Exercises on Chapter 2

2.1 Line Graphical Method

- 2.1.1 Construct a digraph G to show that the term "strongly" in Theorem 2.1.2 (e) is necessary.
- 2.1.2 Prove Corollary of Theorem 2.1.4 and shows that it is false for undirected graphs.
- 2.1.3 Construct an undirected graph G to show that Theorem 2.1.5 is false.
- 2.1.4 Show that $\operatorname{Aut}(K_n)$ is not isomorphic to $\operatorname{Aut}(L(K_n))$ if and only if n = 2 or 4.
- 2.1.5 Show that the graph $K_5 e$ (obtained by deleting any edge e from K_5) is not a line graph.
- 2.1.6 Show that $K_{1,3}$ is not an induced subgraph of a line graph.
- 2.1.7 Prove that any induced subgraph of a line graph is a line graph.
- 2.1.8 Show that $\operatorname{Aut}(G)$ and $\operatorname{Aut}(L(G))$ are isomorphic if $\delta(G) \geq 4$.
- 2.1.9 Show that if two trees have isomorphic line graphs, they are isomorphic.
- 2.1.10 A graph is *self-complementary* if it is isomorphic to its complement. Show that $L(K_{3,3})$ is self-complementary.
- 2.1.11 Let G be a digraph, L_1 a subgraph of L(G) and $E_1 = V(L_1)$. Define $G_1 = G[E_1]$. Prove that if L_1 is a strongly connected subgraph of L with at least two vertices, then the subgraph $G_1 \subseteq G$ is strongly connected.
- 2.1.12 Prove or disprove that $\lambda(G) \geq \kappa(L(G))$.

2.2 Cayley Method

- 2.2.1 Construct a regular undirected graph or digraph that is not transitive.
- 2.2.2 Prove that a graph G of order n is vertex-transitive if and only if all subgraphs of order n-1 of G are isomorphic.
- 2.2.3 Prove that any edge-transitive undirected graph is edge-regular.
- 2.2.4 Prove Corollary 1, Corollary 2 and Corollary 3 of Theorem 2.2.3.
- 2.2.5 Let L(G) be the line graph of a graph G. Prove or disprove the following statements.
 - (a) If G is edge-transitive, then L(G) is vertex-transitive.
 - (b) If L(G) is vertex-transitive, then G is edge-transitive.

- 2.2.6 Prove that Petersen graph is vertex-transitive, but not a Cayley graphs.
- 2.2.7 Let $\Gamma = Z_4 \times Z_2$ be a group and $S = \{10, 11, 20, 30, 31\}$. Prove that the Cayley graph $C_{\Gamma}(S)$ is isomorphic to $G(8; \pm\{1, 3, 4\})$.
- 2.2.8 Let Γ be the symmetric group on the set $X = \{1, 2, 3, 4\}$, a = (12) and b = (134) be two elements in Γ . Draw the Cayley $G = C_{\Gamma}(S)$, where $S = \{a, b, ab\}$.
- 2.2.9 There are some wrongs in the end on page 71. Find and correct them.

2.3 Cartesian Product Method

- 2.3.1 Construct two connected graphs G_1 and G_2 such that $\kappa(G_1 \times G_2) > \kappa(G_1) + \kappa(G_2)$.
- 2.3.2 Investigate the average distance of $G_1 \times G_2$ if the average distances of G_1 and G_2 are m_1 and m_2 , respectively.
- 2.3.3 Prove that $G_1 \times G_2$ is bipartite if G_1 and G_2 are both bipartite.
- 2.3.4 There are some labelling wrongs in Figure 2.11. Find and correct them.
- 2.3.5 Prove or disprove that the cartesian product of two edge-transitive graphs is edgetransitive.
- 2.3.6 The lexicographic product of G_1 and G_2 , denoted by $G_1[G_2]$, has $V(G_1) \times V(G_2)$ as its vertex-set, and $x = (x_1, x_2)$ is adjacent with $y = (y_1, y_2)$ whenever x_1 is adjacent with y_1 in G_1 or $x_1 = y_1$ and x_2 is adjacent with y_2 in G_2 .

(a) Draw $C_n[K_2], n \ge 4$.

(b) Prove or disprove that the lexicographic product of two vertex (resp. edge)transitive graphs is vertex (resp. edge)-transitive; the lexicographic product of two Cayley graphs is a Cayley graph.

2.4 A Basic Problem in Optimal Design

2.4.1 Prove that n(3,3) = 20, n(4,5) = 15 and n(5,2) = 24 and draw the maximum (5,2)-graph.