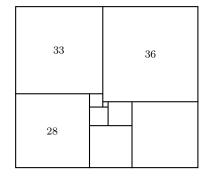
4.6.5 Find an optimal tour of the following weighted undirected graph and its weight-sum.



(Exercise 4.6.5)

Exercises 4.6

- 4.7.1 Prove that the ratio of two neighboring sides of any squared rectangle is rational. (This result is due to M. Dehn (1930), and generalized by Sprague (1940) who showed that a rectangle has a perfect squaring if and only if the ratio of two neighboring sides is rational.)
- 4.7.2 Prove that $\mathbf{g} \in \mathscr{B}(D)$ defined by (4.14) is an (x, y)-flow.
- 4.7.3 Using the way described this section, find an (x, y)-flow $\mathbf{g} \in \mathscr{B}(D)$, where the digraph D is shown in Figure ?? (b), from which construct a squared rectangle.
- 4.7.4 It has been shown that there are two essentially different squared rectangles of order 9; the one shown in Figure ??, the other indicated as follows, which is a 69×61 rectangle. Find the side length of each square.
- **4.7.5** Prove that there is no perfect squared rectangle of order less than 9.
- **4.7.6** A *perfect equilateral triangle* is an equilateral triangle dissected into a finitely many (but at least two) smaller equilateral triangles, no two of the same size. Prove that there exists no perfect equilateral triangle.



(the exercise 4.7.5)

4.7.7 A *perfect cube* is a cube dissected into a finitely many (but at least two) smaller cubes, no two of the same size. Prove that there exists no perfect cube.