The Final Exercises

1. Prove $d(G) \leq \frac{3 n-\delta-3}{\delta+1}$ for a connected graph G with order n.
2. Prove that for a connected undirected graph G of order n,

$$
\varepsilon(G) \leq k+\frac{1}{2}(n-k+4)(n-k-1),
$$

where k is the diameter of G.
3. Let G be a undirected 2-connected graph and for a vertex x in G let

$$
\sigma_{x}(G)=\sum_{y \in V \backslash\{x\}} d(G ; x, y) .
$$

Prove that $\sigma_{x}(G) \leq\left\lfloor\frac{1}{4} v^{2}\right\rfloor$ for any $x \in V$.
4. The lexicographic product of G_{1} and G_{2}, denoted by $G_{1}\left[G_{2}\right]$, has $V\left(G_{1}\right) \times V\left(G_{2}\right)$ as its vertex-set, and $x=\left(x_{1}, x_{2}\right)$ is adjacent with $y=\left(y_{1}, y_{2}\right)$ whenever x_{1} is adjacent with y_{1} in G_{1} or $x_{1}=y_{1}$ and x_{2} is adjacent with y_{2} in G_{2}. Prove or disprove that the lexicographic product of two vertex (resp. edge)-transitive graphs is vertex (resp. edge)-transitive; the lexicographic product of two Cayley graphs is a Cayley graph.
5. Prove that for any two vertices x and y in Q_{n} with distance d there exists an $x y$-path of length l with $d \leq l \leq 2^{n}-1$ such that l and d have the same parity.
6. Let \mathbf{A} be the adjacency matrix of the de Bruijn digraph $B(d, n)$ and \mathbf{J} a square matrix all of whose entries are 1 .
(a) Prove that $\mathbf{A}^{n}=\mathbf{J}$.
(b) Find all eigenvalues of \mathbf{A}.
7. Prove that if G is a 2-connected graph of order n then the forwarding index $\tau(G) \leq$ $\frac{1}{2}(n-2)(n-3)$ and this bound is best possible in view of $K_{2, n-2}$.
8. Let $F(t, d)$ denote the minimum diameter of an altered graph obtained by adding t extra edges to a graph with diameter d. Prove that
(a) $F(t, d) \leq F\left(t, d^{\prime}\right)$ and $g(t, d) \leq g\left(t, d^{\prime}\right)$ for $d \leq d^{\prime}$;
(b) $F(t, g(t, d)) \leq d \leq g(t, F(t, d))$.
9. Prove that for any graph G,
(a) $\zeta_{l}(G)=w \Leftrightarrow d_{w}(G) \leq l<d_{w+1}(G)$ if G is $w+1$-connected, or
(b) $d_{w}(G)=l \Leftrightarrow \zeta_{l-1}(G)<w \leq \zeta_{l}(G)$ if G is w-connected.
10. Let G be a λ^{\prime}-nonoptimal and vertex-transitive graph of degree k. Then $\lambda^{\prime}(G)=k$ if and only if the induced subgraph $G[X]$ is a complete graph of order k for any λ^{\prime}-atom X of G.

