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Exercises in Chapter 6

Exercises 6.1

6.1.1

6.1.2
6.1.3

6.1.4

6.1.5

6.1.6

6.1.7

6.1.8

Let G be a critical k-chromatic graph with & > 3. Prove that

(a) for any separating set S of G, the induced subgraph G[S] is not a complete
graph;

(b) G is 2-connected.
Prove that if G is a critical k-chromatic graph then v(G) # k + 1.

Prove that
(a) any k-chromatic graph contains a critical k-chromatic subgraph;

(b) any k-chromatic simple graph with minimum order must be a critical
k-chromatic graph;

(¢) x(G) <14+ max{§(H): H C G} for any graph G}

(d) x(G) < 1+1(G) for any graph G, where [(G) is the length of longest path
in G.

Prove that

(a) {g—‘ < x(G) <v+1— «a for any graph G;

v? 1 1 .
(b) RCRE <x(G) < 3 +1/2e+ 1 for any simple graph G.

Prove that if any two odd cycles in a graph G have a vertex in common then
x(G) <5.

Prove that Brooks’ theorem is equivalent to the following statement: if G is
k-critical (k > 4) and not complete, then 2¢ > v(k — 1) + 1.

(a) Prove that a generalized Brooks’ theorem: if a graph G has either A(G) =
2 and no odd component or A(G) > 3 and no component that contains Ka41,
then x(G) < A(G).

(b) Prove that for any integers k and m with 2 < k < m, there exists a graph
G such that A(G) =m and x(G) = k.

Prove that an undirected graph G is k-vertex colorable if and only if G has
an orientation D in which each directed path is of length at most k£ — 1.

Exercises 6.2

6.2.1

Prove that

(a) each of bipartite graphs, 3-regular hamiltonian graphs and even complete
graphs belongs to class one;

(b) each of odd cycles and odd complete graphs belongs to class two.
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6.2.2 Prove that a simple graph G belongs to class two if it satisfies one of the
following conditions:

(a) e > Ad/;

(b) e > A |%]; (L.W.Beineke and R.J.Wilson, 1973)
(¢) G has odd order and is nonempty, regular;
d)

(
6.2.3 Prove that x'(G) = x(L(G)) if G is nonempty.

(G is regular and contains a cut-vertex. (V.G.Vizing, 1965)

6.2.4 Prove that a complete k-partite graph K, (k) belongs to class one if nk is
even; to class two otherwise. (R. Laskar and W.Hare, 1971)

6.2.5 Prove that \/(G) < |3 A] if G is loopless. (C.E.Shannon, 1949)

6.2.6 Prove that x'(G) < 3A—2if G is simple and A > 3 by using Brooks’ theorem
(6.2) and the exercise 6.2.3.

Exercises 6.3

6.3.1 Prove that a 2-edge-connected plane graph G is 2-face-colorable if and only
if and G contains no vertex of odd degree.

6.3.2 Prove that a plane triangulation G is 3-face-colorable if and only if and G
contains no vertex of odd degree.

6.3.3 Prove that
(a) every Hamiltonian plane graph is 4-face-colorable;
(b) every Hamiltonian 3-regular graph is 3-edge-colorable.

6.3.4 Prove that every plane graph is 4-face-colorable if and only if every simple
2-edge-connected 3-regular plane graph is 4-face-colorable.

6.3.5 Suppose that the plane is divided into several regions by n (> 1) lines. Prove
that these regions can be colored with two colors so that no two regions that
share a length of common border are assigned the same color.

6.3.6 Prove that every 3-regular plane graph G is 3-face-colorable if and only if G
contains no face of odd degree.

6.3.7 Prove that if every 3-regular plane graph is 4-face-colorable, then the four-
color conjecture holds.

6.3.8 Prove that the four-color conjecture is equivalent to Tait’s conjecture: every
3-connected 3-regular simple planar graph is 3-edge-colorable.



