
Hints to Exercises in Chapter 1

Ex1.2.6 By ε(G) = ε(Gc) and ε(G) + ε(Gc) = ε(Kv).

Ex1.3.5 By Theorem 1 and d+
D(x) + d−G(x) = v − 1 for any x ∈ V (D).

Ex1.3.6 (a) By the equalities (1,3).
(b) By d+

D(x) + d−G(x) = v − 1 for any x ∈ V (D).

Ex1.4.2 A generalization of Example 1.4.2.

Ex1.4.4 By definition of the line graph.

Ex1.4.5 By definition of the Cartesian product.

Ex1.5.4 (c) By Example 1.4.1

Ex1.5.6 (a) There are two ways to prove it. The one way is to consider the number
vi of the component Gi and obtain

ε(G) =
ω∑

i=1

ε(Gi) ≤
1

2

ω∑
i=1

vi(vi − 1) =
1

2

ω∑
i=1

v2
i −

1

2
v ≤ 1

2
(v − ω)(v − ω + 1).

Another way is to consider G as a graph with edges as large as possible, and to prove
that all components of G is trivial except one.

(b) By contradiction.

Ex1.5.7 The proof of (a) is similar to Ex1.5.6(a). To prove (b), define a function

f(ω) = (v − ω)(v − ω + 1) +
1

2
(ω − 1)(2v − ω).

It is convex on the interval [2, v] for v ≥ 3.

Ex1.6.3 There are some wrongs in this exercise. Should add that the condition “
if G is strongly connected then” to (b) and delete “and Theorem 1.4” from (c).

The proof of (b). The faces that v(G) = v(L(G)) = ε(G) = ε(L(G)) and

ε =
∑

x∈V (G)

d+
G(x)d−G(x) ≥

∑
x∈V (G)

1 = ν = ε,

implies d+
G(x) = d−G(x) = 1 for any x ∈ V (G).

Ex1.6.4 Similar to Example 1.6.4.

Ex1.6.6 There is flaw in this exercise. Should add that the condition “ if G is an
undirected graph” to (a).

Ex1.7.4 First prove that v(T ) ≥ 2k+1. Without loss of generality, assume k = δ+.
By Theorem 1.1,

k · v ≤
∑

x∈V (T )

d+
T (x) =

∑
x∈V (T )

d−T (x).
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Thus,

2kv ≤
∑

x∈V (T )

[d+
T (x) + d−T (x)] =

∑
x∈V (T )

(v − 1) = v(v − 1),

which means that v(T ) ≥ 2k + 1 and the equality holds if and only if T is k-regular.
We now show that T contains a directed cycle of length ≥ 2k + 1 by induction on

v ≥ 2k + 1. If v = 2k + 1, then T is k-regular and, hence, T is balanced. By the exercise
1.5.4 (c), T is strongly connected. By Theorem 1.5, T contains a directed cycle of length
2k + 1.

Now assume that the conclusion is true if v = j ≥ 2k + 1 and let v = j + 1. If
T is strongly connected, then T contains a directed cycle of length at least 2k + 1 by
Theorem 1.5. Now assume that T is not strongly connected and let H be a strongly
connected component of T with vertex-set S and (S, S) = ∅. Then δ+(H) ≥ δ+(D), and
so max{δ+(H), δ−(H)} ≥ k. Since H is a tournament, |S| ≥ 2k + 1. By the induction
hypothesis, H contains a directed cycle of length ≥ 2k + 1.

(b) By Theorem 1.5, for any k (3 ≤ k ≤ v), every vertex in T is contained in directed
k-cycle. Let x ∈ V (T ) and C be a directed (v − 1)-cycle containing x in T . Then, there
is y ∈ V (T ) \ V (C) such that T − y is strongly connected.

On the other hand, let C ′ be a directed (v−1)-cycle containing y in T . Then there is
z ∈ V (T ) \ V (C ′) such that T − z is strongly connected. Since z 6= y, the set S = {y, z}
is required.

(c) Let C be a directed k-cycle. Then T [C] is a strongly connected tournament. By
Theorem 1.5, the assertion is true.

Ex1.7.6 Let P = (x0, x1, · · · , xk−1, xk) be a longest path in G. By contradiction.
Assume k < 2δ and let

S = {xi : x0xi+1 ∈ E(G)}, T = {xi : xkxi ∈ E(G)}.

Then, |S| = dG(x0) ≥ δ, |T | = dG(xk) ≥ δ and xk /∈ S ∪ T .
First prove that G contains a cycle of length k + 1. Since xk /∈ S ∪ T , then |S ∪ T | ≤

k < 2δ, and so S∩T 6= ∅. Let xi ∈ S∩T . Then C = (x0, x1 · · · , xi, xk, xk−1, · · · , xi+1, x0)
is a cycle of length k + 1 in G.

Since G is connected, v > 2δ ≥ k +1, thus there are a vertex x ∈ V (G) \V (C) and a
vertex in C, say xj (j 6= 0, k) such that xxj ∈ E(G). However, C−xixi+1 +xxj contains
a longer path than P , a contradiction. Therefore, k ≥ 2δ.

Ex1.7.7 Let C be a shortest odd cycle of length n in G. Assume n ≥ 5 and
n ≥ 2k + 1. Let S = V (C). From the proof of Example 1.7.5, |(S, S)| ≤ 2(v− n). Thus,

δ(G) n ≤
∑
x∈S

dG(x) ≤ 2ε(G[S]) + 2(v − n) = 2n + 2(v − n) = 2v,

from which a contradiction is deduced as follows: δ(G) ≤
⌊

2v
2k+1

⌋
.

Ex1.9.7 (a) By contradiction. Let G be maximal counterexample, that is, G is a
graph that satisfies the given conditions but G+xy contains a Hamilton cycle for any two
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nonadjacent vertices x ∈ X, y ∈ Y , where X = {x1, x2, · · · , xn}, Y = {y1, y2, · · · , yn}.
Let C = (x1, y1, x2, y2, · · · , xn, yn, x1) be a Hamilton cycle in G + x1y1 and let

I = {i : 2 ≤ i ≤ n, x1yi ∈ E(G)}.

Then I = NG(x1) and xi−1y1 /∈ E(G) for any i ∈ I. Thus, NG(y1) ⊆ X \ {xi−1 : i ∈ I},
and so dG(y1) ≤ n− |I| = n− dG(x1), from which a contradiction is deduced as follows.
dG(x1) + dG(y1) ≤ n.

(b) From (a), it is sufficient to prove that dG(x)+dG(y) > n for any two nonadjacent
vertices x ∈ X and y ∈ Y . By contradiction. Assume that there exist two nonadjacent
vertices x ∈ X and y ∈ Y such that dG(x) + dG(y) ≤ n. Since G is bipartite and
|X| = |Y | = n, G can be viewed as a graph obtained from Kn,n by deleting h edges. On
the one hand,

h = n2 − ε(G) < n2 − (n2 − n + 1) = n− 1.

On the other hand, for x ∈ X and y ∈ Y ,

h ≥ [n− dG(x)] + [n− dG(y)]− 1 = 2n− [dG(x) + dG(y)]− 1 ≥ n− 1.

This is a contradiction.

Ex1.10.5 (d) Let A∗ = B−A and X = (x1, x2, · · · , xv} be any vector. Then

X
T

A∗X =
∑

ij∈E(G)

(xi − xj)
2 ≥ 0,

the equality holds ⇐⇒ X
T

= (1, 1, · · · , 1). Thus, A∗ semi-positive.
(=⇒) By induction on v ≥ 1. If v = 1, A = O,A∗ = O, and so, rank A∗ = 0 = 1−1.

Assume the assertion holds for any connected graph of order less than < v, and let G
be a simple undirected graph of order v, di = dG(xi) (i = 1, 2, · · · , v). Choose a non-
cut-vertex of G (there are at least two such vertices by Example 1.5.3). Without loss
of generality, let x1 be such a vertex and NG(x1) = {x2, x3, · · · , xd + 1}. There are two
cases.

Case 1 d1 < v − 1. In this case, A and the adjacency matrix of G − x1 can be
expressed as

A =

 0 J1,d1 O1,v−d1−1

Jd1,1 A11 A12

Ov−d1−1,1 A21 A22

 , Av−1 =

(
A11 A12

A21 A22

)
.

Define two diagonal matrices as follows.

P1 = diag (d2 − 1, · · · , dd1+1 − 1)Id1 P2 = diag (dd1+2, · · · , dv)Iv−d1−1.

By the induction hypothesis,

A∗
v−1 =

(
P1 −A11 −A12

−A21 P2 −A22

)
3



has rank v − 2. Since A∗ is semi-positive, P1 − A22 is positive and Q = P2 − A11 −
A12P

−1
1 A21 is semi-positive. Thus, Q + Id1 is invertible. On the other hand, let

S =

(
diag (d2, · · · , dd1+1)Id1 −A11 −A12

−A21 diag (dd1+2, · · · , dv)Iv−d1−1 −A22

)
,

the th-(v − 1) sub-matrix of A∗
v, its determinant detS = detP1 · det(Q + Id1) 6= 0, and

A∗
v · Jv,1 = Ov,1, that is, rank (A∗) = v − 1.
Case 2 d1 = v − 1. In this case,

A =

(
0 J1,v−1

Jv−1,1 Av−1

)
,

where Av−1 is the adjacency matrix of G − x1. diag(d2 − 1, · · · , dv−1) −Av−1 is semi-
positive and diag(d2, · · · , dv)−Av−1 is the th-(v−1) sub-matrix of A∗, which is invertible.
Since A∗ · Jv−1 = Ov,1, rank (A∗) = v − 1.

(⇐=) Assume rank (A∗) = v − 1 and G is disconnected. Let G1, G2, · · · , Gω be
connected components of G with orders v1, v2, · · · , vω, respectively. Then

A∗ = diag (A∗
v1

,A∗
v2

, · · · ,A∗
vω

),

where A∗
vi

is the Laplace matrix of Gi (i = 1, 2, · · · , ω). Since Gi is connected, thus,

rank (A∗
vi
) = vi − 1, i = 1, 2, · · · , ω.

It follows that

v − 1 =
ω∑

i=1

(vi − 1) = v − ω,

from which, ω = 1, that is, G is connected.
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Hints to Exercises in Chapter 2

Ex2.1.2 The assertion (c) can be proved structurally.

Ex2.1.3 v1 = v3 +2v4 + · · ·+(∆− 2)v∆ +2 = 2+
∆∑

i=3

(i− 2)vi = 2+
∑
x∈U

(dG(x)− 2).

Ex2.1.4 There are some wrongs in this exercise. It should be corrected as “ Prove
that if {X, Y } is a bipartition of T with |X| = |Y | = k, then there are at least (k + 1)
vertices of degree one in X. ” By induction on k ≥ 0.

Ex2.1.15 Since any two spanning trees of X have the same number of edges, the
symmetric difference of their edge sets is even, say 2m. To prove that T (X) is connected,
it is sufficient to show that any two spanning trees of X, as two vertices, are connected
in T (X). We can do this by induction on m ≥ 1. If m = 1, then, by the definition of
T (X), the two spanning trees are adjacent in T (X), and so are connected. Assume any
two spanning trees of X are connected in T (X) if the symmetric difference of their edge
sets is less than 2m.

Let T and T ′ be two spanning trees in X that the symmetric difference of their
edge sets is 2m with m ≥ 2. let E1 = E(T ) \ E(T ′) and E2 = E(T ′) \ E(T ). Then
|E1| = |E2| = m. Since T ′ is a spanning tree of X, for an edge e ∈ E1, T ′ + e contains
only cycle, denoted by Ce. Since T ′ contains no cycle, there exists exactly one edge
e′ ∈ E2 ∩ E(Ce) such that T ′′ = T ′ − e′ + e is a spanning three of X. It is clear that
the symmetric difference of E(T ′) and E(T ′′) is 2, and thus, they are adjacent in T (X).
Also, the symmetric difference of E(T ) and E(T ′′) is 2(m−1), and thus, by the induction
hypothesis, they are connected in T (X). It follows that T and T ′ are connected in T (X).

Ex2.3.2 See Example 1.10.2.

Ex2.3.3 The proofs of (a) and (b) are similar to Example 2.3.2. As (c), if G
is not bipartite, then G contains an odd cycle. Let C be a shortest odd cycle. The
determinant of the sub-matrix of M responding to the vertices and edges in C is equal
to two, a contradiction. Conversely, by induction on k ≥ 1, which is order of a sub-matrix
of M . In the induction step, assume P`+1 is a sub-matrix of M . If there is exactly one
non-zero entry in some column, then it is easy to prove det P`+1 = 0,±1. Assume there
are exactly two non-zero entries in P`+1 below. It is clear that det P`+1 = 0 since the
sum of any column is two.

Ex2.3.6 For each vertex y 6= x, select one in-coming edge of y. Let T be the
induced subgraph by these edges. Then T is an in-tree rooted at x, for T has v − 1
edges, contains no directed cycles, d−T (x) = 0, d−T (y) = 1 for any y 6= x (see Exercise
2.1.1). Conversely, every in-tree rooted at x occurs in this way. Hence the number of
such in-trees rooted at x is ςx(G) =

∏
y∈V \{x}

d−G(y).
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Hints to Exercises in Chapter 3

Ex3.1.4 Using the following three equalities:

3v − ε = 6,
v = v3 + v4 + v5 + v6 + v7 + v8 + · · ·+ v∆,
2ε = 3v3 + 4v4 + 5v5 + 6v6 + 7v7 + 8v8 + · · ·+ ∆v∆.

Ex3.1.6 Using the following three equalities:

3v = φ1 + 2φ2 + 3φ3 + 4φ4 + 5φ5 + 6φ6 + 7φ7 + 8φ8 + · · · ,
2ε = φ1 + 2φ2 + 3φ3 + 4φ4 + 5φ5 + 6φ6 + 7φ7 + 8φ8 + · · · ,
φ = φ1 + φ2 + φ3 + φ4 + φ5 + φ6 + φ7 + φ8 + · · · ,

and Euler’s formula v − ε + φ = 2.

Ex3.1.7 Without loss of generality, assume that G is a plane graph. By Theorem
3.2 and Euler’s formula,

2ε(G) =
∑

f∈F (G)

dG(f) ≥ gφ = g(2− v + ε) = −g(v − 2) + gε.

Ex3.1.8 From ε ≤ 3v − 6 and ε(G) + ε(Gc) = 1
2
v(v − 1), we have

ε(Gc) ≥ 1

2
v(v − 1)− 3(v − 3) =

1

2
(v2 − 7v + 12) > 3v − 6 for v ≥ 11.

Ex3.1.14 Without loss of generality, suppose that G is maximal and that {d1, d2,
· · · , dv} is the degree-sequence of G. Then

v∑
i=1

di = 2ε = 6n− 12.

Let

f(d1, d2, · · · , dv) =
v∑

i=1

d2
i .

(a) For 3 ≤ di ≤ v − 1 and v ≥ 4,

f(d1, d2, · · · , dv) ≤ f(3, 3, 4, 4, · · · , 4, v − 1, v − 1)
= 18 + 16(v − 4) + 2(v − 1)2 = 2(v + 3)2 − 62.

(b) Note that δ ≥ 4 implies v > 5. For 4 ≤ di ≤ v − 1 and v > 5,

f(d1, d2, · · · , dv) ≤ f(4, 4, · · · , 4, v − 2, v − 2) = 16(v − 2) + 2(v − 2)2

= 2(v + 3)2 − 4v − 42 < 2(v + 3)2 − 62.

Ex3.2.3 Let V (G) = {x, y, z, x4, x5, · · · , xv}. By Kuratowski’s theorem, G contains
no K3,3. There exists at most two xi, which all are adjacent to x, y, z. The number of
edges between {x, y, z} and V \ {x, y, z} is at most 2 · 3 + (n− 5) · 2 = 2n− 4. It follows
that dG(x) + dG(y) + dG(z) ≤ 6 + (2n− 4) = 2n + 2.
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Hints to Exercises in Chapter 4

Ex4.1.2 (b) For any two distinct vertices u, v ∈ S, if a = (u, v) ∈ E(G), then f+(u)
contains f(a) and f−(v) contains f(a), that is, f(a) does not contribute to the sum. In
other words, any edge a such that f(a) contributes to the sum has exactly one end-vertex
in S.

Ex4.1.4 See the proof of Theorem 4.1.

Ex4.2.3 (a) Note that the condition “d+
G(x) − d−G(y) = k” should be replaced by

“d+
G(x)− d−G(x) = k”.
One of the ways is to use Exercise 1.8.3. directly. The other way is use Menger’s

theorem 4.2. In fact, let (S, S) be a λ-cut of G. Then ηG(x, y) = λG(x, y) = |(S, S| ≥
|(S, S)| − |(S, S)| =

∑
u∈S

(d+
G(u)− d−G(u)) = d+

G(x)− d−G(x) = k.

Ex4.2.4 The assertion can be proved structurally. Let k = dG(x) ≤ dG(y), A =
NG(x) ∩ NG(y) = {u1, u2, · · · , uh}, X = NG(x) − A − {y} = {x1, x2, · · · , xa}, X =
NG(y)−A− {x} = {y1, y2, · · · , yb}. Then a ≤ b and k = h + a + δxy, where δxy is equal
to one if x and y adjacent, equal to zero otherwise.

For each ui ∈ A, Pi = (x, ui, y) is an xy-path of length two. Pδxy = xy if xy exists.
Since d(G) ≤ 2, there are a edge disjoint xjyj-paths Qj (j = 1, 2, · · · , a) of length at

most two. Let Ph+j = xxj + Qj + yjy for j = 1, 2, · · · , a. Thus, P1, P2, · · · , Ph+a+δxy are
k edge disjoint xy-paths of length at most 4.

Ex4.2.5 Note that the condition “k ≥ 2” should be added to the exercise.
Let x and y be two vertices in G such that dG(x, y) = d(G). Since G is k-regular and

k ≥ 2, there exists z ∈ N−
G (y) different from x. Consider k (x, z)-paths P1, P2, · · · , Pk,

one of them, say Pi, must use the vertex y, whose length ε(Pi) ≥ dG(x, y)+1 = d(G)+1.

Ex4.3.3 Reduce it to Example 4.3.2.

Ex4.3.10 Apply Menger’s theorem (4.3) to the graph H obtained from by adding
a new vertex y and k edges from xi to y for each i = 1, 2, · · · , k.

Ex4.3.11 Without loss of generality, assume k ≥ 3. Let S be a set of k vertices
and C be a cycle that contain vertices in S as large as possible. Let m = |V (C) ∩ S|.
Then m ≥ 2. Want to prove m = k by contradiction. Let x be a vertex in S not in
C. Label the vertices in S ∩ V (C) as s1, s2, · · · , sm in some given direction of C. By
Exercise 4.3.10, there are m internally disjoint (x, si)-paths Pi (i = 1, 2, · · · , m) in G. If
m < k, then s1, s2, · · · , sm partitions C into m sections, of which at least one contains
no vertex in S except end-vertices. Assume (s1, s2)-section C ′ contains no vertex in S.
Then, C ′ ∪P1 ∪P2 forms a cycle in G, which contains vertices in S is more than C does
since x /∈ V (C), a contradiction.

Ex4.3.12 Let x ∈ V (G) and let B = {y1, y2, · · · , yk} ⊆ N−
G (x). By exercise 4.3.10,

there are k internally disjoint (x, yi)-paths Pi (i = 1, 2, · · · , k) in G. Thus, v(Pi) ≥ g =
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g(G) for each i = 1, 2, · · · , k. It follows that

v = v(G) ≥ k(g − 1) + 1 =⇒ g(G) = g ≤
⌊

v + k − 1

k

⌋
=

⌈v

k

⌉
.

Ex4.3.13 Assume κ(G) = k ≥ 1 and d(G) ≥ 3. Let x, y ∈ V (G) such that
dG(x, y) = d(G). By Menger’s theorem, ζG(x, y) ≥ κ(G) = k ≥ 1 and ζG(y, x) ≥ κ(G) =
k ≥ 1. Let P1, P2, · · · , Pk be k internally disjoint (x, y)-paths in G. Then

d+
G(x)− k ≥ δ+(G)− k, d−G(y)− k ≥ δ−(G)− k.

Since d(G) ≥ 3, N+
G (x) ∩N−

G (y) = ∅. It follows that

v ≥
k∑

i=1

(v(Pi)− 1) + 2 + δ+(G)− k + δ−(G)− k

≥ k(d− 1) + 2 + δ+ + δ− − 2k = k(d− 3) + δ+ + δ− + 2.
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Hints to Exercises in Chapter 5

Ex5.1.1 Without loss of generality, assume G is connected. Clearly, α′(G) ≤ b1
2
c.

We now show α′(G) ≤ b 1
1+∆

c by induction on ε ≥ 1. Assume ε(G) = k + 1 ≥ 2. If G
contains a cycle C, then choose an edge e in C. By the induction hypothesis,

α′(G) ≥ α′(G− e) ≥ v

∆(G− e)
≥ v

1 + ∆(G)
.

If G contains no cycle, then G is a tree. If G is a star, then the conclusion holds clearly.
Assume G is not a star below. Thus, there is an edge e in C. Let G1 and G2 be two
components of G− e, and let vi = v(Gi) for each i = 1, 2. By the induction hypothesis,

α′(G) ≥ α′(G1) + α′(G2) ≥
v1

∆(G1)
+

v2

∆(G2)
≥ v1 + v2

1 + ∆(G)
=

v

1 + ∆(G)
.

Ex5.1.3 Note that this exercise has an erratum, that is, 2
3
v should be replaced by

2
3
ε.

Let G be a plane triangulation of order v (≥ 4). By the exercise 4.3.8, G∗ is a 3-regular
2-edge-connected simple graph. By Corollary 5.2.1, G∗ has a perfect matching M∗. G
is connected since G a plane triangulation. Thus, by the exercise 3.3.1, (G∗)∗ ∼= G, and
so (G∗ −M∗)∗ is isomorphic to some subgraph of G. By Euler’s formula,

ε(G∗ −M∗) = ε(G∗)− 1

2
v∗ =

3

2
v∗ − 1

2
v∗ = v∗ = φ = 2 + ε− v.

Since G is a plane triangulation, by Theorem 3.4, ε = 3v − 6, that is, v = 1
3
ε + 2. It

follows that

ε(G∗ −M∗) = 2 + ε− v = 2 + ε− 1

3
ε− 2 =

2

3
ε.

Note that (G∗−M∗)∗ is equivalent to a graph obtained from G removing some common
edges in two triangles. Thus, G∗ − M∗ contains only cycles of length four, hence is
bipartite. Thus, G contains a bipartite subgraph with 2

3
ε edges.

Ex5.1.6 By Tutte’s theorem, o(G − x) ≤ 1 for any x ∈ V (G). If there is a vertex
x such that o(G− x) = 0, then G has odd order, a contradiction.

Conversely, by induction on v ≥ 2. Let G be a tree of order v ≥ 3. Choose a
vertex x of degree one in G. Since o(G − x) = 1, v is even. Let y be the unique
neighbor of x. Since o(G − y) = 1, {x} is the only odd component of G − y, and other
components G1, G2, · · · , Gp are even. Then o(Gi − z) = 1 for any z ∈ V (Gi) and each
i = 1, 2, · · · , p (Why?). By the induction hypothesis, Gi has perfect matching Mi for
each i = 1, 2, · · · , p. Then M = Mi ∪M2 ∪ · · · ∪Mp ∪ {xy} is a perfect matching of G.

Ex5.1.10 By definitions of permanent A = (aij)m×n and Per(A),

Per(A) =
∑
f∈F

a1f(1)a2f(2) · · · amf(m),
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where F = {f : f is an injective from {1, 2, · · · , m} to {1, 2, · · · , n} }, and |F | =
n(n− 1) · · · (n−m + 1). Let X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , ym}.

If a1f(1)a2f(2) · · · amf(m) 6= 0, then a1f(1)a2f(2) · · · amf(m) 6= 0 denotes that the set of
edges

EG(x1, yf(1)) 6= ∅, EG(x2, yf(2)) 6= ∅, · · · , EG(xm, yf(m)) 6= ∅.
Thus, a1f(1)a2f(2) · · · amf(m) is the number of the matchings that saturate X and consist
of edged in the set of edges

EG(x1, yf(1)) ∪ EG(x2, yf(2)) ∪ · · · ∪ EG(xm, yf(m)).

It follows that the number of the matchings that saturate X is equal to Per(A).

Ex5.2.5 (a) By Theorem 5.6, it is sufficient to show α(G) ≤ κ(G). By contradic-
tion, if α(G) > κ(G) = k, then there is an independent set I such that |I| = k + 1. A
contradiction can be deduce as follows. |(Ī , I)| ≤ k2 < k(k + 1) = |(I, Ī)|.

(b) The proof is similar to one of Theorem 5.7. Since α(G) = 1 if and only if G ∼= Kv,
assume α(G) ≥ 2. Choose a longest cycle C in G. Suppose to the contrary that C is not
a Hamilton cycle. Then, V (G)\V (C) 6= ∅ and T ⊆ V (C). Choose x ∈ V (G)\V (C) and
let T = {x1, x2, · · · , xs} and occurs in C in this order. By the choice of C, any successive
two vertices in {x1, x2, · · · , xs} are not adjacent in C, otherwise we can construct a longer
cycle than C.

Specify C a direction to obtained a directed cycle
−→
C . Let Y = {yi : (xi, yi) ∈

E(
−→
C ), i = 1, 2, · · · , s}. Then Y ∪ {x} is an independent set of G and α(G) ≥ |I| =

s + 1 ≥ |T |+ 1, contradicting to the hypothesis.

Ex5.2.6 The proof is similar to one of Theorem 5.7. Without loss of generality,
assume α(G) ≥ 2. By contradiction, assume α ≥ δ(G) + 1. Let I and S be a maximum
independent set and a minimum separating set of G, respectively. Then, for any x, y ∈ I,
we have |NG(x) ∪NG(y)| ≤ v − α, and

|NG(x) ∩NG(y)| = dG(x) + dG(y)− |NG(x) ∪NG(y)|
≥ 2δ − (v − α) ≥ 3δ − v + 1 ≥ κ + 1 > |S|.

This implies that only one of all components of G− S, say G1, may contain vertices in
I, that is, I ⊆ V (G1)∪S. Since α ≥ 2δ +1, there exists x ∈ I ∩V (G1). Choose a vertex
z in other component, say G2, of G− S. Then

|NG(x) ∪NG(z)| ≤ v − 2− |I ∩ V (G1)|+ 1 = v − α + |I ∩ S| − 1.

Since NG(x)∩NG(z) ⊆ S \ I, thus, |NG(x)∩NG(z)| ≤ κ−|I ∩S|. Thus, we should have
that

2δ ≤ dG(x) + dG(z) = v − α + κ− 1 ≤ v + κ− δ − 2.

From this we can deduce a contradiction as follows. δ ≤ 1
3
(v + κ− 2) < 1

3
(v + κ).

Ex5.2.7 Note that this exercise has an erratum. The exercise is restated as follows.
Let G be a loopless digraph. Prove that G contains an independent set I such that
dG(I, y) ≤ 2 for any y ∈ V (G) \ I, where dG(I, y) = min{dG(x, y) : x ∈ I}.
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By induction on v ≥ 1. Assume the conclusion holds for any digraph with order less
then v and let G be a digraph with order v. Arbitrarily choose x ∈ V (G). Then by the
induction hypothesis, in the subdigraph G− ({x} ∪N+

G (x)), there is an independent set
I ′ such that dG(I ′, y) ≤ 2 for any y ∈ V (G) \ I ′. If there is u ∈ I ′ such that x ∈ N+

G (x),
then dG(I ′, y) ≤ 2 for any y ∈ V (G) \ I ′ clearly. If there is no such a vertex in I ′, then x
is not adjacent with any vertex in I ′. Thus, I = I ′ ∪ {x} is an independent set required.
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Hints to Exercises in Chapter 6

Ex6.1.4 Let χ(G) = k. Then G has a k-coloring π = (V1, V2, · · · , Vk), where Vi is
an independent set of G and, hence, vi = |Vi| ≤ α for each i = 1, 2, · · · , k.

(a) Since v = v1 + v2 + · · ·+ vk ≤ k α, χ(G) = k ≥
⌈ v

α

⌉
.

Choose an independent set I such that |I| = α. Then G − I is (v − α)-colorable
clearly. Thus, χ(G) = k ≤ v + 1− α.

(b) Note that (Vi, Vj) 6= ∅ since χ(G) = k. Thus, ε ≥ 1
2
k(k − 1), which implies

k ≤ 1
2

+
√

2 ε + 1
4

.

Using Example 1.2.2 and Langrange’s method of minimum multipliers, we have that

2ε ≤ ε(Tk,v) =
k∑

i=1

vi(v − vi) = v2 −
k∑

i=1

v2
i ≤ v2 − k

(v

k

)2

= v2 − v2

k
.

This implies k ≥ v2

v2 − 2ε
.

Ex6.1.5 If G contains no odd cycle, then G is bipartite and, hence, χ(G) ≤ 2.
Assume now G contains an odd cycle C. Then G − C contains no odd cycle. Thus,
χ(G) ≤ χ(C) + χ(G− C) ≤ 3 + 2 = 5.

Ex6.1.6 (⇒) Since G is k-critical, G is not an odd cycle. Also since G is not
complete, k ≤ ∆ by Brooks’ theorem. Choose x ∈ V (G) such that dG(x) = ∆. By
Corollary 6.1.1, δ ≥ k − 1, and so we have

2ε =
∑
x∈V

dG(x) = ∆ +
∑

y∈V \{x}
dG(y) ≥ ∆ + (v − 1)δ

≥ ∆ + (v − 1)(k − 1) = (∆− k) + v(k − 1) + 1
≥ v(k − 1) + 1.

(⇐) Let G be a connected simple graph neither an odd cycle nor a complete graph,
H be a χ(G)-critical subgraph of G.

Assume H is an odd cycle. Since G is not an odd cycle, χ(G) = χ(H) = 3 ≤ ∆(G).
Assume H is a complete graph. Since G is not a complete graph, χ(G) < χ(G)+1 ≤

∆(G).
Assume H is neither an odd cycle nor a complete graph. Since k ≥ 4, we have

v∆(G) ≥ v∆(H) ≥ 2ε(H) ≥ v(χ(G) − 1) + 1, that is, ∆(G) ≥ χ(G) − 1 + 1
v
, which

implies χ(G) ≤ ∆(G).

Ex6.2.2 By contradiction. Suppose that χ(G) = ∆, and let π′ = (E1, E2, · · · , E∆)
be a ∆-edge-coloring of G. Since |Ei| ≤ α′(G) for each i = 1, 2, · · · , ∆, by the condition
(a), we have can deduce a contradiction as follows.

∆α′(G) < ε =
∆∑

i=1

|Ei| ≤ ∆α′(G).
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Also since |Ei| ≤
⌊

v
2

⌋
for each i = 1, 2, · · · , ∆, by the condition (b), we have can

deduce a contradiction as follows.

∆
⌊v

2

⌋
< ε =

∆∑
i=1

|Ei| ≤ ∆
⌊v

2

⌋
.

(c) Since G has odd order and is regular, we have ε = ∆ v
2

> ∆
⌊

v
2

⌋
. By (b), G

belongs to class two.
(d) If G is odd order, the assertion holds by (b). We now assume G is even order. Let

x be a cut-vertex of G. Then there are two subgraphs H and K such that G = H ∪K
and V (H) ∩ V (K) = {x}. Without loss of generality, suppose that H has odd order h.
Then 1 ≤ dH(x) ≤ ∆(G), and so

ε(H) =
1

2
((h− 1)∆ + dH(x)) >

1

2
(h− 1)∆ = ∆

⌊
h

2

⌋
.

By (b), H belongs to class two, and so does G.

Ex6.2.5 By contradiction. Suppose that χ′(G) = k >
⌊

3
2
∆

⌋
. By removing suffi-

ciently many edges from G (if necessary), we may assume that χ′(G − e) = k − 1, for
each edge e of G. It follows from Theorem 6.3 that k ≤ ∆(G)+µ(G), and so there must
exist vertices x and y which are joined by at least k −∆ edges.

We now color all of the edges of G except one of the edges joining x and y; since
χ′(G − e) = k − 1, this coloring can be done with k − 1 colors. Now the number of
colors missing from x or y (or both) can not exceed (k − 1) − (µ − 1), which in turn
can not exceed ∆, since k ≤ ∆ + µ. But the number of colors missing from x is at least
(k − 1) − (∆ − 1) = k − ∆, and similarly the number of colors missing from y is at
least k −∆. It follows that the number of colors missing from both x and y is at least
(2k−∆)−∆, which is positive since k >

⌊
3
2
∆

⌋
. By assigning one of these missing colors

to the un-colored edge joining x and y, we have colored all of the edges of G using only
k − 1 colors. thereby contradicting the fact that χ′(G) = k.

Ex6.2.6 Let L be the line of a simple graph G. By Exercise 6.2.3, χ′(G) = χ(L).
Since ∆(G) ≥ 3, L is nether an odd cycle nor a complete graph, and ∆(L) ≤ 2∆(G)−2.
Thus, By Brooks’ theorem, χ′(G) = χ(L) ≤ ∆(L) ≤ 2∆(G)− 2.
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