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Abstract

Kuratowski’s Theorem characterizes planar graphs in terms of two excluded subgraphs. In this
paper we survey variations of Kuratowski’s Theorem. We examine both finite and infinite graphs,
surfaces and pseudosurfaces, and generalizations of outer-planarity.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The most oft-cited result in graph theory[10] is Kuratowski’s Theorem:A graph is
planar if and only if it does not contain a subdivision ofK5 or of K3,3. These graphs are
shown inFig. 1. Kuratowski’s original proof is given in[21]. Other nice proofs are given
in [17,18,22].
There are many possible variations on this basic theorem. For example, what if we allow

infinite graphs? What if we embed on surfaces other than the plane? What if we consider
only embeddings with special properties, such as having all vertices on the boundary of a
distinguished face?What if we consider other partial orderings on graphs?
In this paper we examine such variations of Kuratowski’s Theorem. We will give the

basic theory and survey some recent results. Our survey is not intended to be complete,
rather to give a flavor of recent results. In Section 2 we begin with a study of partial orders
and obstruction theorems. In Section 3 we study planar embeddings with special properties.
In Section 4 we study analogs of Kuratowski’s Theorem for other surfaces. We turn our
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Fig. 1. The Kuratowski graphsK5 andK3,3.

attention to infinite graph embeddings and variations on Halin’s Theorem in Section 5.
Finally, we present some open problems in Section 6.

2. Partial orders and obstruction theorems

Kuratowski’s Theorem can be viewed in terms of partial orders and hereditary properties.
We now describe these concepts, using obstructions to planarity to illustrate them.
A graph propertyP is a collection of (isomorphism types of) graphs. We frequently say

thatG has propertyP in place ofG ∈ P. For example, we could letP be the class of all
planar graphs.
Let O be a partial order on the set of all graphs. For example, this order may be the

subgraph orderformed by deleting vertices and edges. We will writeH �G for this order,
with H < G to also denoteH �= G. A propertyP is hereditaryfor O if G ∈ P andH �G

implies thatH ∈ P . For example, any subgraph of a planar graph is planar, so planarity is
hereditary under the subgraph order. Hereditary properties are also calledlower idealsfor
the order.
Our goal is to find the minimal graphs without a given hereditary property, that is, we

want to find graphsG /∈P, but for anyH < G,H ∈ P. It is tempting to say that any graph
Gnot inPmust contain someminimal graph notP, but in general this is not the case. There
may be an infinite descending chain of graphG1> G2> G3> · · · of graphs all not inP.
In practice this usually is no problem, for our orders will always decrease the number of
vertices or edges in the graph.When the graphs are finite, this prohibits infinite descending
chains. Orders without infinite descending chains are calledNoetherian.

Consider the (common) case that every graph not inP must contain a minimal graph
not inP. Let Obs(P,O) denote the set of all graphs that are minimal in orderO without
propertyP.We call this theobstruction setfor this property under the partial order.We will
use the notation Obs(P) when the order is understood from context.We have the following
general lemma.

Lemma 2.1. A graphG has propertyP if and only if there does not exist anH ∈ Obs(P)

with H �G.

We now turn to other partial orders on graphs. We say that a graphG is asubdivision
of H if we can formG by deleting an edgee of H, adding in a new vertexv, and edges
joining v to each of the two old vertices incident withe. The reader is invited to picture
placing the new vertex in the middle of the old edge. We also say that we can getH from
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G by smoothingthe degree-two vertexv. The topological orderon graphs hasG�H if
we can createH from G by a sequence of edge deletions, vertex deletions, and smoothing
degree-two vertices. Graphs with a common subdivision are calledhomeomorphic. Hence
in the topological order,G�H if and only ifG contains a subgraph homeomorphic toH.
Subdividing an edge does not change the planarity of a graph, that is, ifG is planar

andH is formed by smoothing a degree-two vertex, thenH is also planar. Thus, planarity
is hereditary under the topological order. In the subgraph order there are infinitely many
obstructions to planarity: any subdivision ofK5 or ofK3,3 is such anobstruction. In contrast,
Kuratowski’s Theorem asserts that there are exactly two obstructions to planarity under the
topological order.
The topological order is especially important for the class of all cubic graphs.We cannot

delete edges in a cubic graph without violating the property that every vertex is of degree
3. However, we can delete an edge and then smooth the resulting degree-two vertices. The
cubic orderis the topological order on the class of cubic graphs.
The preceeding discussion illustrates a recurring idea in relating partial orders and ob-

structions. We describe our partial orders by a set of elementary reductions (such deleting
a single edge or vertex) and then extend it to a partial order by transitive closure. Suppose
that we add another elementary reduction (such as smoothing a degree-two vertex).We first
have to check that the property is hereditary under this added reduction. If so, then we can
relate the obstructions for a property under the two orders. We make this more formal in
the following lemma.

Lemma 2.2. Suppose thatP is a hereditary property under both partial ordersO andO′.
Suppose thatO ⊆ O′, that is, O′ is finer thanO. ThenObs(P,O′) ⊆ Obs(P,O).

We continue our study of different partial orders. Letebe an edge ofG joining vertices
u, v. Make a new graphH by deletingu, v and all incident edges, adding a new vertexx,
and an edgewx for eachwuand eachwv in E(G). We say thatH is formed bycontracting
the edgee. The reader is invited to picture gradually makinge shorter and shorter until its
two ends merge into a single vertex.
Theminor orderon graphs is generated by the two subgraph operations and the contrac-

tion of edges. Notice that smoothing a degree-two vertex is the same as contracting one
of its incident edges. IfG is planar andH is an edge contraction ofG, thenH is planar.
The converse is not necessarily true: unlike subdivisions, we can have a non-planarG but
a planar contractionH. One example is contracting an edge inK3,3.
The planarity property is hereditary under the minor order. What are the obstructions

to planarity under the minor order? They are againK5 andK3,3. This result is commonly
known asWagner’s Theorem[28].
In a remarkable sequence of papers, Robertson and Seymour have shown that in any

infinite set of finite graphs one must be a minor of another[24]. This implies:

Theorem 2.1. LetP be a property of finite graphs that is hereditary under the minor order.
ThenObs(P) is finite.

The above theorem implies that under the given conditions Obs(P) under the topological
order is also finite.
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Suppose that we are given a graphG with a cubic vertexv adjacent to verticesa, b, c.
FormH from G by deletingv and its incident edges and adding in new edgesab, bc, ca.
The deleted edges formed awye, orK1,3, and the new edges form aDelta, orK3. We say
thatH is formed fromG by aY�-transformation.
TheY�-orderingis formed (under transitive closure) from the minor ordering by adding

in relationsG�H if H is aY�-transformation ofG. If G is planar, then so isH. The con-
verse need not apply; aY�-transform ofK3,3 is the planar graphK5 − K2. What are the
obstructions to planarity under theY�-ordering?Again, they are the twoKuratowski graphs.
There is one more operation and its corresponding order to examine. Suppose thatu, v

are two adjacent degree-three vertices in a graphG. Let a, b be the other neighbors ofu,
andc, d be the other neighbors ofv. CreateH by deletingu, v and their incident edges,
adding a new vertexx, and edgesxa, xb, ab andxc, xd, cd. The deleted edges formed
anH, the added edges form abowtie(�	), so we call this theH�	-transformation. This
transformation can also be described as first subdividing the edge joining two degree-three
vertices, then making twoY�-transformations. TheH�	-orderingis formed by adding the
H�	-transformation to theY�-ordering.
Again, planarity is a hereditary property under theH�	-ordering. Now, however, we

have a reduction in the size of the obstruction set for planar graphs. Applying anH�	-
transformation toK3,3 givesK5. Hence there is just a single graph,K5, in the obstruction
set for planarity under theH�	-ordering.
There are many other graph operations. Depending on the particular property studied, it

may or may not be hereditary under a partial order formed by these operations. The ones
presented here are among the most common, especially for topological properties.
We closewith the observation that if we can findObs(P) under any one of the topological,

minor,Y�, orH�	 orders, then we can find the obstructions under the other three orders. In
particular, if the propertyP is hereditary under the minor order, then the minor-obstruction
set is finite and hence so is each of the other obstruction sets.

3. Planarity with restrictions

Our first variation of Kuratowski’s Theorem is based on restrictions of “planarity”. The
most famous of these are based on the idea of outer-planarity. A graph isouterplanarif
it embeds in the plane so that all vertices lie on the boundary of one distinguished face.
Traditionally, this face is taken to be the outside, or unbounded face.

Theorem 3.1(Chartrand and Harary[16]). A graph is outer-planar if and only if it does
not contain a subdivision ofK4 or of K2,3.

It is easy to see that the two graphs cited are not outer-planar; the difficulty, as usual,
arises from showing that these are the only two minimal non-outer-planar graphs under the
topological order.
Consider the graph property that “A graphG embeds in the plane such that there are

two faces with every vertex incident with at least one of them”. Such small face covers
were first considered in[11]. If the two distinguished faces are vertex disjoint, then deleting
their interiors form a closedcylinder, or homeomorphically anannulus. The above property
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corresponds to embedding on an annulus such that every vertex lies on the boundary. If the
faces are not disjoint, then deleting their interiors forms apinched cylinder. In either case,
we refer to the above property as beingouter-cylindrical.
We invite the reader to prove that being outer-cylindrical is hereditary under all of the

orders described in Section 2. Hence it makes sense to talk of obstructions to being outer-
cylindrical. These obstructions are known.

Theorem 3.2(Archdeacon et al.[6] , Cáceres[15] , Revuelta[23] and Scott[25]). A graph
is outer-cylindrical if and only if it does not contain a subdivision of one of56 graphs. A
graph is outer-cylindrical if and only if it does not contain a minor of one of38graphs. It
is outer-cylindrical if and only if it does not contain a subgraph isomorphic to one of17
graphs under theY�-ordering.

Precise descriptions of these obstruction sets are available in[3].
A natural further generalization would be to characterize the graphs that have an em-

bedding with all vertices on the boundary ofthreedistinguished faces. Such graphs are
called outer-pantsgraphs, because if the boundary of the faces are pairwise disjoint,
then the surface resembles a pair of pants (the three boundary regions form the waist
and the two leg cuffs of the pants). However, the obstruction set for these graphs is un-
known, even for cubic graphs. It is known that there is a unique non-outer-pants graphs of
order 8[6].
There is another generalization of outer-planar graphs. A faceseeseach vertex it is

incident with, and vice versa.A face 2-seesanother face if both are incident with a common
vertex, and a vertex 2-seesanother vertex if they are incident with a common face. We
extend this definition as follows; a facek-seesanother face or vertex if there is a sequence
x1, . . . , xk such that eachxi is incident withxi−1, i = 1, . . . , k − 1. The reader is invited
to show that both the properties “G has an embedding such that some vertex(face) k-sees
all other vertices(faces)”, and “G has an embedding such that some vertex(face) k-sees
all faces(vertices)” are hereditary under each of the orders described in Section 2. Hence
we look for obstructions for these properties.
These obstruction sets are known for small values ofk. They were studied in[9] under

the guise of nesting points in the sphere. They also consider fixed embeddings of graphs.

Theorem 3.3. There are exactly2 minor-minimal planar graphs such that no planar em-
bedding has a face seeing all faces. There are exactly3minor-minimal planar graphs such
that no planar embedding has a vertex seeing all faces. There are exactly9minor-minimal
planar maps such that no planar embedding has a face that2-sees all other faces.

The first two results are not quite dual to each other; one of the graphs in the second result
is disconnected.

4. Other surfaces

In this section, we expand planar embeddings (or equivalently spherical embeddings)
to other surfaces. Asurfaceis a Hausdorff topological space such that every point has a
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neighborhood homeomorphic to the real Euclidean planeR2. The compact surfaces fall
into two infinite classes: the sphere withh handles attached, called theorientable surface
of genus h, and the sphere withk crosscaps attached, called thenon-orientable surface of
genus k. One class of non-compact surfaces arise from deleting a finite set of points from
a compact surface. For example, deleting one point from the sphere creates the Euclidean
plane. For a complete classification of non-compact surfaces see[22].
LetSbe an orientable or non-orientable surface and letP be the property thatG embeds

onS.Again, it is easy to see that this property is hereditary under eachof the orders described
in Section 2. What are their obstruction sets?
The complete obstruction set is known only for the projective plane, that is for graphs

of non-orientable genus one. This is the excluded subgraph theorem for projective-planar
graphs. These graphs were first exhibited in[19]; Archdeacon[1] announces that the set is
complete as proven in[2].

Theorem 4.1. There are exactly103 obstructions to embedding in the projective plane
under the topological order. There are exactly35obstructions under the minor order. There
are exactly14obstructions under theY� order.

This set of graphs is available in[3].
We now vary the concept of surface.Apseudosurface, orpinched surface, is the quotient

space of a surface under an equivalence relation on the points, where there are a finite
number of non-trivial equivalence classes and each class contains a finite number of points.
The classic example is thespindle surface(misnamed, because it is not really a surface),
formed from the sphere by identifying two different points commonly referred to as the
north poleand thesouth pole. Another common example is the 2-bananasurface, formed
by distinguishing two points (the north and south poles) of two spheres, and identifying
the two different north poles with a single point and the two different south poles with a
second point. The resulting surface (againmisnamed) resembles two bananas joined at their
respective stems and base points.
We examine obstruction theorems for embeddings on pseudo-surfaces. There is onemain

positive result and one main negative result.

Theorem 4.2(Archdeacon and Bonnington[4] ). There are exactly21 minimal graphs
under the cubic ordering that do not embed on the spindle surface.

Theorem 4.3(Širáň and Gvozdjak[26]). There are infinitely many minor-minimal graphs
that do not embed on the2-banana surface.

One infinite class of graphs in Theorem 4.3 are the line graphs of the Möbius ladders.
This class is also described by taking a 2n-cycle on vertices 1, . . . ,2n, and fori =1, . . . , n,
adding verticesxi adjacent toi, i + 1, i + n, andi + n + 1 .
At first glance Theorem 4.3 seems to contradict the Robertson–Seymour proof. It does

not, as the property of embedding on the 2-banana surface is not hereditary under minors,
in particular, it is not hereditary under edge contractions.
We now combine projective-planarity and outer-planarity. A graph isouter-projective-

planar if it embeds on the projective plane with all vertices on the boundary of a single
distinguished face.
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Theorem 4.4(Archdeacon et al.[8] , Cáceres[15] and Revuelta[23]). There are exactly
45 topologically minimal non-outer-projective-planar graphs. There are exactly32 such
minor-minimal graphs, and exactly9 under theY� ordering.

Similarly, a graph to beouter 2-bananaif there is an embedding of the graph on the
2-banana surface with every vertex on the boundary of a single distinguished face. This
property is now hereditary under the minor order[13].

Theorem 4.5(Boza et al.[13]). There are exactly38minor-minimal non-outer2-banana
graphs.

We return to embeddings on the projective plane.Asigned graphis a graph together with
a signature+ or− on each edge. A cycle isbalancedin a signed graph if and only if it has
an even number of negative edges. Asigned embeddingof a signed graph is an embedding
on a surface such that a cycle is orientation-reversing if and only if it is non-balanced. This
surface will be orientable if and only if every cycle is balanced. In the projective plane, this
corresponds to a cycle being non-contractable if and only if it is non-balanced. The theory
of minors extends to signed graphs (see[29]) and look for the obstruction set to signed
obstructions for projective planar graphs.

Theorem 4.6(Zaslavsky[29]). There are exactly eight minor-minimal signed graphs that
do not have a signed embedding on the projective plane.

5. Infinite graphs

We turn our attention to obstructions to embeddings of infinite graphs. These graph
embeddings present some different problems. First, the number of points on any surface is
the continuium: the cardinality of the real line. Thus, if an infinite graph contains more than
a continuium number of points, then it cannot embed on any surface.
We are primarily interested in embeddings that arevertex-accumulation-point free, that

is, those where the subset in the (non-compact) surface of vertex points does not have an
accumulation point. This class of graphs are the most natural, as explained in[27]. Such
graphs are necessarilylocally finite, that is, that each vertex has a finite degree, and they
have a countable number of components. These implies that the vertex set of these graphs
is countable.
A classical result, usually attributed to Erdös (see e.g.[27]), is that a graph on a countable

vertex set embeds on a (pseudo)-surface if and only if every finite subgraph embeds on
that surface. LetH be any finite graph. We call a graphG residually finiteif G is created
from H by adding a finite number of infinite-one-ended-rays each rooted at a vertex ofH.
A nice theorem[12] shows the following for surfaces; the techniques therein extend easily
to pseudo-surfaces. For related work see[14,15].

Theorem 5.1. If G is an obstruction to embedding in a pseudo-surface with a finite subset
of points removed, thenG is residually finite.
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The first generalization is to examine connected, locally finite graphs that embed in the
plane without accumulation points. Such graphs are characterized by Halin’s Theorem.

Theorem 5.2(Halin [20]). A possibly infinite graph embeds in the plane without ac-
cumulation points if and only if it does not contain a topological subgraph shown in
Fig. 2.

An equivalent form of Halin’s Theorem is to examine which locally finite countable
graphs embed on the sphere with just a single accumulation point. We examine variations
on Halin’s Theorem.
The first generalization of Halin’s Theorem would be to examine obstruction sets to the

property “A graph embeds on the plane with at most two accumulation points”. The general
obstruction set is not known, see Problem 6.6. However, we do have the following positive
result for cubic graphs.

Theorem 5.3(Archdeacon et al.[7] ). There are exactly29cubic graphs that do not embed
in a sphere with exactly two accumulation points, but such that every proper subgraph does
so embed.

We turn our attention to Halin’s Theorem for the open Möbius band, that is, find the
obstructions to embedding on a Möbius band without accumulation points. The one-point
compactification of the Möbius band is the projective plane. So this problem is equivalent
to embedding graphs in the projective plane with at most one accumulation point.

Theorem 5.4(Archdeacon et al.[5] ). There are exactly350minor-minimal graphs that
do not embed in the projective plane with at most one accumulation point. There are1235
such topologically minimal graphs.

Halin’s graphs and Kuratowski’s graphs are closely related. The former come from the
latter by deleting either an edge or a vertex in the graph, and adding one-way-infinite rays
to each incident or adjacent vertex. The relation between the projective-planar obstructions
and the graphs of Theorem 5.4 is similar.

Fig. 2. The Halin graphs (add infinite rays to the circled vertices).
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6. Conclusion

We end this paper with a collection of open problems. The first and perhaps the most
important problem is the following.

Problem 6.1. Find the obstruction set under the minor order for embedding on a torus.

It may be easier to consider only cubic graphs, as in the following problem.

Problem 6.2. Find the obstruction set under the cubic order for embedding on a torus.

The author believes that Problem 6.2 may be within reach using techniques similar to
those in[4]. We also ask the analogous questions for the Klein bottle, although we suspect
this may be more difficult than the torus.
The next two problems involve generalizing outer-planar graphs. As before, the second

is the restriction of the first to cubic graphs.

Problem 6.3. Find the obstruction set under the minor order for embedding on the sphere
with every vertex on the boundary of one of three distinct faces.

Problem 6.4. Find the obstruction set under the cubic order for embedding on a sphere
with every vertex on the boundary of one of three distinct faces.

We next consider embedding graphs on a pseudo-surface and ask:

Problem 6.5. Find the obstruction set under the minor order for embedding on the spindle
surface for (non-cubic) graphs.

The next open problem is about embedding infinite graphs without accumulation
points.

Problem 6.6. Find the obstruction set under the minor order for infinite graphs to embed
in the sphere with exactly two accumulation points.

There are many other ways to combine the variations presented herein. In addition, we
have not discussed planar two-dimensional simplicial complexes, directed graphs, hyper-
graphs, and so forth. These combinations yield a wealth of interesting problems that I hope
the reader will enjoy.
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