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Abstract

Kuratowski’s Theorem characterizes planar graphs in terms of two excluded subgraphs. In this
paper we survey variations of Kuratowski's Theorem. We examine both finite and infinite graphs,
surfaces and pseudosurfaces, and generalizations of outer-planarity.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The most oft-cited result in graph theof{0] is Kuratowski’s TheoremA graph is
planar if and only if it does not contain a subdivision K or of K3 3. These graphs are
shown inFig. 1 Kuratowski's original proof is given ifi21]. Other nice proofs are given
in[17,18,22]

There are many possible variations on this basic theorem. For example, what if we allow
infinite graphs? What if we embed on surfaces other than the plane? What if we consider
only embeddings with special properties, such as having all vertices on the boundary of a
distinguished face? What if we consider other partial orderings on graphs?

In this paper we examine such variations of Kuratowski's Theorem. We will give the
basic theory and survey some recent results. Our survey is not intended to be complete,
rather to give a flavor of recent results. In Section 2 we begin with a study of partial orders
and obstruction theorems. In Section 3 we study planar embeddings with special properties.
In Section 4 we study analogs of Kuratowski's Theorem for other surfaces. We turn our
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Fig. 1. The Kuratowski graph&’s andK3 3.

attention to infinite graph embeddings and variations on Halin's Theorem in Section 5.
Finally, we present some open problems in Section 6.

2. Partial orders and obstruction theorems

Kuratowski’s Theorem can be viewed in terms of partial orders and hereditary properties.
We now describe these concepts, using obstructions to planarity to illustrate them.

A graph property? is a collection of (isomorphism types of) graphs. We frequently say
thatG has property? in place ofG € 2. For example, we could le? be the class of all
planar graphs.

Let @ be a partial order on the set of all graphs. For example, this order may be the
subgraph ordeformed by deleting vertices and edges. We will wiife< G for this order,
with H < G to also denotéd # G. A propertyZ is hereditaryfor ¢ if G € 2 andH <G
implies thatH € P. For example, any subgraph of a planar graph is planar, so planarity is
hereditary under the subgraph order. Hereditary properties are alsoloaledidealsfor
the order.

Our goal is to find the minimal graphs without a given hereditary property, that is, we
want to find graph&; ¢ 2, but for anyH < G, H € 2. Itis tempting to say that any graph
G notinZ must contain some minimal graph 8 but in general this is not the case. There
may be an infinite descending chain of gragh> G, > Gz > - - - of graphs all not inZ.

In practice this usually is no problem, for our orders will always decrease the number of
vertices or edges in the graph. When the graphs are finite, this prohibits infinite descending
chains. Orders without infinite descending chains are cilleetherian

Consider the (common) case that every graph na?imust contain a minimal graph
not in 2. Let Obg2, () denote the set of all graphs that are minimal in or@evithout
propertyZ. We call this theobstruction sefor this property under the partial order. We will
use the notation Olig’) when the order is understood from context. We have the following
general lemma.

Lemma 2.1. A graphG has property? if and only if there does not exist dh € Obg %)
with H <G.

We now turn to other partial orders on graphs. We say that a g&aisha subdivision
of H if we can formG by deleting an edge of H, adding in a new vertex, and edges
joining v to each of the two old vertices incident wiéh The reader is invited to picture
placing the new vertex in the middle of the old edge. We also say that we c&hfgan
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G by smoothingthe degree-two vertex. Thetopological orderon graphs ha& > H if

we can creatél from G by a sequence of edge deletions, vertex deletions, and smoothing
degree-two vertices. Graphs with a common subdivision are dadieteomorphicHence

in the topological order; > H if and only if G contains a subgraph homeomorphidto

Subdividing an edge does not change the planarity of a graph, thatGsisifplanar
andH is formed by smoothing a degree-two vertex, thers also planar. Thus, planarity
is hereditary under the topological order. In the subgraph order there are infinitely many
obstructions to planarity: any subdivision& or of K 3 3 is such an obstruction. In contrast,
Kuratowski's Theorem asserts that there are exactly two obstructions to planarity under the
topological order.

The topological order is especially important for the class of all cubic graphs. We cannot
delete edges in a cubic graph without violating the property that every vertex is of degree
3. However, we can delete an edge and then smooth the resulting degree-two vertices. The
cubic orderis the topological order on the class of cubic graphs.

The preceeding discussion illustrates a recurring idea in relating partial orders and ob-
structions. We describe our partial orders by a set of elementary reductions (such deleting
a single edge or vertex) and then extend it to a partial order by transitive closure. Suppose
that we add another elementary reduction (such as smoothing a degree-two vertex). We first
have to check that the property is hereditary under this added reduction. If so, then we can
relate the obstructions for a property under the two orders. We make this more formal in
the following lemma.

Lemma 2.2. Suppose tha? is a hereditary property under both partial orde¢sand ¢’
Suppose that! C ¢, that is, (/' is finer thanO. ThenObg 2, (') € Obg 2, 0).

We continue our study of different partial orders. ledie an edge o6 joining vertices
u, v. Make a new graph by deletingu, v and all incident edges, adding a new verkex
and an edgevx for eachwu and eachlwvin E(G). We say thaH is formed bycontracting
the edgee. The reader is invited to picture gradually makmghorter and shorter until its
two ends merge into a single vertex.

Theminor orderon graphs is generated by the two subgraph operations and the contrac-
tion of edges. Notice that smoothing a degree-two vertex is the same as contracting one
of its incident edges. IG is planar andH is an edge contraction @, thenH is planar.

The converse is not necessarily true: unlike subdivisions, we can have a non®langr
a planar contractiorl. One example is contracting an edgekig .

The planarity property is hereditary under the minor order. What are the obstructions
to planarity under the minor order? They are agiinand K3 3. This result is commonly
known as Wagner's Theoref28].

In a remarkable sequence of papers, Robertson and Seymour have shown that in any
infinite set of finite graphs one must be a minor of anofBéf. This implies:

Theorem 2.1. Let# be a property of finite graphs that is hereditary under the minor order.
ThenObg2) is finite

The above theorem implies that under the given conditiong®@jsnder the topological
order is also finite.
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Suppose that we are given a graptwith a cubic vertexw adjacent to vertices, b, c.
FormH from G by deletingv and its incident edges and adding in new edgesc, ca.
The deleted edges formedige or K1 3, and the new edges formelta, or K3. We say
thatH is formed fromG by aY A-transformation

TheY A-orderingis formed (under transitive closure) from the minor ordering by adding
in relationsG > H if H is aY 4-transformation of. If G is planar, then so isl. The con-
verse need not apply; B4-transform ofK3 3 is the planar graplks — K2. What are the
obstructions to planarity under tiie1-ordering? Again, they are the two Kuratowski graphs.

There is one more operation and its corresponding order to examine. Suppasevthat
are two adjacent degree-three vertices in a g@pbet a, b be the other neighbors of
andc, d be the other neighbors af CreateH by deletingu, v and their incident edges,
adding a new vertex, and edgesa, xb, ab and xc, xd, cd. The deleted edges formed
an H, the added edges formkmwtie (<), so we call this theH <-transformation. This
transformation can also be described as first subdividing the edge joining two degree-three
vertices, then making two A-transformations. Thé&l<-orderingis formed by adding the
Hw<-transformation to th& A-ordering.

Again, planarity is a hereditary property under tHe<-ordering. Now, however, we
have a reduction in the size of the obstruction set for planar graphs. Applyitf-an
transformation taK3 3 gives Ks. Hence there is just a single graps, in the obstruction
set for planarity under thé/=<-ordering.

There are many other graph operations. Depending on the particular property studied, it
may or may not be hereditary under a partial order formed by these operations. The ones
presented here are among the most common, especially for topological properties.

We close with the observation that if we can find @Bsunder any one of the topological,
minor, Y 4, or H>< orders, then we can find the obstructions under the other three orders. In
particular, if the property? is hereditary under the minor order, then the minor-obstruction
set is finite and hence so is each of the other obstruction sets.

3. Planarity with restrictions

Our first variation of Kuratowski's Theorem is based on restrictions of “planarity”. The
most famous of these are based on the idea of outer-planarity. A graplteiplanarif
it embeds in the plane so that all vertices lie on the boundary of one distinguished face.
Traditionally, this face is taken to be the outside, or unbounded face.

Theorem 3.1(Chartrand and Hararf16]). A graph is outer-planar if and only if it does
not contain a subdivision a4 or of K3 3.

It is easy to see that the two graphs cited are not outer-planar; the difficulty, as usual,
arises from showing that these are the only two minimal non-outer-planar graphs under the
topological order.

Consider the graph property thak ‘graph G embeds in the plane such that there are
two faces with every vertex incident with at least one of th&uch small face covers
were first considered if11]. If the two distinguished faces are vertex disjoint, then deleting
their interiors form a closedylinder, or homeomorphically aannulus The above property
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corresponds to embedding on an annulus such that every vertex lies on the boundary. If the
faces are not disjoint, then deleting their interiors forngsreched cylinderin either case,
we refer to the above property as bemger-cylindrical

We invite the reader to prove that being outer-cylindrical is hereditary under all of the
orders described in Section 2. Hence it makes sense to talk of obstructions to being outer-
cylindrical. These obstructions are known.

Theorem 3.2(Archdeacon et a[6], Cacereg15], Revueltd23] and Scotf25]). Agraph
is outer-cylindrical if and only if it does not contain a subdivision of on&®€fraphs. A
graph is outer-cylindrical if and only if it does not contain a minor of on@8fyraphs. It
is outer-cylindrical if and only if it does not contain a subgraph isomorphic to onkrof
graphs under th& 4-ordering

Precise descriptions of these obstruction sets are availaf8¢ in

A natural further generalization would be to characterize the graphs that have an em-
bedding with all vertices on the boundary thiree distinguished faces. Such graphs are
called outer-pantsgraphs, because if the boundary of the faces are pairwise disjoint,
then the surface resembles a pair of pants (the three boundary regions form the waist
and the two leg cuffs of the pants). However, the obstruction set for these graphs is un-
known, even for cubic graphs. It is known that there is a unique non-outer-pants graphs of
order 8[6].

There is another generalization of outer-planar graphs. A $aeseach vertex it is
incident with, and vice versa. A faceseesanother face if both are incident with a common
vertex, and a vertex-8eesanother vertex if they are incident with a common face. We
extend this definition as follows; a fakeseesanother face or vertex if there is a sequence
X1, ..., Xt such that each; is incident withx;_1, i =1, ...,k — 1. The reader is invited
to show that both the propertie&“has an embedding such that some ve(fage k-sees
all other verticeqfaceg”, and “G has an embedding such that some ve(fagd k-sees
all faces(verticeg” are hereditary under each of the orders described in Section 2. Hence
we look for obstructions for these properties.

These obstruction sets are known for small valuels dhey were studied if@] under
the guise of nesting points in the sphere. They also consider fixed embeddings of graphs.

Theorem 3.3. There are exactl minor-minimal planar graphs such that no planar em-
bedding has a face seeing all faces. There are ex&atijnor-minimal planar graphs such
that no planar embedding has a vertex seeing all faces. There are eQanthor-minimal
planar maps such that no planar embedding has a face2fsastes all other faces

The first two results are not quite dual to each other; one of the graphs in the second result
is disconnected.

4, Other surfaces

In this section, we expand planar embeddings (or equivalently spherical embeddings)
to other surfaces. Aurfaceis a Hausdorff topological space such that every point has a
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neighborhood homeomorphic to the real Euclidean pl#ieThe compact surfaces fall

into two infinite classes: the sphere withandles attached, called tbdentable surface

of genus hand the sphere witk crosscaps attached, called tih@n-orientable surface of
genus kOne class of non-compact surfaces arise from deleting a finite set of points from
a compact surface. For example, deleting one point from the sphere creates the Euclidean
plane. For a complete classification of non-compact surfaceg@2ge

Let Sbe an orientable or non-orientable surface ané/ée the property that embeds
onS.Again, itis easy to see that this property is hereditary under each of the orders described
in Section 2. What are their obstruction sets?

The complete obstruction set is known only for the projective plane, that is for graphs
of non-orientable genus one. This is the excluded subgraph theorem for projective-planar
graphs. These graphs were first exhibitefili@]; Archdeacorj1] announces that the set is
complete as proven if2].

Theorem 4.1. There are exactlyl03 obstructions to embedding in the projective plane
under the topological order. There are exa@fyobstructions under the minor order. There
are exactlyl4 obstructions under th& 4 order.

This set of graphs is available j8].

We now vary the concept of surface pdeudosurfacer pinched surfacgs the quotient
space of a surface under an equivalence relation on the points, where there are a finite
number of non-trivial equivalence classes and each class contains a finite number of points.
The classic example is thepindle surfac€misnamed, because it is not really a surface),
formed from the sphere by identifying two different points commonly referred to as the
north poleand thesouth pole Another common example is theli&nanasurface, formed
by distinguishing two points (the north and south poles) of two spheres, and identifying
the two different north poles with a single point and the two different south poles with a
second point. The resulting surface (again misnamed) resembles two bananas joined at their
respective stems and base points.

We examine obstruction theorems for embeddings on pseudo-surfaces. There is one main
positive result and one main negative result.

Theorem 4.2 (Archdeacon and Bonningtoj]). There are exacth21 minimal graphs
under the cubic ordering that do not embed on the spindle surface

Theorem 4.3(Sirai and Gvozdjak26]). There are infinitely many minor-minimal graphs
that do not embed on tlizbanana surface

One infinite class of graphs in Theorem 4.3 are the line graphs of the Mdbius ladders.
This class is also described by takingra@cle on vertices 1. .., 2n,and fori =1, ..., n,
adding vertices; adjacentta,i +1,i +n,andi +n+ 1.

At first glance Theorem 4.3 seems to contradict the Robertson—Seymour proof. It does
not, as the property of embedding on the 2-banana surface is not hereditary under minors,
in particular, it is not hereditary under edge contractions.

We now combine projective-planarity and outer-planarity. A grapbuir-projective-
planar if it embeds on the projective plane with all vertices on the boundary of a single
distinguished face.



28 D. Archdeacon / Discrete Mathematics 302 (2005) 22—-31

Theorem 4.4(Archdeacon et al[8],, Cacereqd15] and Revueltd23]). There are exactly
45 topologically minimal non-outer-projective-planar graphs. There are exé&2lguch
minor-minimal graphsand exactly9 under theY A4 ordering

Similarly, a graph to b@uter 2-bananaif there is an embedding of the graph on the
2-banana surface with every vertex on the boundary of a single distinguished face. This
property is now hereditary under the minor orle3].

Theorem 4.5(Boza et al[13]). There are exactl$8 minor-minimal non-oute-banana
graphs

We return to embeddings on the projective plansighed graphs a graph together with
a signaturet or — on each edge. A cycle slancedn a signed graph if and only if it has
an even number of negative edgessigned embeddingf a signed graph is an embedding
on a surface such that a cycle is orientation-reversing if and only if it is non-balanced. This
surface will be orientable if and only if every cycle is balanced. In the projective plane, this
corresponds to a cycle being non-contractable if and only if it is non-balanced. The theory
of minors extends to signed graphs ($28]) and look for the obstruction set to signed
obstructions for projective planar graphs.

Theorem 4.6 (Zaslavsky29]). There are exactly eight minor-minimal signed graphs that
do not have a signed embedding on the projective plane

5. Infinite graphs

We turn our attention to obstructions to embeddings of infinite graphs. These graph
embeddings present some different problems. First, the number of points on any surface is
the continuium: the cardinality of the real line. Thus, if an infinite graph contains more than
a continuium number of points, then it cannot embed on any surface.

We are primarily interested in embeddings that\adex-accumulation-point fre¢hat
is, those where the subset in the (non-compact) surface of vertex points does not have an
accumulation point. This class of graphs are the most natural, as explaifed.isuch
graphs are necessarilycally finite, that is, that each vertex has a finite degree, and they
have a countable number of components. These implies that the vertex set of these graphs
is countable.

A classical result, usually attributed to Erdds (seel@1)), is that a graph on a countable
vertex set embeds on a (pseudo)-surface if and only if every finite subgraph embeds on
that surface. LeH be any finite graph. We call a gragghresidually finiteif G is created
from H by adding a finite number of infinite-one-ended-rays each rooted at a vertéx of
A nice theorenj12] shows the following for surfaces; the techniques therein extend easily
to pseudo-surfaces. For related work Eeg15]

Theorem 5.1. If G is an obstruction to embedding in a pseudo-surface with a finite subset
of points removedheng is residually finite
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The first generalization is to examine connected, locally finite graphs that embed in the
plane without accumulation points. Such graphs are characterized by Halin’s Theorem.

Theorem 5.2(Halin [20]). A possibly infinite graph embeds in the plane without ac-
cumulation points if and only if it does not contain a topological subgraph shown in
Fig. 2.

An equivalent form of Halin’s Theorem is to examine which locally finite countable
graphs embed on the sphere with just a single accumulation point. We examine variations
on Halin’s Theorem.

The first generalization of Halin’s Theorem would be to examine obstruction sets to the
property ‘A graph embeds on the plane with at most two accumulation goirtte general
obstruction set is not known, see Problem 6.6. However, we do have the following positive
result for cubic graphs.

Theorem 5.3 (Archdeacon etal7]). There are exactl29cubic graphs that do not embed
in a sphere with exactly two accumulation poiritst such that every proper subgraph does
so embed

We turn our attention to Halin’s Theorem for the open Mébius band, that is, find the
obstructions to embedding on a Mébius band without accumulation points. The one-point
compactification of the Mébius band is the projective plane. So this problem is equivalent
to embedding graphs in the projective plane with at most one accumulation point.

Theorem 5.4(Archdeacon et al[5]). There are exacth350 minor-minimal graphs that
do not embed in the projective plane with at most one accumulation point. Thet@3%e
such topologically minimal graphs

Halin’s graphs and Kuratowski’s graphs are closely related. The former come from the
latter by deleting either an edge or a vertex in the graph, and adding one-way-infinite rays
to each incident or adjacent vertex. The relation between the projective-planar obstructions
and the graphs of Theorem 5.4 is similar.

Fig. 2. The Halin graphs (add infinite rays to the circled vertices).



30 D. Archdeacon / Discrete Mathematics 302 (2005) 22—-31
6. Conclusion

We end this paper with a collection of open problems. The first and perhaps the most
important problem is the following.

Problem 6.1. Find the obstruction set under the minor order for embedding on a torus.
It may be easier to consider only cubic graphs, as in the following problem.
Problem 6.2. Find the obstruction set under the cubic order for embedding on a torus.

The author believes that Problem 6.2 may be within reach using techniques similar to
those in[4]. We also ask the analogous questions for the Klein bottle, although we suspect
this may be more difficult than the torus.

The next two problems involve generalizing outer-planar graphs. As before, the second
is the restriction of the first to cubic graphs.

Problem 6.3. Find the obstruction set under the minor order for embedding on the sphere
with every vertex on the boundary of one of three distinct faces.

Problem 6.4. Find the obstruction set under the cubic order for embedding on a sphere
with every vertex on the boundary of one of three distinct faces.

We next consider embedding graphs on a pseudo-surface and ask:

Problem 6.5. Find the obstruction set under the minor order for embedding on the spindle
surface for (non-cubic) graphs.

The next open problem is about embedding infinite graphs without accumulation
points.

Problem 6.6. Find the obstruction set under the minor order for infinite graphs to embed
in the sphere with exactly two accumulation points.

There are many other ways to combine the variations presented herein. In addition, we
have not discussed planar two-dimensional simplicial complexes, directed graphs, hyper-
graphs, and so forth. These combinations yield a wealth of interesting problems that | hope
the reader will enjoy.
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