Exercises on Chapter 1

1.1 Prove the inequalities (a) $\sim(\mathrm{c})$ in Theorem 1.2.2.
1.2 Prove Theorem 1.2.3 and Theorem 1.2.5.
1.3 Prove that $\gamma(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $\gamma \leq \alpha(G)$ for a connected graph G of order $n \geq 2$.
1.4 Count the number of vertices of a complete complete k-ary tree with height h.
1.5 Give an embedding of a complete binary tree with height two into a cube Q_{3} with no slowdown.
1.6 Prove $d(G) \leq \frac{3 n-\delta-3}{\delta+1}$ for a connected graph G with order n.
(Soares [4])
1.7 Prove Theorem 1.4.4 by a self-contained language.
(Ore [3])
1.8 Prove that the average distance of an undirected cycle C_{n} is equal to
$\mu\left(C_{n}\right)= \begin{cases}\frac{n+1}{4}, & \text { if } n \text { is odd; } \\ \frac{n^{2}}{4(n-1)}, & \text { if } n \text { is even. }\end{cases}$
1.9 Prove Theorem 1.4.5. Can you improve the two lower bounds?
1.10 Let G be a undirected connected graph and for a vertex x in G let

$$
\sigma_{x}(G)=\sum_{y \in V \backslash\{x\}} d(G ; x, y) .
$$

Prove that $\sigma_{x}(G) \leq\left\lfloor\frac{1}{4} v^{2}\right\rfloor$ for any $x \in V$.
(Plesnik [2])
1.11 Read the reference [1] and give a proof of Theorem 1.4.6.
1.12 Prove that if G is a k-connected graph of order n, then number of pairs of distinct vertices at distance at most two in G at least $\min \{2 k n, n(n-1)\}$.

References

[1] Kouider, M., and Winkler, P., Mean distance and minimum degree. Journal of Graph Theory, 25 (1997), 95-99
[2] Plesnik, J., On the sum of all distances in a graph or digraph. Journal of Graph Theory, 8 (1984), 1-21
[3] Ore, O., Diameters in graphs. Journal of Combinatorial Theory, 5 (1968), 75-81
[4] Soares. J., Maximum diameter of regular digraphs. Journal of Graph Theory, 16 (5) (1992), 437-450

