Exercises on Chapter 4

4.1 Routings in Interconnection Networks

4.1.1 Prove that $\tau(G) \leq \tau(T)$ for any connected spanning subgraph T of a connected G.
4.1.2 Count the vertex-forwarding index and the edge-forwarding index of Petersen graph.
4.1.3 Count the vertex-forwarding and edge-forwarding indices of a path P_{n} and a star $K_{1, n-1}$ for $n \geq 3$.
4.1.4 Prove that if G is a 2 -connected graph of order n then $\tau(G) \leq \frac{1}{2}(n-2)(n-3)$ and this bound is best possible in view of $K_{2, n-2}$.
4.1.5 The symbols $\tau_{\delta, n}$ and $\pi_{\delta, n}$ denote the minimum of $\tau(G)$ and $\pi(G)$, respectively, taken over all graphs G of order n with minimum degree δ. Prove that $\tau_{\delta, n}\left\lceil\left\lceil\frac{2(n-1-\delta)}{\delta}\right\rceil\right.$ and $\pi_{\delta, n}=\left\lceil\frac{2(n-1)}{\delta}\right\rceil$ for any n and δ with $n>\delta \geq 1$.
4.1.5 Prove that for each $i=1,2$, if $G_{i}=\left(V_{i}, E_{i}\right)$ is a connected graph with $\left|V_{i}\right|=n_{i}$ and $\left|E_{i}\right|=\varepsilon_{i}$, then

$$
\begin{aligned}
\tau\left(G_{1} \times G_{2}\right) \geq & \frac{n_{2}}{n_{1}} \sum_{u_{1} \in V_{1}}\left(\sum_{v_{1} \in V_{1} \backslash\left\{u_{1}\right\}}\left(d_{G_{1}}\left(u_{1}, v_{1}\right)-1\right)\right) \\
& \left.+\frac{n_{1}}{n_{2}} \sum_{u_{2} \in V_{2}}\left(\sum_{v_{2} \in V_{2} \backslash\left\{u_{2}\right\}}\left(d_{G_{2}}\left(u_{2}, v_{2}\right)\right)-1\right)\right)+\left(n_{1}-1\right)\left(n_{2}-1\right) \\
\pi\left(G_{1} \times G_{2}\right) \geq & \min \left\{\frac{n_{2}}{\varepsilon_{1}} \sum_{\left(u_{1}, v_{1}\right) \in V_{1} \times V_{1}} d_{G_{1}}\left(u_{1}, v_{1}\right), \frac{n_{1}}{\varepsilon_{2}} \sum_{\left(u_{2}, v_{2}\right) \in V_{2} \times V_{2}} d_{G_{2}}\left(u_{2}, v_{2}\right)\right\} .
\end{aligned}
$$

4.1.6 Prove that $\tau(G) \leq(n-1)\left\lceil\frac{(n-k-1)}{k}\right\rceil$ if G is a k-connected undirected graph of order n, where $k \geq 1$.

4.2 Fault-Tolerant Diameter

4.2.1 Let $F(t, d)$ denote the minimum diameter of an altered graph obtained by adding t extra edges to a graph with diameter d. Prove that
(a) $F(t, d) \leq F\left(t, d^{\prime}\right)$ and $g(t, d) \leq g\left(t, d^{\prime}\right)$ for $d \leq d^{\prime}$;
(b) $F(t, g(t, d)) \leq d \leq g(t, F(t, d))$.
4.2.2 Let $P(t, d)$ denote the minimum diameter of an altered graph G obtained from a single path of diameter d plus t extra edges. Prove that
(a) $P(t,(2 k-1) t+h+1) \leq 2 k$ for any integers t, k and h with $0 \leq h \leq 2 k-1$;
(b) $P(4,5(2 k-1)+h) \leq 2 k+1$ for any integers k and h with $2 \leq h \leq 5$;
(c) $P(5,6(2 k-1)+h) \leq 2 k+1$ for any integers k and h with $2 \leq h \leq 6$.
4.2.3 Prove that $F(t, d)=P(d, t)$ for any positive integers t and d.
4.2.4 Prove that for given positive integers t and d,

$$
\left\lceil\frac{d}{t+1}\right\rceil \leq P(t, d) \leq\left\lfloor\frac{d-2}{t+1}\right\rfloor+3 .
$$

In particular, $P(t,(2 k-1)(t+1)+1)=2 k$ for any positive integer k and $F(t, d) \leq\left\lfloor\frac{d}{t}\right\rfloor+1$ if k is enough large.
4.2.5 Prove that for any integer $d(\geq 4)$,

$$
\left\lceil\frac{d}{5}\right\rceil \leq P(4, d) \leq\left\lceil\frac{d}{5}\right\rceil+1 \quad \text { and } \quad\left\lceil\frac{d}{6}\right\rceil \leq P(5, d) \leq\left\lceil\frac{d}{6}\right\rceil+1 .
$$

4.3 Menger-Type Problems in Parallel Systems

4.3.1 Prove that

$$
\begin{aligned}
r_{w}\left(Q_{n}\right) & =D_{w}\left(Q_{n}\right) \\
& = \begin{cases}n, & \text { for } 1 \leq w \leq n-1 ; \\
n+1, & \text { for } w=n .\end{cases}
\end{aligned}
$$

4.3.2 Prove that

$$
r_{w}(B(d, n))=D_{w}(B(d, n))=n+1, \text { for } 1 \leq w \leq d-1 .
$$

4.4 Wide Diameter of Networks

4.4.1 Let x and y be two vertices in Q_{n} with distance $l(>0)$. Then, for any integer t with $0 \leq t \leq n-2$,

$$
d_{n-t}\left(Q_{n} ; x, y\right)= \begin{cases}l, & \text { if } n-t \leq l ; \\ l+2, & \text { if } n-t>l .\end{cases}
$$

$4.5(l, w)$-Independence and -Dominating Numbers

4.5.1 Prove that (a) $\alpha_{2, n}\left(Q_{n}\right)= \begin{cases}2, & \text { if } n=2 ; \\ 2^{n}, & \text { if } n \geq 3 ;\end{cases}$
(b) $\alpha_{3, n}\left(Q_{n}\right)=2^{n-1}$ if $n \geq 3$;
(c) $\alpha_{n, n}\left(Q_{n}\right)= \begin{cases}4, & \text { if } n=3 ; \\ 2, & \text { if } n>3 ;\end{cases}$
(d) $\alpha_{n-1, n}\left(Q_{n}\right)= \begin{cases}8, & \text { if } n=3,4 ; \\ 4, & \text { if } n=5,6 ; \\ 2, & \text { if } n \geq 7 ;\end{cases}$
(e) $\alpha_{d, n-t}\left(Q_{n}\right)=\alpha_{d, n}\left(Q_{n}\right)$, where $0 \leq t \leq n-2$ and $1 \leq d \leq n-t-1$.

4.6 Restricted Fault-Tolerance of Networks

4.6.1 Prove that if (x, y) is a symmetric edge in Kautz digraph $K(d, n)(d \geq 2, n \geq 2)$, then the set $E^{+}(\{x, y\})$ of out-edges from $\{x, y\}$ is a restricted edge-cut in $K(d, n)$.
4.6.2 Prove by using the exercises 2.3.1, 2.3.2 and the exercise 4.6.1 that (Fan and Xu [1])
(a) $\lambda^{\prime}(K(d, n))= \begin{cases}\text { not exist } & n=1, d=2 ; \\ 2 d-2, & d \geq 3, n=1 \text { or } d \geq 2, n \geq 2 .\end{cases}$
(b) $4 d-5 \leq \lambda^{\prime}(U K(d, n)) \leq 4 d-4, \quad d \geq 3, n \geq 3$
4.6.3 Let G be a non-optimal and vertex-transitive graph of degree k. Then $\lambda^{\prime}(G)=k$ if and only if the induced subgraph $G[X]$ is a complete graph of order k for any λ^{\prime}-atom X of G.
4.6.4 Let G be a non-optimal, k-regular and connected graph. If G contains a complete graph K_{k}, then $X=V\left(K_{k}\right)$ is a λ^{\prime}-atom of G, and, hence $\lambda^{\prime}(G)=k$.
4.6.5 Let G be a non-optimal and connected vertex-transitive graph with degree $k(\geq 3)$. Then $\lambda^{\prime}(G)=k$ if and only if G contains a complete graph of order k.
4.6.6 Let G be a non-optimal and connected vertex-transitive graph. Then G has a prefect matching, and hence G has even order.
4.6.7 Complete the proof of Theorem 4.6.10 (b).

References

[1] Fan Ying-Mei and Xu Jun-Ming, Restricted edge-connectivity of Kautz graphs (in Chinese), to appear in Applied Math (2004) No.3.

