Exercises on Chapter 3

3.1 Hypercube Networks

3.1.1 Prove directly that
(1) Q_{n} is both vertex-transitive and edge-transitive;
(2) $Q_{n}-\left(N_{Q_{n}}(x) \cup\{x\}\right)$ is connected for any vertex x in Q_{n}.
3.1.2 Prove that the assertions (b) and (d) in Theorem 3.1.10.
3.1.3 Prove that for any two vertices x and y in Q_{n} with distance d there exists an $x y$-path of length l with $d \leq l \leq 2^{n}-1$ such that l and d have the same parity. (Li et al [4])
3.1.4 Prove that
(Kulasinghe and Bettayeb [3], Huang and Xu [2])
(a) $C Q_{n}$ is not vertex-transitive for $n \geq 5$;
(b) $C Q_{n}$ is vertex-transitive for $n \leq 4$;
(c) $C Q_{n}$ is not edge-transitive for $n \geq 3$;
(d) $C Q_{4}$ is a Cayley graph $C_{\Gamma}(S)$ and write out the group Γ and a generating set S.
3.1.5 Prove that for all $n \geq 2$ and all values of l with $4 \leq l \leq 2^{n}, C Q_{n}$ contains cycles of length l.
(Efe [1])

3.1.6 Prove that

(a) $F Q_{n}$ is bipartite if and only if n is odd;
(b) $F Q_{n}$ is a Cayley graph $C_{\Gamma}(S)$, write out the group Γ and a generating set S;
(c) $d\left(F Q_{n}\right) \leq\left\lceil\frac{n}{2}\right\rceil$;
(d) $F Q_{n}$ is $(n+1)$-regular and $(n+1)$-connected;
(e) $F Q_{n}$ is edge-transitive.

3.2 De Bruijn Networks

3.2.1 An edge in $U B(d, n)$ is said to be singular if it corresponds a pair of symmetric edges in $B(d, n)$. Prove the following results.
(a) Directed distance between two end-vertices in different pairs of symmetric edges in $U B(d, n)$ is equal to either $n-1$ or n. Moreover, two end-vertices in different pairs of symmetric edges have no vertex in common if and only if $n \geq 2$.
(b) Let $e=x y$ be any singular edge in $U B(d, n)$. If $n \geq 2$, then there exist $2 d-1$ internally disjoint $x y$-paths in $U B(d, n)$, one of length one, and $2 d-2$ of length three except $U B(d, 2)$, in which one of length one, two of length two, and $2 d-4$ of length three.
(c) Let F be an edge-cut of $U B(d, n)$. If $n \geq 2$ and F contains a singular edge, then $|F| \geq 2 d-1$.
(d) Let $x y$ and $u v$ be two distinct singular edges in $U B(d, n)(d \geq 2, n \geq 3)$. Then $|N(\{x, y\}) \cap N(\{u, v\})|= \begin{cases}2 \text { or } 0, & n=3 ; \\ 0, & n \geq 4 .\end{cases}$
3.2.2 Let \mathbf{A} be the adjacency matrix of the de Bruijn digraph $B(d, n)$ and \mathbf{J} a square matrix all of whose entries are 1.
(a) Prove that $\mathbf{A}^{n}=\mathbf{J}$.
(b) Find all eigenvalues of \mathbf{A}.

3.3 Kautz Networks

3.3.1 Prove that the exercise 3.2 .1 is valid for $U K(d, n)$.
3.3.2 Prove that if $x y$ and $u v$ are two nonadjacent edges in $K(d, n)(d \geq 2, n \geq 2)$ and (x, y) is a symmetric edge, then, there exist $(2 d-2)$ internally disjoint directed paths from $\{x, y\}$ to $\{u, v\}$ in $K(d, n)$.

References

[1] K. Efe, A variation on the hypercube with lower diameter. IEEE Transactions on Computers, 40(11)(1991), 1312-1316.
[2] Huang Jia and Xu Jun-Ming, Multiply-twisted hypercube with four or less dimensions is vertex-transitive. A manuscript.
[3] P. Kulasinghe and S. Bettayeb, Multiply-twisted hypercube with five of More dimensions is not vertex-transitive, Information Processing Letters, 53(1995), 33-36.
[4] L. K. Li, C. H. Tsai, J. M. Tan and L. H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, Information Processing Letters, 87 (2003), 107-110.

