The Final Exercises

- 1. Prove $d(G) \leq \frac{3n-\delta-3}{\delta+1}$ for a connected graph G with order n.
- **2.** Prove that for a connected undirected graph G of order n,

$$\varepsilon(G) \le k + \frac{1}{2}(n - k + 4)(n - k - 1),$$

where k is the diameter of G.

3. Let G be a undirected 2-connected graph and for a vertex x in G let

$$\sigma_x(G) = \sum_{y \in V \setminus \{x\}} d(G; x, y).$$

Prove that $\sigma_x(G) \leq \left| \frac{1}{4} v^2 \right|$ for any $x \in V$.

- 4. The lexicographic product of G_1 and G_2 , denoted by $G_1[G_2]$, has $V(G_1) \times V(G_2)$ as its vertex-set, and $x = (x_1, x_2)$ is adjacent with $y = (y_1, y_2)$ whenever x_1 is adjacent with y_1 in G_1 or $x_1 = y_1$ and x_2 is adjacent with y_2 in G_2 . Prove or disprove that the lexicographic product of two vertex (resp. edge)-transitive graphs is vertex (resp. edge)-transitive; the lexicographic product of two Cayley graphs is a Cayley graph.
- **5.** Prove that for any two vertices x and y in Q_n with distance d there exists an xy-path of length l with $d \le l \le 2^n 1$ such that l and d have the same parity.
- **6.** Let **A** be the adjacency matrix of the de Bruijn digraph B(d, n) and **J** a square matrix all of whose entries are 1.
 - (a) Prove that $\mathbf{A}^n = \mathbf{J}$.
 - (b) Find all eigenvalues of **A**.
- 7. Prove that if G is a 2-connected graph of order n then the forwarding index $\tau(G) \leq \frac{1}{2}(n-2)(n-3)$ and this bound is best possible in view of $K_{2,n-2}$.
- 8. Let F(t,d) denote the minimum diameter of an altered graph obtained by adding t extra edges to a graph with diameter d. Prove that
 - (a) $F(t,d) \leq F(t,d')$ and $g(t,d) \leq g(t,d')$ for $d \leq d'$;
 - (b) $F(t, g(t, d)) \le d \le g(t, F(t, d))$.
- **9.** Prove that for any graph G,
 - (a) $\zeta_l(G) = w \Leftrightarrow d_w(G) \leq l < d_{w+1}(G)$ if G is w + 1-connected, or
 - (b) $d_w(G) = l \Leftrightarrow \zeta_{l-1}(G) < w \leq \zeta_l(G)$ if G is w-connected.
- 10. Let G be a λ' -nonoptimal and vertex-transitive graph of degree k. Then $\lambda'(G) = k$ if and only if the induced subgraph G[X] is a complete graph of order k for any λ' -atom X of G.