The Table of Errata

Places	Wrong	True
P2,L15	ϕ_{G}	ψ_{G}
P2,L17	convenience	convenient
P3,L4	holding	held
P5,L4	It quite natural	It is quite natural
P9,Figure 1.7	$G\left\{x_{1}, x_{3}\right\}, G\left\{e_{1}, e_{5}\right\}$	$G-\left\{x_{1}, x_{3}\right\}, G-\left\{e_{1}, e_{5}\right\}$
P13,L17	an edge of G	an edge of W
P14,L5	it G is	if G is
P15,L-1	number of	number of different
P20,L4	rato	ratio
P20,L-11,-2,-1	gust	guest
P21,L-5	avoids	avoid
P23,L-3	This is reason	This is the reason
P26,L17,22	$\sum_{x, y \in V}$	$\sum_{x, y \in V, x \neq y}$
P28,L5	massage	message
P28,L13	very pair of	every pair of
P28,L24	to denoted	to denote
P29,L-3	result in difficult	result in difficulty
P33,L-6	th execution	the execution
P34,L1	be fault	to be fault
P38,L14	advantage	advantageous
P40,L-12	is a	be a
P40,L-10	by edge	by an edge
P41,L-7	the necessity	the sufficiency
P41,L6	the sufficiency	the necessity
P42,L9	is a	be a
P42,L-1	necessity	sufficiency
P43,Figure 2.2	the undirected edge	the directed edge from 110 to 100
P43,L1	For sufficiency	For necessity
P46,L1	is a	be a
P46,L-2	G	$L(G)$
P46,L-1	$L(G)$	G
P47,L16	h	$h(\leq n+1)$
P47,L18	vertices	is
P48,L-8	if of significant	is of significance
P51,L-5	a large of number	a large number of
P53,L7	θ in	θ is

P56,L-14	is to an	is also an
P56,L-13	The the	The
P57,L11	$K_{m, n}$	$K_{n, n}$
P58,L3	that $V_{1} \neq V_{2}$ and, moreover,	that
P60,L-10	are an	be an
P61,L16	$x, y \in V(G)$	$x, y \in A$
P64,L-14	either $C \subset A_{i}$	either $A_{i} \subset C$
P65,L13	If s is a selt-	If s is a self-
P65,L-1	$z=s^{-1} x$	$z=x s^{-1}$
P67,L8	Cayle Graphs	Cayley Graphs
P71,L2	$g_{i} \rightarrow g_{i} g_{j}$	$g_{j} \rightarrow g_{i} g_{j}$
P71,L-13	$s=\{a, b, a b\}$	$S=\{a, b, a b\}$
P75,L1	$1 \in S$	$1 \notin S$
P77,L-5	++	+
P81,L-5,-2	$d\left(G_{1} \times G_{2}\right) \leq d$	d
P82,L1	$P x_{2} \cup y_{1} Q$	$P x_{2} \cup y_{1} W$
P82,L3	$d\left(G_{1} \times G_{2}\right) \leq d$	d
P87,L-8	$\left(S_{1} \times\left\{e_{1}\right\}\right)$	$\left(S_{1} \times\left\{e_{2}\right\}\right)$
P91,L6	the first . . the last	the last \cdots the first
P96,L14	the wab page	the web page
P98,L4	the sume of them	the sum of them
P99,Figure 2.13	A (4, 2)-digraph	A (2, 4)-digraph
P100,L-15	the lower bound	the upper bound
P105,L1	four the well-known	four well-known
P108,L-12	it sufficient	it is sufficient
P109,L1	due to Haray	due to Harary
P109,L4	tring	string
P111,L-4	$m=\frac{1}{2}(l-2)$	$m=\frac{1}{2} l$
P112,L-8	$1 R_{2}, \cdots, R_{n-1}^{1}$	$1 R_{2}, \cdots, 1 R_{n-1}$
P114,L9,10	gust	guest
P114,L20	it become	it becomes
P114,L-5	Let T_{n} is a	Let T_{n} be a
P119,L-8	$C Q_{n}$ is vertex-transitive	$C Q_{n}$ is not vertex-transitive for $n \geq 5$
P121,L14	$x_{2} \cdots x_{n-1} \alpha$	$x_{2} \cdots x_{n} \alpha$
P129,L16	$x_{n-(p+q)+c+1}$	$x_{n-(p+q)+a+1}$
P130,L-2	$\cdots x_{a} x_{a+1}$	$\cdots x_{a}$
P130,L-1	$\cdots x_{b} x_{b+1}$	$\cdots x_{b}$
P131,L2	$\cdots x_{a}=x_{b} \cdots x_{b}$	$\cdots x_{a-1}=x_{b} \cdots x_{b-1}$
P133,L-13	$i=1, \cdots, m$	$l=1, \cdots, m$
P143,L9,10	$=$	\equiv
P147,L-2	$V_{i} \cap U \neq \emptyset$	$V_{i} \cap X \neq \emptyset$
P150,L-8	\leq	\geq
P155,L-2	Wang	Wong
P188,L-12	with a give routing	with a given routing
P188,L-4	$d\left(W_{7}\right)=3$	$d\left(W_{7}\right)=2$
P190,L2	to minimizing	to minimize

P190,L-13	we can easily establised	we can easily establish
P190,L-1	$K_{1, n}$	$K_{1, n-1}$
P191,L-3	$=\tau_{y}(G, \rho)$	$=\tau_{y}\left(G, \rho_{m}\right)$
P193,L14	we can determined	we can determine
P193,L-9,-8	$\binom{i}{n}$	$\binom{n}{i}$
P193,L-8	$i\binom{i}{n-1}$	$\binom{n-1}{i}$
P194,L-7	directed digraphs	connected digraphs
P196,L12	max	min
P197,L14	$\pi(G) \geq \pi(G, \rho) \geq$	$\pi(G, \rho) \geq$
P197,L-3,-1	$2 \pi_{x}(G, \rho)$	$2 \tau_{x}(G, \rho)$
P198,L2	$2 \pi_{x}(G, \rho)$	$2 \tau_{x}\left(G, \rho^{\prime}\right)$
P198,L14	$\tau_{y}(G, \rho)$	$\tau_{y}\left(G, \rho_{0}\right)$
P201,L-1	the unique shortest	the unique shortest path
P203,L10	there an	there is an
P203,L11	If $x, y \in S$	If $x, y \in S \backslash F$
P203,L-13	to denoted	to denote
P204,L1	$X_{h} \cap x_{i}$	$X_{h} \cap X_{i}$
P206,L6	For G be	Let G be
P209,Figure 4.3	$x_{j^{\prime}}$	x_{j}
P209,Figure 4.3	$x_{i^{\prime}}$	$x_{j^{\prime}}$
P209,Figure 4.3	x_{j}	$x_{i^{\prime}}$
P216,L-1	to studied	to study
P218,L3	we have can derive	we can derive
P220,in (4.29)	$\{x\}$	$\left\{x_{1}\right\}$
P221,L10	We are interested in	What we are interested in
P222,L2	Au upper bound	An upper bound
P223,L-6	One	On
P223,L-5	4 edge	4 edges
P223,L-4	3 difficult edges	3 different edges
P225,L-7	t from	t edges from
P227,L-2	$F \subset V(G)$	$F \subset V(G) \backslash\{x, y\}$
P228,L1	$F \subset V(G)$	$F \subset V(G) \backslash\{x, y\}$
P228,L4	$F \subset V(G)$	$F \subset V(G) \backslash\{x, y\}$
P228,L6	$F \subset V(G)$	$F \subset V(G) \backslash\{x, y\}$
P228,L1	$\|F\|=t-1$	$\|F\|=w-1$
P228,L8	C_{2}	C_{n}
P230,L4	this boung	this bound
P230,L-1	$\|i-j\|+$	$\|i-j\|=$
P231,L7	therefor	therefore
P235,L10,19	with respect l	with respect to l
P235,L-12	systems	system
P243,L-2	$\kappa(G ; x, y)=\omega$	$\kappa(G)=\omega$
P246,L-14	(x, y)-Manger	(x, y)-Menger
P247,L14,15	$L_{G}(x, y)$	$L_{G^{\prime}}(x, y)$
P249,L5	of significant	of significance
P249,L8	there are	there are a

P249,L-14	greater or equal than	greater than or equal to
P252,L18	In other worlds	In other words
P257,L6	the maximum	the minimum
P259,L9	$d(G) \leq 2$	$d_{w}(G) \leq 2$
P252,Theorem 4.4.6	wrong	see
P269,L4	two verices	two vertices
P269,L6	m	w
P271,L-13	wid-diameter	wide-diameter
P273,L3	Krishanmurthy [171]	Krishnamurthy [171]
P274,L13	the maximum	the minimum
P275,L9	m	w
P276,L14	of significant	of significance
P278,L6	$=\frac{d_{w}(G)}{m l-2 m+1}$	$\geq \frac{d_{w}(G)}{w l-2 w+1}$
P278,L-4	$=$	\leq
P279,L-9	is of significant	is of significance
P279,L-2	of interesting	of interest
P280,L7	$\gamma_{2,2}$	$\gamma_{2,2}(G)$
P280,L8	$\gamma_{l+1, m}(G)$	$\gamma_{l+1, w}(G)$
P280,L14	$\leq d^{l}$	$\leq l$
P280,L-13	is two	are two
P280,L-12	Let $x \in S$	Let $x \in S$ be
P280,L-9	$R_{1}=y z$	$R_{1}=y x$
P281,L1	Let G be	Let G be a
P281,L11	$q \geq p+1$	$q \geq l+1$
P281,L-6	$I \backslash A$	I
P282,L-4	Let I is a	Let I be a
P283,L1	I is an independent set	I is an (l,)-independent set
P283,L11	if $d=2 j$	if $l=2 j$
P284,L-2	$\alpha_{l, 1}$	$\alpha_{2 l, 1}(G)$
P285,L-12	with order	order
P285,L-8	to denoted	to denote
P286,L9	let $S=I^{\prime} \cup\left\{x_{0}\right\}$	let $I=I^{\prime} \cup\left\{x_{0}\right\}$
P286,L-5	S is a	I is a
P286,L-4	$\|I\|=$	$\left\|I^{\prime}\right\|=$
P287,L-14	the upper bound	the lower bound
P287,L-13	the lower bound	the upper bound
P288,L-6	Througtout	Throughout
P289,L4,5	$\binom{k}{n}$	$\binom{n}{k}$
P289,L5	one many look	one may look
P289,L-14	Hakimi [91]	Hakimi [92]
P299,L3	contain	contains
P303,L16	ourselvies	ourselves
P303,L-12	m-regular	d-regular
P306,L-15	$V\left(Q_{n-1}^{i} \cap X\right.$	$V\left(Q_{n-1}^{i}\right) \cap X$
P339,L-11	gust graph	guest graph

