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Description

The course is devoted to the mathematical fundamentals of
optimization and the practical algorithms of optimization.

The course covers the topics of nonlinear continuous optimization,
sparse optimization, stochastic optimization, combinatorial
optimization, and global optimization.
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Objectives

Objectives of the course are

to develop an understanding of the fundamentals of optimization;

to learn how to analyze the widely used algorithms for optimization;

to become familiar with the implementation of optimization
algorithms.
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Prerequisites

Knowledge of Linear Algebra, Real Analysis, and Mathematics of
Operations Research will be important.

Simultaneously, the ability to write computer programs of algorithms
is also required.
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Topics Covered

Unconstrained Optimization

Constrained Optimization

Convex Optimization

Sparse Optimization

Stochastic Optimization

Combinatorial Optimization

Global Optimization
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Grading

(1) Homework (20%)

(2) Project (30%)

(3) Final Exam (50%)
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About convex optimization

Convex optimization is a subfield of mathematical optimization that
studies the problem of minimizing convex functions over convex sets.
Whereas many classes of convex optimization problems admit
polynomial-time algorithms, mathematical optimization is in general
NP-hard.

We introduce the main definitions and results of convex optimization
needed for the analysis of algorithms presented in the section.
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Affine set

Definition (affine set)

A set C ⊆ Rn is affine if ∀x1, x2 ∈ C and θ ∈ R, we have

θx1 + (1− θ)x2 ∈ C

i.e., if it contains the line through any two distinct points in it.

It can be generalized to more than two points: If C is an affine set,
x1, . . . , xk ∈ C and θ1 + . . .+ θk = 1, then θ1x1 + . . .+ θkxk ∈ C .

We refer to a point of the form θ1x1 + . . .+ θkxk where
θ1 + . . .+ θk = 1, as an affine combination of the points x1, . . . , xk .
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Affine set

If C is an affine set and x0 ∈ C , then the set

V = C − x0 = {x − x0|x ∈ C}

is a (linear) subspace. We can express C as

C = V + x0 = {v + x0|v ∈ V }.

The dimesion of an affine set C is the dimesion of the subspace
V = C − x0.

Example (Solution set of linear equations)

For A ∈ Rm×n, b ∈ Rm, the set

C = {x |Ax = b}

is affine. Let V = {v |Av = 0} be a subspace, then C = V + b.
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Affine set

Definition (affine hull)

The set of all affine combinations of points in some set C ⊆ Rn is called
the affine hull of C , denoted affC :

affC = {θ1x1 + . . .+ θkxk |x1, . . . , xk ∈ C , θ1 + . . .+ θk = 1}.

The affine hull is the smallest affine set that contains C .
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Convex set

Definition (convex set)

A set C is convex if ∀x1, x2 ∈ C and 0 6 θ 6 1, we have

θx1 + (1− θ)x2 ∈ C

i.e., if it contains the line segment between any two points in it.

Generalization to more than two points: for any k > 1, x1, . . . , xk ∈ C and
θ1 + . . .+ θk = 1 where θi > 0, i = 1, . . . , k, we have

θ1x1 + . . .+ θkxk ∈ C .

The form θ1x1 + . . .+ θkxk is called the convex combination of the points
x1, . . . , xk , where θ1, . . . , θk > 0 and

∑k
i=1 θi = 1.
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Convex hull

Definition (convex hull)

The convex hull of a set C , denoted convC , is the set of all convex
combinations of points in C :

convC = {θ1x1 + . . .+θkxk |xi ∈ C , θi > 0, i = 1, . . . , k , θ1 + . . .+θk = 1}.

The convex hull is the smallest convex set that contains C .
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Convex set and convex hull

24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted convC, is the set of all convex combinations
of points in C:

convC = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull convC is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then convC ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

(a)
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Figure: (a) A convex set (polyhydron). (b) A non-convex set. (c) The convex
hull of (b).
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Cone

Definition (cone)

A set C is called a cone, if ∀x ∈ C and θ > 0 we have θx in C .
A set C is a convex cone if it’s convex and a cone, i.e., ∀x1, x2 ∈ C and
θ1, θ2 > 0, we have

θ1x1 + θ2x2 ∈ C .

A point of the form θ1x1 + . . .+ θkxk with θ1, . . . , θk > 0 is called a conic
combination of x1, . . . , xk .

Definition (conic hull)

The conic hull of a set C is the set of all conic combinations of points in
C , i.e.,

{θ1x1 + . . .+ θkxk |xi ∈ C , θi > 0, i = 1, . . . , k}.
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Conic hull

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.
Figure: Left. The shaded set is the conic hull of a set of fifteen points (not
including the origin). Right. The shaded set is the conic hull of the non-convex
kidney-shaped set that is surrounded by a curve.
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Some important convex examples

Hyperplane: A hyperplane is a set of the form

{x |a>x = b}.

It’s also affine.

Halfspace: A (closed) halfspace is a set of the form

{x |a>x 6 b}.

A hyperplane divides Rn into two halfspaces.
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Some important convex examples

Polyhedra: A polyhedron is defined as the solution set of a finite
number of linear equalities and inequalities:

P = {x |a>j x ≤ bj , j = 1, . . . ,m, cT
k x = dk , k = 1, . . . , p}.

Ball: A (Euclidean) ball in Rn has the form

B(xc , r) = {x |‖x − xc‖2 6 r}

where r > 0 and ‖u‖2 = (u>u)1/2 denotes the Euclidean norm.
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Some important convex examples

Norm balls and norm cones:
Suppose ‖ · ‖ is any norm on Rn, a norm ball of radius r and center
xc is given by

{x |‖x − xc‖ 6 r}.
The norm cone associated with the norm ‖ · ‖ is the set

C = {(x , t)|‖x‖ 6 t} ⊆ Rn+1.

It’s a convex cone.
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Some important convex examples

The positive semidefinite cone:
The set of symmetric n × n matrices Sn:

Sn = {X ∈ Rn×n|X = X>},

the set of symmetric positive semidefinite matrices Sn
+:

Sn
+ = {X ∈ Sn|X � 0},

and the set of symmetric positive definite matrices Sn
++:

Sn
++ = {X ∈ Sn|X � 0}

are all convex.
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Proper cones and generalized inequalities

A cone K ⊆ Rn is called a proper cone if it satisfies the following:

K is convex.

K is closed.

K is solid, which means it has nonempty interior.

K is pointed, which means that it contains no line, i.e.,

x ∈ K and − x ∈ K ⇒ x = 0.

A proper cone K can be used to define a generalized inequality:

x �K y ⇐⇒ y − x ∈ K ,

which is a partial ordering on Rn. Similarly, we define an associated strict
partial ordering by

x ≺K y ⇐⇒ y − x ∈ intK
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Properties of generalized inequalities

If x �K y and u �K v , then x + u �K y + v .

If x �K y and y �K z then x �K z .

If x �K y and α > 0 then αx �K αy .

x �K x .

If x �K y and y �K x then x = y .

If xi �K yi for i = 1, 2, . . . , xi → x and yi → y as i →∞, then
x �K y .
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Minimum and minimal elements

x ∈ S is the minimum element of S (with respect to the generalized
inequality �K ) if for every y ∈ S we have x �K y , i.e.,

S ⊆ x + K ,

where x + K = {x + y |y ∈ K}.

x ∈ S is a minimal element of S (with respect to the generalized
inequality �K ) if y ∈ S , y �K x only if y = x , i.e.,

(x − K ) ∩ S = {x},

where x − K = {x − y |y ∈ K}.

Maximum element and maximal element are defined in a similar way.
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Minimum and minimal elements
46 2 Convex sets

x1

x2S1

S2

Figure 2.17 Left. The set S1 has a minimum element x1 with respect to
componentwise inequality in R2. The set x1 + K is shaded lightly; x1 is
the minimum element of S1 since S1 ⊆ x1 + K. Right. The point x2 is a
minimal point of S2. The set x2 −K is shown lightly shaded. The point x2

is minimal because x2 −K and S2 intersect only at x2.

which corresponds to the set of ellipsoids that contain the points v1, . . . , vk. The
set S does not have a minimum element: for any ellipsoid that contains the points
v1, . . . , vk we can find another one that contains the points, and is not comparable
to it. An ellipsoid is minimal if it contains the points, but no smaller ellipsoid does.
Figure 2.18 shows an example in R2 with k = 2.

2.5 Separating and supporting hyperplanes

2.5.1 Separating hyperplane theorem

In this section we describe an idea that will be important later: the use of hyper-
planes or affine functions to separate convex sets that do not intersect. The basic
result is the separating hyperplane theorem: Suppose C and D are two convex sets
that do not intersect, i.e., C ∩ D = ∅. Then there exist a 6= 0 and b such that
aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D. In other words, the affine function
aTx− b is nonpositive on C and nonnegative on D. The hyperplane {x | aTx = b}
is called a separating hyperplane for the sets C and D, or is said to separate the
sets C and D. This is illustrated in figure 2.19.

Proof of separating hyperplane theorem

Here we consider a special case, and leave the extension of the proof to the gen-
eral case as an exercise (exercise 2.22). We assume that the (Euclidean) distance
between C and D, defined as

dist(C,D) = inf{‖u− v‖2 | u ∈ C, v ∈ D},

(a)
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(b)

Figure: Let K = {(u, v)|u, v > 0}. (a) x1 is the minimum element of S1. (b) x2
is a minimal element of S2.
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Minimum and minimal elements

If x is the minimum element of S , then x must be a minimal element of S
(with respect to the generalized inequality �K ).

Brief proof: Suppose S ⊆ x + K , and z ∈ (x − K ) ∩ S , i.e., ∃y ∈ K
such that z = x − y . By z ∈ S ⊆ x + K , there exists w ∈ K such
that z = x + w . Then we have w = −y , which leads to −w = y ∈ K
and w ∈ K . Since K is a proper cone, w = 0 and z = x .

But the reverse proposition doesn’t hold.

Simple example: Let K = {(u, v)|u, v > 0} and L = {(x , y)|x = −y}.
Then every point of L is a minimal element, but none of them is the
minimum element of L.
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Definition

Definition (convex function)

A function f : Rn → R is convex if domf is a convex set and if
∀x , y ∈ domf and θ with 0 6 θ 6 1, we have

f (θx + (1− θ)y) 6 θf (x) + (1− θ)f (y). (1)

A function is strictly convex if strict inequality holds in (1) whenever
x 6= y and 0 < θ < 1.

We say f is concave if −f is convex, and strictly concave if −f is strictly
convex.
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Definition

Geometrically, Eq.(1) means that the line segment between (x , f (x)) and
(y , f (y)) lies above the graph of f (as shown in Fig.4).

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x 6= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.Figure: Graph of a convex function.
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First-order conditions

Suppose f is differentiable, i.e., its gradient ∇f exists at each point in
domf .

Function f is convex if and only if domf is convex and for
∀x , y ∈ domf , the following holds:

f (y) > f (x) +∇f (x)>(y − x).

Remark. As a simple result, if ∇f (x∗) = 0, then for all y ∈ domf ,
f (y) > f (x∗), i.e., x∗ is a global minimizer of the function f .
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First-order conditions

3.1 Basic properties and examples 69

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

Figure 3.2 If f is convex and differentiable, then f(x)+∇f(x)T (y−x) ≤ f(y)
for all x, y ∈ dom f .

is given by

ĨC(x) =

{
0 x ∈ C
∞ x 6∈ C.

The convex function ĨC is called the indicator function of the set C.

We can play several notational tricks with the indicator function ĨC . For example
the problem of minimizing a function f (defined on all of Rn, say) on the set C is the
same as minimizing the function f + ĨC over all of Rn. Indeed, the function f + ĨC

is (by our convention) f restricted to the set C.

In a similar way we can extend a concave function by defining it to be −∞
outside its domain.

3.1.3 First-order conditions

Suppose f is differentiable (i.e., its gradient ∇f exists at each point in dom f ,
which is open). Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) + ∇f(x)T (y − x) (3.2)

holds for all x, y ∈ dom f . This inequality is illustrated in figure 3.2.
The affine function of y given by f(x)+∇f(x)T (y−x) is, of course, the first-order

Taylor approximation of f near x. The inequality (3.2) states that for a convex
function, the first-order Taylor approximation is in fact a global underestimator of
the function. Conversely, if the first-order Taylor approximation of a function is
always a global underestimator of the function, then the function is convex.

The inequality (3.2) shows that from local information about a convex function
(i.e., its value and derivative at a point) we can derive global information (i.e., a
global underestimator of it). This is perhaps the most important property of convex
functions, and explains some of the remarkable properties of convex functions and
convex optimization problems. As one simple example, the inequality (3.2) shows
that if ∇f(x) = 0, then for all y ∈ dom f , f(y) ≥ f(x), i.e., x is a global minimizer
of the function f .

Figure: The tangent to a convex function.
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First-order conditions

Function f is strictly convex if and only if domf is convex and for
∀x , y ∈ domf , x 6= y , we have

f (y) > f (x) +∇f (x)>(y − x).

Correspondingly, f is concave if and only if domf is convex and for
∀x , y ∈ domf , we have

f (y) 6 f (x) +∇f (x)>(y − x).
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Second-order conditions

Assume that f is twice differentiable.

Function f is convex if and only if domf is convex and for
∀x ∈ domf ,

∇2f (x) � 0.

Similarly, f is concave if and only if domf is convex and ∇2f (x) � 0
for ∀x ∈ domf .

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 35 / 203



Second-order conditions

Strict convexity can be partially characterized by second-order conditions.

If ∇2f (x) � 0 for ∀x ∈ domf , then f is strictly convex.

However, the converse is not true. For example, f : R→ R given by
f (x) = x4 is strictly convex but has zero second derivative at x = 0.
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Examples

Exponential:
eax is convex on R, for any a ∈ R.

Powers:
xa is convex on R++ when a > 1 or a 6 0, and concave for 0 6 a 6 1.

Powers of absolute value:
|x |p, for p > 1, is convex on R.

Logarithm:
log x is concave on R++.

Negative entropy:
x log x is convex on R+, where 0 log 0 defined to be 0.
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Examples

Norms:
Every norm on Rn is convex.

Max function:
f (x) = max{x1, . . . , xn} is convex on Rn.

Log-sum-exp:
Then function f (x) = log(ex1 + . . .+ exn) is convex on Rn. This
function can be interpreted as a differentiable approximation of the
max function, since for all x ,

max{x1, . . . , xn} 6 f (x) 6 max{x1, . . . , xn}+ log n.

Geometric mean:
f (x) = (

∏n
i=1 xi )

1/n is concave on domf = Rn
++.

Log-determinant:
f (X ) = log det X is concave on domf = Sn

++.
yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 38 / 203



Jensen’s inequality

The inequality (1), i.e., f (θx + (1− θ)y) 6 θf (x) + (1− θ)f (y), is
sometimes called Jensen’s inequality.

It is easily extended to convex combinations of more than two points:

If f is convex, x1, . . . , xk ∈ domf , and θ1, . . . , θk > 0 with
θ1 + . . .+ θk = 1, then

f (θ1x1 + . . .+ θkxk) 6 θ1f (x1) + . . .+ θk f (xk).
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Operations that preserve convexity

Nonnegative weighted sums:

If f1, . . . , fm are convex and w1, . . . ,wm > 0, then

f = w1f1 + . . .+ wmfm

is convex.

These properties extend to infinite sums and integrals:

If f (x , y) is convex in x for each y ∈ A, and w(y) > 0 for each y ∈ A,
then the function

g(x) =

∫

A
w(y)f (x , y)dy

is convex in x (provided the integral exists).
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Operations that preserve convexity

Composition with an affine mapping:

Suppose f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Define g : Rm → R by

g(x) = f (Ax + b),

with domg = {x |Ax + b ∈ domf }. Then if f is convex, so is g ; if f is
concave, so is g .
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Operations that preserve convexity

Pointwise maximum:

If f1 and f2 are convex functions, then

f (x) = max{f1(x), f2(x)},

with domf =domf1 ∩ domf2, is also convex.

Extension to the pointwise supremum:

If for each y ∈ A, f (x , y) is convex in x , then

g(x) = sup
y∈A

f (x , y)

is convex in x , where

domg = {x |(x , y) ∈ domf for all y ∈ A, sup
y∈A

f (x , y) <∞}.
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Functions closed to convex functions

Quasi-convex function: A function f : Rn → R such that its domain
and all its sublevel sets

Sα = {x ∈ domf |f (x) 6 α}, α ∈ R

are convex.

Log-concave function: A function f : Rn → R such that
f (x) > 0,∀x ∈ domf and log f is concave.
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Outline

1 Convex Optimization
Convex Set and Convex Function
Convex Optimization and Algorithms

2 Sparse Optimization
Compressed Sensing
Sparse Modeling
Sparse Optimization Algorithms
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Basic terminology

min f0(x)
s.t. fi (x) 6 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
(2)

x ∈ Rn the optimization variable
f0 : Rn → R the objective function or cost function
fi (x) 6 0 the inequality constraints
fi : Rn → R the inequality constraint functions
hj(x) = 0 the equality constraints
hj : Rn → R the equality constraint functions

If there are no constraints (i.e., m = p = 0) we say the problem is
unconstrained.

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 45 / 203



Basic terminology

The domain of the optimization problem (2) is given as

D =
m⋂

i=0

domfi ∩
p⋂

j=1

domhj .

A point x ∈ D is feasible if fi (x) 6 0, i = 1, . . . ,m, and
hj(x) = 0, j = 1, . . . , p.

The problem (2) is said to be feasible if there exists at least one
feasible point, and infeasible otherwise.
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Basic terminology

The optimal value v∗ of the problem (2) is defined as

v∗ = inf{f0(x)|fi (x) 6 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}

If the problem is infeasible, we have v∗ =∞.

We say x∗ is an optimal point, or solves the problem (2), if x∗ is
feasible and f0(x∗) = v∗.

We say a feasible points x is locally optimal if there is a constant
δ > 0 such that

f0(x) = inf{f0(z)|fi (z) 6 0, i = 1, . . . ,m,

hj(z) = 0, j = 1, . . . , p, ‖z − x‖2 6 δ}.
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Convex optimization

A convex optimization problem is one of the form

min f0(x)
s.t. fi (x) 6 0, i = 1, . . . ,m

a>j x = bj , j = 1, . . . , p
(3)

where f0, . . . , fm are convex functions.

Any locally optimal point of a convex optimization problem is also
globally optimal.
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An optimality criterion for differentiable f0

Suppose that the objective f0 in a convex optimization problem is
differentiable. Let X denote the feasible set, i.e.,

X = {x |fi (X ) 6 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , p}.

Then x is optimal if and only if x ∈ X and

∇f0(x)>(y − x) > 0, y ∈ X . (4)
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An optimality criterion for differentiable f0

For an unconstrained problem, the condition (4) reduces to

∇f0(x) = 0 (5)

for x to be optimal.
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An optimality criterion for differentiable f0

For a convex problem with equality constraints only, i.e.,

min f0(x)

s.t. Ax = b

We assume that the feasible set is nonempty. The optimality
condition can be expressed as:

∇f0(x)>u > 0 for all u ∈ N (A).

In other words,
∇f0(x) ⊥ N (A).
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Linear optimization problems

A general linear program (LP) has the form

min c>x + d

s.t. Gx ≤ h

Ax = b

(6)

where G ∈ Rm×n and A ∈ Rp×n. It is common to omit the constant d in
the objective function.
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Quadratic optimization problems

A convex optimization problem is called quadratic program (QP) if it has
the form

min
1

2
x>Px + q>x + r

s.t. Gx ≤ h

Ax = b

(7)

where P ∈ Sn
+,G ∈ Rm×n, and A ∈ Rp×n.

QPs include LPs as a special case by taking P = 0.
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Quadratic optimization problems

If the objective in (3) as well as the inequality constraint functions are
(convex) quadratic, as in

min
1

2
x>P0x + q>0 x + r0

s.t.
1

2
x>Pix + q>i x + ri 6 0, i = 1, . . . ,m

Ax = b

(8)

where Pi ∈ Sn
+, i = 0, 1, . . . ,m, the problem is called a quadratically

constrained quadratic program (QCQP).

QCQPs include QPs as a special case by taking Pi = 0 for i = 1, . . . ,m.
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Second-order cone programming

A problem that is closely related to quadratic programming is the
second-order cone program (SOCP):

min f >x

s.t. ‖Aix + bi‖2 6 c>i x + di , i = 1, . . . ,m

Fx = g

(9)

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, and F ∈ Rp×n.

When ci = 0, i = 1, . . . ,m, the SOCP is equivalent to a QCQP. However,
second-order cone programs are more general than QCQPs (and of course,
LPs).
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Transform a QCQP into an SOCP

For a QCQP problem (8), let y be an auxiliary variable with constraint:

1

2
x>P0x + q>0 x + r0 6 y ,

then (8) becomes

min y

s.t.
1

2
x>Pix + q>i x + ri 6 0, i = 1, . . . ,m

1

2
x>P0x + q>0 x + r0 − y 6 0

Ax = b

whose objective is linear. To transform it into an SOCP, we need only
translate quadratic constraints into second-order conic ones.
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Transform a QCQP into an SOCP

For a quadratic constraint

1

2
xTPx + q>x + r 6 0

with P ∈ Sn
+, let A1 ∈ Sn

+ be the square root of P, i.e., A1A1 = P. Let

A =

[
A1

q>

]
, b =




0
...
0

r + 1
2


 ∈ Rn+1,

then the constraint is equivalent to

‖Ax + b‖2 6 −q>x − r +
1

2
.
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The Lagrangian

Consider an optimization problem in the standard form (2):

min f0(x)

s.t. fi (x) 6 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p.

(10)

We assume its domain D =
⋂m

i=0 domfi ∩
⋂p

j=1 domhj is nonempty, and
denote the optimal value of (10) by v∗, but do not assume the problem
(10) is convex.
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The Lagrangian

The basic idea of Lagrangian duality is to take the constraints in (10) into
account by augmenting the objective function with a weighted sum of the
constraint functions.
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The Lagrangian

We define the Lagrangian L : Rn × Rm × Rp → R associated with the
problem (10) as

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x)

with domL = D × Rm × Rp.

Refer to λi as the Lagrange multiplier associated with the ith
inequality constraint fi (x) 6 0.

Refer to νj as the Lagrange multiplier associated with the jth equality
constraint hj(x) = 0.

The vectors λ and ν are called the dual variables or Lagrange
multiplier vectors associated with the problem (10).
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The Lagrange dual function

We define the Lagrange dual function (or just dual function)
g : Rm × Rp → R as

g(λ, ν) = inf
x∈D

L(x , λ, ν) = inf
x∈D


f0(x) +

m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x)


 .

Since the dual function is the pointwise infimum of a family of affine
functions of (λ, ν), it is concave, even when the problem (10) is not
convex.
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Lower bounds on optimal value

For any λ ≥ 0 and any ν we have

g(λ, ν) 6 v∗. (11)

Proof.

Suppose x̃ is a feasible point for (10), then we have

m∑

i=1

λi fi (x̃) +

p∑

j=1

νjhj(x̃) 6 0.

Hence
g(λ, ν) = inf

x∈D
L(x , λ, ν) 6 L(x̃ , λ, ν) 6 f0(x̃).

Since g(λ, ν) 6 f0(X̃ ) holds for every feasible point x̃ , the inequality (11)
follows.
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Lower bounds on optimal value

The dual function gives a nontrivial lower bound on v∗ only when λ ≥ 0
and (λ, ν) ∈ domg , i.e., g(λ, ν) > −∞.

We refer to a pair (λ, ν) with λ ≥ 0 and (λ, ν) ∈ domg as dual feasible.
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Linear approximation interpretation

Let I− : R→ R ∪ {∞} and I0 : R→ R ∪ {∞} to be the indicator function
for the nonpositive reals and {0} respectively:

I−(u) =

{
0 u 6 0
∞ u > 0

, I0(u) =

{
0 u = 0
∞ u 6= 0

.

Then the original problem (10) can be rewritten as an unconstrained
problem:

min f0(x) +
m∑

i=1

I−(fi (x)) +

p∑

j=1

I0(hj(x)). (12)
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Linear approximation interpretation

We replace the function I−(u) with the linear function λiu, where λi > 0,
and the function I0(u) with νju. The objective becomes the Lagrangian
function, i.e.,

min L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) +

p∑

j=1

νjhj(x).

In this formulation, we use a linear or “soft” displeasure function in
place of I− and I0.

Linear function is an underestimator of the indicator function. Since
λiu 6 I−(u) and νju 6 I0(u) for all u, we see immediately that the
dual function yields a lower bound on the optimal value of the original
problem.
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The Lagrange dual problem

To attain the best lower bound that can be obtained from the Lagrange
dual function leads to the optimization problem

max g(λ, ν)

s.t. λ ≥ 0
(13)

This problem is called the Lagrange dual problem associated with the
problem (10). Correspondingly, the problem (10) is called the primal
problem.
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The Lagrange dual problem

The term dual feasible, to describe a pair (λ, ν) with λ ≥ 0 and
g(λ, ν) > −∞, now makes sense.

We refer to (λ∗, ν∗) as dual optimal or optimal Lagrange multipliers if
they are optimal for the Lagrange dual problem (13).

The Lagrange dual problem (13) is a convex optimization problem no
matter the primal problem is convex or not, since the objective to be
maximized is concave and the constraint is convex.
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Weak duality

For the optimal value of the Lagrange dual problem g∗, we have

g∗ 6 v∗. (14)

This property is called weak duality.

v∗ − g∗ is the optimal duality gap of the original problem.
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Strong duality and Slater’s constraint qualification

If the equality
g∗ = v∗ (15)

holds, then we say that stong duality holds.

Strong duality does not, in general, hold.

For a convex primal problem, there are many additional conditions on
the primal problem, under which strong duality holds.
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Strong duality and Slater’s constraint qualification

One simple condition is Slater’s condition:

There exists an x ∈ relintD such that

fi (x) < 0, i = 1, . . . ,m, Ax = b, (16)

where relintD = {x ∈ D|B(x , r) ∩ affD ⊆ D for some r > 0}. Such a
point is called strictly feasible.

Slater’s theorem states that strong duality holds if Slater’s condition holds
(and the problem is convex).
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Optimality conditions

Dual feasible points allow us to bound how suboptimal a given feasible
point is, without knowing the exact value of v∗.

If x is primal feasible and (λ, ν) is dual feasible, then

f0(x)− v∗ 6 f0(x)− g(λ, ν)

and
v∗ ∈ [g(λ, ν), f0(x)], g∗ ∈ [g(λ, ν), f0(x)].

It leads to

g(λ, ν) = f0(x) =⇒ v∗ = f0(x) = g(λ, ν) = g∗.

We refer to f0(x)− g(λ, ν) as the duality gap associated with the primal
feasible point x and dual feasible point (λ, ν).
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Complementary slackness

Suppose that the primal and dual optimal values are attained and equal,
let x∗ be a primal optimal and (λ∗, ν∗) be a dual optimal points, then

f0(x∗) = g(λ∗, ν∗)

= inf
x


f0(x) +

m∑

i=1

λ∗i fi (x) +

p∑

j=1

ν∗j hj(x)




6 f0(x∗) +
m∑

i=1

λ∗i fi (x∗) +

p∑

j=1

ν∗j hj(x∗)

6 f0(x∗)
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Complementary slackness

By λ∗i > 0, fi (x∗) 6 0, i = 1, . . . ,m, we have

λ∗i fi (x∗) = 0, i = 1, . . . ,m. (17)

This condition is known as complementary slackness.

We can express it as

λ∗i > 0 =⇒ fi (x∗) = 0,

fi (x∗) < 0 =⇒ λ∗i = 0.
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KKT optimality conditions

We now assume that the functions f0, . . . , fm, h1, . . . , hp are differentiable.
As above, let x∗ and (λ∗, ν∗) be any primal and dual optimal points with
zero duality gap.

Since x∗ minimizes L(x , λ∗, ν∗) over x , it follows

∇f0(x∗) +
m∑

i=1

λ∗i∇fi (x∗) +

p∑

j=1

ν∗j ∇hj(x∗) = 0.
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KKT optimality conditions

Together with constraints and complementary slackness, we have





fi (x∗) 6 0, i = 1, . . . ,m
hj(x∗) = 0, j = 1, . . . , p
λ∗i > 0, i = 1, . . . ,m
λ∗i fi (x∗) = 0, i = 1, . . . ,m
∇f0(x∗) +

∑m
i=1 λ

∗
i∇fi (x∗) +

∑p
j=1 ν

∗
j ∇hj(x∗) = 0

(18)

which are called the Karush-Kuhn-Tucker (KKT) conditions.
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KKT optimality conditions

For any optimization problem with differentiable objective and constraint
functions for which strong duality obtains, any pair of primal and dual
optimal points must satisfy the KKT conditions.

When the primal problem is convex, the KKT conditions are also sufficient
for the points to be primal and dual optimal.
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About optimization algorithm

There is no analytical formula for the solution of convex optimization
problems, not to mention general nonlinear optimization problems.

Thus we describe numerical methods for solving convex optimization
problems in the section.
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Recall: descent methods

To solve an unconstrained optimization problem

min f (x)

where f (x) is differentiable and convex, we usually employ descent
methods.
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Recall: descent methods

Given a starting point x (0), a descent method produces a sequence
x (k), k = 1, . . . , where

x (k+1) = x (k) + αkδ
(k)
x , f (x (k+1)) < f (x (k)). (19)

We usually drop the superscripts and use the notation x := x + αδx
to focus on one iteration of an algorithm. α > 0 is called step size
and δx called search direction. Different methods differ from choices
of α or/and δx .
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Recall: gradient descent and Newton’s method

Given a descent direction δx , we usually use line search to determine step
size α.

Different search directions:

Negative gradient:
δx = −∇f (x).

Normalized steepest descent direction (with respect to the norm ‖ · ‖):

δxnsd = arg min{∇f (x)>v | ‖v‖ = 1}.

Newton step:
δxnt = −∇2f (x)−1∇f (x).
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Equality constrained minimization problems

A convex optimization problem with equality constraints has the form

min f (x)

s.t. Ax = b,
(20)

where f : Rn → R is convex and twice continuously differentiable, and
A ∈ Rp×n with rankA = p < n. We assume that an optimal solution x∗

exists and v∗ = f (x∗).
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KKT condition

Recall the KKT conditions for (20): a point x∗ ∈ domf is optimal if and
only if there is a multiplier ν∗ ∈ Rp such that

Ax∗ = b, ∇f (x∗) + A>ν∗ = 0. (21)

The first set of equations, Ax∗ = b, are called the primal feasibility
equations.
The second set of equations, ∇f (x∗) + A>ν∗ = 0, are called the dual
feasibility equations.
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Newton’s method with equality constraints

Newton’s method with equality constraints is almost the same as
Newton’s method without constraints, except for two differences:

The initial point must be feasible (i.e., x ∈ domf and Ax = b).

The definition of Newton step δxnt is modified to take the equality
constraints into account.
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The Newton step

To derive the Newton step δxnt for problem (20) at the feasible point x , we
replace the objective with its second-order Taylor approximation near x

min f̂ (x + s) = f (x) +∇f (x)>s +
1

2
s>∇2f (x)s

s.t. A(x + s) = b
(22)

with variable s. Suppose δxnt is optimal for (22). By KKT conditions,
there exists associated optimal dual variable w ∈ Rp such that

[
∇2f (x) A>

A 0

] [
δxnt
w

]
=

[
−∇f (x)

0

]
. (23)

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 84 / 203



The Newton step

We can also derive the Newton Step δxnt by simply replacing x∗ and ν∗ in
the KKT conditions for problem (20):

Ax∗ = b, ∇f (x∗) + A>ν∗ = 0

with x + δxnt and w , respectively, and replace the gradient term in the
second equation by its linearized approximation near x , to obtain the
equations

A(x + δxnt) = b,

∇f (x + δxnt) + A>w ≈ ∇f (x) +∇2f (x)δxnt + A>w = 0.
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The Newton step

Using Ax = b, these become

Aδxnt = 0, ∇2f (x)δxnt + A>w = −∇f (x),

which are precisely the equations (23).
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The Newton decrement

The Newton decrement is defined as

κ(x) = (δ>xnt∇2f (x)δxnt)
1/2.

Since
d

dα
f (x + αδxnt)

∣∣∣∣
α=0

= ∇f (x)>δxnt = −κ(x)2,

the algorithm should terminate when κ(x) is small.
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Newton’s method with equality constraints

Algorithm. Newton’s method for equality constrained minimization.

given starting point x ∈ domf with Ax = b, tolerance ε > 0.
repeat

1 Compute the Newton step and decrement δxnt , κ(x).

2 Stopping criterion. quit if κ2/2 6 ε.

3 Line search Choose step size α by backtracking line search.

4 update. x := x + αδxnt .
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Infeasible start Newton method

Newton’s method described above is a feasible descent method. Now we
describe a generalization of Newton’s method that works with initial
points and iterates that are not feasible.
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Newton step at infeasible points

Let x denote the current point, which we do not assume to be feasible,
but we do assume satisfies x ∈ domf .

Our goal is to find a step δx so that x + δx satisfies the optimality
conditions (21), i.e., x + δx ≈ x∗.
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Newton step at infeasible points

Similarly, we substitute x + δx for x∗ and µ for ν∗ in

Ax∗ = b, ∇f (x∗) + A>ν∗ = 0

and use the first-order approximation for the gradient to obtain

A(x + δx) = b,

∇f (x + δx) + A>µ ≈ ∇f (x) +∇2f (x)δx + A>µ = 0.

This is a set of linear equations for δx and µ,

[
∇2f (x) A>

A 0

] [
δx
µ

]
= −

[
∇f (x)
Ax − b

]
. (24)
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Interpretation as primal-dual Newton step

We express the optimality conditions (21) as r(x∗, ν∗) = 0, where
r : Rn × Rp 7→ Rn × Rp is defined as

r(x , ν) = (rdual(x , ν), rpri(x , ν)).

Here
rdual(x , ν) = ∇f (x) + A>ν, rpri(x , ν) = Ax − b

are the dual residual and primal residual, respectively.
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Interpretation as primal-dual newton step

The first-order Taylor approximation of r , near our current point
y = (x , ν), is

r(y + δy ) ≈ r̂(y + δy ) = r(y) + J[r(y)]δy ,

where J[r(y)] ∈ R(n+p)×(n+p) is the derivative (Jacobian) of r ,
evaluated at y .

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 93 / 203



Interpretation as primal-dual Newton step

We define δypd as the primal-dual Newton step for which
r̂(y + δy ) = 0, i.e.,

J[r(y)]δypd = −r(y). (25)

Note that δypd = (δxpd , δνpd) gives both a primal and a dual step.
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Interpretation as primal-dual Newton step

Equations (25) can be expressed as

[
∇2f (x) A>

A 0

] [
δxpd
δνpd

]
= −

[
rdual
rpri

]
= −

[
∇f (x) + A>ν

Ax − b

]
. (26)

Writing ν + δνpd as µ, we find it coincide with (24)

[
∇2f (x) A>

A 0

] [
δx
µ

]
= −

[
∇f (x)
Ax − b

]
.
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Residual norm reduction property

The Newton direction at an infeasible point is not necessarily a descent
direction for f .

The primal-dual interpretation, however, shows that the norm of the
residual decreases in the Newton direction. By calculation we have

d

dα
‖r(y + αδypd)‖2

∣∣∣∣
α=0

= −‖r(y)‖2.

This allows us to use ‖r‖2 to measure the progress of the infeasible start
Newton method.
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Infeasible start Newton method

Algorithm. Infeasible start Newton method.

given starting point x ∈ domf with Ax = b, tolerance ε > 0,
τ ∈ (0, 1/2), γ ∈ (0, 1).
repeat

1 Compute primal and dual Newton steps δxnt , δνnt .

2 Backtracking line search on ‖r‖2.
α := 1.
while ‖r(x + αδxnt , ν + αδνnt)‖2 > (1− τα)‖r(x , ν)‖2, α := γα.

3 Update. x := x + αδxnt , ν := ν + αδνnt .

until Ax = b and ‖r(x , ν)‖2 6 ε.
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Inequality constrained minimization problems

The convex optimization problems that include inequality constraints:

min f0(x)
s.t. fi (x) 6 0, i = 1, . . . ,m

Ax = b
(27)

where f0, . . . , fm : Rn → R are convex and twice continuously
differentiable, and A ∈ Rp×n with rankA = p < n.

We assume that an optimal x∗ exists and denote the optimal value
f0(x∗) as v∗.
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Assumptions

We also assume that the problem is strictly feasible, i.e., ∃x ∈ D satisfying
Ax = b and fi (x) < 0 for i = 1, . . . ,m.

This means that Slater’s constraint qualification holds, and therefore
strong duality holds, so there exists dual optimal λ∗ ∈ Rm, ν∗ ∈ Rp, which
together with x∗ satisfy the KKT conditions:

Ax∗ = b, fi (x∗) 6 0, i = 1, . . . ,m
λ∗ > 0

∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi (x∗) + A>ν∗ = 0

λ∗i fi (x∗) = 0, i = 1, . . . ,m.

(28)
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About interior-point method

Interior-point methods solve the problem (27) by applying Newton’s
method to a sequence of equality constrained problems, or to a sequence
of modified versions of the KKT conditions.

We will introduce two particular interior-point algorithms:

The barrier method

The primal-dual interior-point method
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Logarithmic barrier function

Rewrite the problem (27) and make the inequality constraints implicit in
the objective:

min f0(x) +
m∑

i=1

I−(fi (x))

s.t. Ax = b,

(29)

where

I−(u) =

{
0 u 6 0
∞ u > 0.
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Logarithmic barrier function

The basic idea of the barrier method is to approximate the indicator
function I− by the function

Î−(u) = −(1/t) log(−u), domÎ− = −R++

where t is a parameter that sets the accuracy of the approximation.

Obviously, Î− is convex, nondecreasing and differentiable.
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Logarithmic barrier function
11.2 Logarithmic barrier function and central path 563

u
−3 −2 −1 0 1

−5

0

5

10

Figure 11.1 The dashed lines show the function I−(u), and the solid curves

show Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.

The problem (11.3) has no inequality constraints, but its objective function is not
(in general) differentiable, so Newton’s method cannot be applied.

11.2.1 Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I−
by the function

Î−(u) = −(1/t) log(−u), dom Î− = −R++,

where t > 0 is a parameter that sets the accuracy of the approximation. Like
I−, the function Î− is convex and nondecreasing, and (by our convention) takes

on the value ∞ for u > 0. Unlike I−, however, Î− is differentiable and closed:
it increases to ∞ as u increases to 0. Figure 11.1 shows the function I−, and

the approximation Î−, for several values of t. As t increases, the approximation
becomes more accurate.

Substituting Î− for I− in (11.3) gives the approximation

minimize f0(x) +
∑m

i=1 −(1/t) log(−fi(x))
subject to Ax = b.

(11.4)

The objective here is convex, since −(1/t) log(−u) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

φ(x) = −
m∑

i=1

log(−fi(x)), (11.5)

Figure: The dashed lines show the function I−(u), and the solid curves show
Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives the best
approximation.
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Logarithmic barrier function

Substituting Î− for I− in (29) gives the approximation

min f0(x) +
m∑

i=1

−(1/t) log(−fi (x))

s.t. Ax = b.

(30)

The function

φ(x) = −
m∑

i=1

log(−fi (x)), (31)

is called the logarithmic barrier for the problem (27). Its domain is the set
of points that satisfy the inequality constraints of (27) strictly:

domφ = {x ∈ Rn|fi (x) < 0, i = 1, . . . ,m}.
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Logarithmic barrier function

The gradient and Hessian of φ are given by

∇φ(x) =
m∑

i=1

1

−fi (x)
∇fi (x),

∇2φ(x) =
m∑

i=1

1

fi (x)2
∇fi (x)∇fi (x)> +

m∑

i=1

1

−fi (x)
∇2fi (x).
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Central path

We multiply the objective of (30) by t, and consider the equivalent
problem

min tf0(x) + φ(x)

s.t. Ax = b.
(32)

We assume problem (32) can be solved via Newton’s method, and, that it
has a unique solution for each t > 0.
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Central path

For t > 0 we define x∗(t) = arg min
x
{tf0(x) + φ(x) s.t. Ax = b} as the

solution of (32).

The central path associated with problem (27) is defined as the set of
points {x∗(t) | t > 0}, which we call the central points.
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Central path

Points on the central path are characterized by the following necessary and
sufficient conditions: x∗(t) is strictly feasible, i.e., satisfies

Ax∗(t) = b, fi (x∗(t)) < 0, i = 1, . . . ,m

and ∃ν̂ ∈ Rp such that

0 = t∇f0(x∗(t)) +∇φ(x∗(t)) + A>ν̂

= t∇f0(x∗(t)) +
m∑

i=1

1

−fi (x∗(t))
∇fi (x∗(t)) + A>ν̂

(33)

holds.
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Dual points from central path

Every central point yields a dual feasible point.

Define

λ∗i (t) = − 1

tfi (x∗(t))
, i = 1, . . . ,m, ν∗(t) =

ν̂

t
. (34)

Because fi (x∗(t)) < 0, i = 1, . . . ,m, it’s clear that λ∗(t) > 0.
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Dual points from central path

By expressing (33) as

∇f0(x∗(t)) +
m∑

i=1

λ∗i (t)∇fi (x∗(t)) + A>ν∗(t) = 0,

we see that x∗(t) minimizes the Lagrangian

L(x , λ, ν) = f0(x) +
m∑

i=1

λi fi (x) + ν>(Ax − b)

for λ = λ∗(t) and ν = ν∗(t). Thus (λ∗(t), ν∗(t)) is a dual feasible pair.
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Dual points from central path

Therefore the dual function g(λ∗(t), ν∗(t)) = min
x

L(x , λ∗(t), ν∗(t)) is

finite and

g(λ∗(t), ν∗(t)) = f0(x∗(t)) +
m∑

i=1

λ∗i (t)fi (x∗(t)) + ν∗(t)>(Ax∗(t)− b)

= f0(x∗(t))−m/t.

As an important consequence, we have

f0(x∗(t))− v∗ 6 m/t.

This confirms that x∗(t) converge to an optimal point as t →∞.
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Interpretation via KKT conditions

Since we have assumed that x∗(t) is the unique solution to problem (32)
for each t > 0, a point is equal to x∗(t) if and only if ∃λ, ν such that

Ax = b, fi (x) 6 0, i = 1, . . . ,m
λ > 0

∇f0(x) +
∑m

i=1 λi∇fi (x) + A>ν = 0
−λi fi (x) = 1/t, i = 1, . . . ,m.

(35)

The only difference between (35) and the KKT condition (28) is that the
complementarity condition −λi fi (x) = 0 is replaced by the condition
−λi fi (x) = 1/t.

In particular, for large t, x∗(t) and λ∗(t), ν∗(t) ‘almost’ satisfy the
KKT optimality conditions for the problem (27).
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The barrier method

Algorithm. Barrier method

given strictly feasible x , t := t(0) > 0, γ > 1, tolerance ε > 0.
repeat

1 Centering step. Starting at x, compute x∗(t) by minimizing
tf0(x) + φ(x), subject to Ax = b.

2 Update. x := x∗(t)

3 Stopping criterion. quit if m/t < ε.

4 Increase t. Let t := γt.

An execution of step 1 is called an outer iteration. We assume that
Newton’s method is used in step 1, and we refer to the Newton iterations
or steps executed during the centering step as inner iterations.
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The barrier method

Computing x∗(t) exactly is not necessary.

The choice of the parameter γ involves a trade-off:
If γ is small (i.e., near 1) then centering step will be easy since the
previous iterate x is a very good starting point but of course there will
be a large number of outer iterations.
On the other hand, a large γ resulting in fewer outer iterations but
more inner iterations.

Choice of t(0):
If t(0) is chosen too large, the first outer iteration will require too
many iterations.
If t(0) is chosen too small, the algorithm will require extra outer
iterations.
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Newton step for modified KKT equations

In the step 1 of the barrier method, the Newton step δxnt and associated
dual variable are given by the linear equations

[
t∇2f0(x) +∇2φ(x) A>

A 0

] [
δxnt
νnt

]
= −

[
t∇f0(x) +∇φ(x)

0

]
. (36)

These Newton steps for the centering problem can be interpreted as
Newton steps for directly solving the modified KKT equations

∇f0(x) +
∑m

i=1 λi∇fi (x) + A>ν = 0
−λi fi (x) = 1/t, i = 1, . . . ,m

Ax = b.
(37)
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Newton step for modified KKT equations

Let λi = −1/(tfi (x)). This transforms (37) into

∇f0(x) +
m∑

i=1

1

−tfi (x)
∇fi (x) + A>ν = 0, Ax = b. (38)

For small δx ,

∇f0(x + δx) +
m∑

i=1

1

−tfi (x + δx)
∇fi (x + δx)

≈∇f0(x) +
m∑

i=1

1

−tfi (x)
∇fi (x) +∇2f0(x)δx +

m∑

i=1

1

−tfi (x)
∇2fi (x)δx

+
m∑

i=1

1

tfi (x)2
∇fi (x)∇fi (x)>δx .

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 116 / 203



Newton step for modified KKT equations

Let

H = ∇2f0(x) +
m∑

i=1

1

−tfi (x)
∇2fi (x) +

m∑

i=1

1

tfi (x)2
∇fi (x)∇fi (x)>

g = ∇f0(x) +
m∑

i=1

1

−tfi (x)
∇fi (x).

Observe that

H = ∇f0(x) + (1/t)∇2φ(x), g = ∇f0(x) + (1/t)∇φ(x).

The Newton step for (38) is

Hδx + A>ν = −g , Aδx = 0.

Comparing this with (36) shows that

δx = δxnt , ν =
νnt
t
.
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Feasibility and phase I method

The barrier method requires a strictly feasible starting point x (0).

When such a point is not known, the barrier method is preceded by a
preliminary stage, called phase I, in which a strictly feasible point is
computed and used as the starting point for the barrier method.
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Basic phase I method

To find a strictly feasible solution of inequalities and equalities

fi (x) < 0, i = 1, . . . ,m, Ax = b, (39)

we form and solve the following optimization problem

min s

s.t. fi (x) 6 s, i = 1, . . . ,m

Ax = b

(40)

in the variable x ∈ Rn, s ∈ R. It’s always strictly feasible, and called the
phase I optimization problem associated with the inequality and equality
system (39).
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Basic phase I method

Let v̄∗ be the optimal value of (40).

If v̄∗ < 0, then (39) has a strictly feasible solution. In fact, we can
terminate solving the problem (40) when s < 0.

If v̄∗ > 0, then (39) is infeasible. In fact, we can terminate when a
central point give a positive lower bound of v̄∗ > 0.

If v̄∗ = 0 and the minimum is attained at x∗ and s∗ = 0, then the set
of inequalities is feasible but note strictly feasible. If v̄∗ = 0 and the
minimum is not attained, then the inequalities are infeasible.

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 120 / 203



Primal-dual search direction

The modified KKT conditions (37) can be expressed as rt(x , λ, ν) = 0,
where

rt(x , λ, ν) =



∇f0(x) + J[f (x)]>λ+ A>ν
−diag(λ)f (x)− (1/t)1

Ax − b


 , (41)

and t > 0. Here f : Rn → Rm and J[f ] are given by

f (x) =




f1(x)
...

fm(x)


 , J[f (x)] =



∇f1(x)>

...
∇fm(x)>


 .
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Primal-dual search direction

If x , λ, ν satisfy rt(x , λ, ν) = 0 (and fi (x) < 0), then x = x∗(t), λ = λ∗(t)
and ν = ν∗(t).

The first block component of rt ,

rdual = ∇f0(x) + Df (x)>λ+ A>ν

is called the dual residual.

The last block component, rpri = Ax − b, is called the primal residual.

The middle block

rcent = −diag(λ)f (x)− (1/t)1,

is the centrality residual, i.e., the residual for the modified
complementarity condition.

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 122 / 203



Primal-dual search direction

Let y = (x , λ, ν) denote the current point and δy = (δx , δλ, δν) denote the
Newton step for solving the equation rt(x , λ, ν) = 0, for fixed t where
f (x) < 0, λ > 0.

The Newton step is characterized by

rt(y + δy ) ≈ rt(y) + J[rt(y)]δy = 0.

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 123 / 203



Primal-dual search direction

In terms of x , λ, ν, we have



∇2f0(x) +

∑m
i=1 λi∇2fi (x) J[f (x)]> A>

−diag(λ)J[f (x)] −diag(f (x)) 0
A 0 0





δx
δλ
δν


 = −




rdual
rcent
rpri




(42)
The primal-dual search direction δypd = (δxpd , δλpd , δνpd) is defined as the
solution of (42).
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The surrogate duality gap

In the primal-dual interior-point method the iterates x (k), λ(k) and ν(k) are
not necessarily feasible. We cannot easily evaluate a duality gap as we do
in the barrier method.

Instead, we define the surrogate duality gap, for any x that satisfies
f (x) < 0 and λ > 0, as

η̂(x , λ) = −f (x)>λ.

The surrogate gap η̂ would be the duality gap, if x were primal feasible
and λ, ν were dual feasible. Note that the value of the parameter t
corresponding to the surrogate duality gap η̂ is m/η̂.

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 125 / 203



Primal-dual interior-point method

Algorithm. Primal-dual interior-point method.

given x that satisfies
f1(x) < 0, . . . , fm(x) < 0, λ > 0, γ > 1, εfeas > 0, ε > 0.
repeat

1 Determine t. Set t := γm/η̂.

2 Compute primal-dual search direction δypd .

3 Line search and update.
Determine step length α > 0 and set y := y + αδypd .

until ‖rpri‖2 6 εfeas, ‖rdual‖2 6 εfeas, and η̂ 6 ε.
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Line search in primal-dual interior-point method

The line search in step 3 is a standard backtracking line search.

For a step size α, let

y+ =




x+

λ+

ν+


 =




x
λ
ν


+ α



δxpd
δλpd
δνpd




Let

αmax = sup{α ∈ [0, 1]|λ+ αδλ > 0} = min {1,min{−λi/δλi |δλi < 0}}

to be the largest positive step length the gives λ+ > 0.
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Line search in primal-dual interior-point method

We start backtracking with α = 0.99αmax, and multiply α by β ∈ (0, 1)
until we have f (x+) < 0. We continue multiplying α by β until we have

‖rt(x+, λ+, ν+)‖2 6 (1− τα)‖rt(x , λ, ν)‖2.

Here τ is typically chosen in the range 0.01 to 0.1.
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Exercises

Ex 1. Let C ⊆ Rn be the solution set of a quadratic inequality,

C = {x ∈ Rn|x>Ax + b>x + c 6 0},

with A ∈ Sn, b ∈ Rn, and c ∈ R.

(a) Show that C is convex if A � 0.
(b) Show that the intersection of C and the hyperplane defined by

g>x + h = 0 (where g 6= 0) is convex if A + λgg> � 0 for some λ ∈ R.

Ex 2. Let λ1(X ) > λ2(X ) > . . . > λn(X ) denote the eigenvalues of a
matrix X ∈ Sn. Prove that the maximum eigenvalue λ1(X ) is convex.
Moreover, Show that

∑k
i=1 λi (X ) is convex on Sn. Hint. Use the

variational characterization

k∑

i=1

λi (X ) = sup{tr(V>XV )|V ∈ Rn×k ,V>V = I}.
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Exercises

Ex 3. Find the dual function of the LP

min cT x
s.t. Gx � h

Ax = b.

Give the dual problem, and make the implicit equality constraints
explicit.

Ex 4. Consider the equality constrained least-squares problem

min ‖Ax − b‖22
s.t. Gx = h

where A ∈ Rm×n with rankA = n, and G ∈ Rp×n with rankG = p.
Give the KKT conditions, and derive expressions for the primal
solution x∗ and the dual solution ν∗.
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Exercises

Ex 5. Suppose Q � 0. The problem

min f (x) + (Ax − b)>Q(Ax − b)
s.t. Ax = b

is equivalent to the original equality constrained optimization problem
(20). What is the Newton step for this problem? Is it the same as
that for the original problem?
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Exercises

Ex 6. Suppose we use the infeasible start Newton method to minimize f (x)
subject to a>i x = bi , i = 1, . . . , p.

(a) Suppose the initial point x (0) satisfies the linear equality a>i x (0) = bi .
Show that the linear equality will remain satisfied for future iterates,
i.e., a>i x (k) = bi for all k .

(b) Suppose that one of the equality constraints becomes satisfied at
iteration k , i.e., we have a>i x (k−1) 6= bi , a>i x (k) = bi . Show that at
iteration k , all the equality constraints are satisfied.
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Exercises

Ex 7. Suppose we add the constraint x>x 6 R2 to the problem (27):

min f0(x)
s.t. fi (x) ≤ 0, i = 1, . . . ,m

Ax = b
xT x ≤ R2

Let φ̃ denote the logarithmic barrier function for this modified
problem. Find a > 0 for which ∇2(tf0(x) + φ(x)) � aI holds, for all
feasible x .
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Exercises

Ex 8. Consider the problem (27), with central path x∗(t) for t > 0, defined
as the solution of (32).
For u > p∗, let z∗(u) denote the solution of

min − log (u − f0(x))−∑m
i=1 log (−fi (x))

s.t. Ax = b

Show that the curve define by z∗(u), for u > p∗, is the central path.
(In other words, for each u > p∗, there is a t > 0 for which
x∗(t) = z∗(u), and conversely, for each t > 0, there is a u > p∗ for
which z∗(u) = x∗(t)).
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Sparse Optimization

Many problems of recent interest in statistics and related areas can be
posed in the framework of sparse optimization. Due to the explosion in
size and complexity of modern data analysis (BigData), it is increasingly
important to be able to solve problems with a very large number of
features, training examples, or both.
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Big data era

Electronic commerce data

Social network data

Financial data

Multimedia data

Bioinformatics data

Geometric data

...
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High-dimensional data and sparsity

Techniques:

Statistics (Bayesian/Lasso)

Priors and Transforms

Sparse and Redundant Representations

Low Rank Representations

Optimization (OMP/BP)

...
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Compressed Sensing

In recent years, Compressed Sensing (CS) has attracted considerable
attention in areas of applied mathematics, computer science, and signal
processing [Candes and Tao 2005; Donoho 2006; Bruckstein et al. 2009].
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Compressed Sensing

The central insight of CS is that many signals are sparse, i.e., represented
using only a few non-zero coefficients in a suitable basis or dictionary and
such signals can be recovered from very few measurements (undersampled
data) by an optimization algorithm.
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The Sparsest Solution of Ax = b

(P0) min
x
‖x‖0 s.t. Ax = b. (43)

For the underdetermined linear system of equations Ax = b (a full-rank
matrix A ∈ Rm×n with m << n), the following questions are posed:

Q1: When can uniqueness of the sparsest solution be claimed?

Q2: Can a candidate solution be tested to verify its (global) optimality?

Q3: Can the solution be reliably and efficiently found in practice?

Q4: What performance guarantees can be given for various approximate
and practical solvers?
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Uniqueness via the Spark

Definition 01: The spark of a given matrix A is the smallest number
of columns from A that are linearly dependent.

Theorem 02: If a system of linear equations Ax = b has a solution x
obeying ‖x‖0 < spark(A)/2, this solution is necessarily the sparsest
possible.
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Uniqueness via the Mutual Coherence

Definition 03: The mutual coherence of a given matrix A is the
largest absolute normalized inner product between different columns
from A. Denoting the k-th column in A by ak , the mutual coherence
is given by

µ(A) = max
1≤i 6=j≤n

|aT
i aj |

‖ai‖2‖aj‖2
.

Lemma 04: For any matrix A ∈ Rm×n, the following relationship
holds:

spark(A) > 1 +
1

µ(A)
.

Theorem 05: If a system of linear equations Ax = b has a solution x
obeying ‖x‖0 < (1 + 1/µ(A))/2, this solution is necessarily the
sparsest possible.
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Pursuit Algorithms

Greedy strategies are usually adopted in solving the problem (P0).

The following algorithm is known in the literature of signal processing
by the name Orthogonal Matching Pursuit (OMP).

42 ALFRED M. BRUCKSTEIN, DAVID L. DONOHO, AND MICHAEL ELAD

A greedy strategy abandons exhaustive search in favor of a series of locally op-
timal single-term updates. Starting from x0 = 0 it iteratively constructs a k-term
approximant xk by maintaining a set of active columns—initially empty—and, at
each stage, expanding that set by one additional column. The column chosen at each
stage maximally reduces the residual �2 error in approximating b from the currently
active columns. After constructing an approximant including the new column, the
residual �2 error is evaluated; if it now falls below a specified threshold, the algorithm
terminates.

Exhibit 1 presents a formal description of the strategy and its associated notation.
This procedure is known in the literature of signal processing by the name orthogonal
matching pursuit (OMP), but is very well known (and was used much earlier) by other
names in other fields—see below.

Task: Approximate the solution of (P0): minx ‖x‖0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the error threshold ε0.

Initialization: Initialize k = 0, and set
• The initial solution x0 = 0.
• The initial residual r0 = b−Ax0 = b.
• The initial solution support S0 = Support{x0} = ∅.

Main Iteration: Increment k by 1 and perform the following steps:
• Sweep: Compute the errors ε(j) = minzj ‖ajzj − rk−1‖22 for all j using the

optimal choice z∗j = aTj rk−1/‖aj‖22.
• Update Support: Find a minimizer j0 of ε(j): ∀ j /∈ Sk−1, ε(j0) ≤ ε(j), and

update Sk = Sk−1 ∪ {j0}.
• Update Provisional Solution: Compute xk , the minimizer of ‖Ax−b‖22 subject

to Support{x} = Sk .
• Update Residual: Compute rk = b−Axk .
• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The proposed solution is xk obtained after k iterations.

Exhibit 1. OMP—a GA for approximating the solution of (P0).

If the approximation delivered has k0 nonzeros, the method requires O(k0mn)
flops in general; this can be dramatically better than the exhaustive search, which
requires O(nmk0k0

2) flops.
Thus, this single-term-at-a-time strategy can be much more efficient than exhaus-

tive search—if it works! The strategy can fail badly, i.e., there are explicit examples
(see [154, 155, 36]) where a simple k-term representation is possible, but this approach
yields an n-term (i.e., dense) representation. In general, all that can be said is that
among single-term-at-a-time strategies, the approximation error is always reduced by
as much as possible, given the starting approximation and the single-term-at-a-time
constraint. This explains why this type of algorithm has earned the name “greedy
algorithm” in approximation theory.

Many variants on this algorithm are available, offering improvements in accuracy
or in complexity or both [118, 34, 33, 23, 130, 30, 159, 82]. This family of GAs is
well known and extensively used, and, in fact, these algorithms have been reinvented
in various fields. In the setting of statistical modeling, greedy stepwise least squares
is called forward stepwise regression and has been widely used since at least the
1960s [31, 90]. When used in the signal processing setting this goes by the name of
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Geometry of `p-Norm

1.6 Promoting Sparse Solutions 11

Fig. 1.2 The intersection between the `p-ball and the set Ax = b defines the solution of (Pp). This
intersection is demonstrated here in 3D for p = 2 (top left), p = 1.5 (top right), p = 1 (bottom
left), and p = 0.7 (bottom right). When p ≤ 1, the intersection takes place at a corner of the ball,
leading to a sparse solution.

for example, with p = 2/3, p = 1/2, or even smaller p, tending to zero. Unfortu-
nately, each choice 0 < p < 1 leads to a non-convex optimization problem, and this
raises some difficulties, as we have mentioned above. Nevertheless, from an engi-
neering point of view, if sparsity is a desired property, and we know that `p serves it
well, this problem can and should be used, despite its weaknesses.

While all the discussion above focuses on the `p-norm, there are other functions
of x that promote sparsity just as well. In fact, any function J(x) =

∑
i ρ(xi) with

ρ(x) being symmetric, monotonically non-decreasing, and with a monotonic non-
increasing derivative for x ≥ 0 will serve the same purpose of promoting sparsity.
As classic examples of this family, we mention ρ(x) = 1−exp(|x|), ρ(x) = log(1+|x|),
and ρ(x) = |x|/(1 + |x|).
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Pursuit Algorithms

Convex relaxation technique is a second way to render (P0) more tractable.

Convexifying with the `1 norm, we come to the new optimization
problem

(P1) min
x
‖W x‖1 s.t. Ax = b (44)

where W is a diagonal positive-definite matrix that introduces the
precompensating weights.

It was named Basis Pursuit (BP) when all the columns of A are
normalized (and thus W = I ).
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Pursuit Algorithms

Theorem 06: For a system of linear equations Ax = b, if a solution x
exists obeying ‖x‖0 < (1 + 1/µ(A))/2, then an OMP algorithm run
with threshold parameter ε0 = 0 is guaranteed to find it exactly.

Theorem 07: For a system of linear equations Ax = b, if a solution x
exists obeying ‖x‖0 < (1 + 1/µ(A))/2, that solution is both the
unique solution of (P1) and the unique solution of (P0).
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From Exact to Approximate Solutions

An error-tolerant version of (P0) is defined by

(Pε
0) min

x
‖x‖0 s.t. ‖b− Ax‖ 6 ε. (45)

Theorem 08: Consider the instance of problem (Pε
0) defined by the

triplet (A; b; ε). Suppose that a sparse vector x0 satisfies the sparsity
constraint ‖x0‖0 < (1 + 1/µ(A))/2, and gives a representation of b to
within error tolerance ε (i.e., ‖b− Ax0‖ 6 ε). Every solution xε0 of
(Pε

0) must obey

‖xε0 − x0‖22 6
4ε2

1− µ(A)(2‖x0‖0 − 1)
.
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From Exact to Approximate Solutions

An error-tolerant version of (P1) is defined by

(Pε
1) min

x
‖x‖1 s.t. ‖b− Ax‖ 6 ε. (46)

Theorem 09: Consider the instance of problem (Pε
1) defined by the

triplet (A; b; ε). Suppose that a sparse vector x0 is a feasible solution
to (Pε

1) satisfying the sparsity constraint ‖x0‖0 < (1 + 1/µ(A))/4.
The solution xε1 of (Pε

1) must obey

‖xε1 − x0‖22 6
4ε2

1− µ(A)(4‖x0‖0 − 1)
.
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Restricted Isometry Property

Definition 10: A matrix A ∈ Rm×n is said to have the restricted
isometry property RIP(δ; s) if each submatrix As formed by
combining at most s columns of A has its nonzero singular values
bounded above by 1 + δ and below by 1− δ.

Theorem 11: Candès and Tao have shown that A ∈ RIP(
√

2− 1; 2s)
implies that (P1) and (P0) have identical solutions on all s-sparse
vectors and, moreover, that (Pε

1) stably approximates the sparsest
near-solution of b = Ax + v with a reasonable stability coefficient.
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`1 and `2 Recovery

of utmost importance, and it is what promotes sparse recov-
ery from an intellectual curiosity to an idea which can have
broad impact. 

THE GEOMETRY OF �1

MINIMIZATION
We can get some geometric intu-
ition for why �1 is an effective
substitute for sparsity by turning
to the sketches in Figure 3. Part
(a) illustrates the �1 ball in R2 of
a certain radius. Note that it is
anisotropic; it is “pointy” along the axes (compare to the stan-
dard Euclidean �2 ball, which is spherical and thus completely
isotrpoic). Part (b) diagrams the �1 recovery program (also in
R2): the point labeled α0 is a “sparse” vector (only one of its
components are nonzero) of which we make one measure-
ment; the line labeled H is the set of all α that share the same
measurement value.

The task for (8) is to pick out the point on this line with min-
imum �1 norm. To visualize how (8) accomplishes this, imagine
taking an �1 ball of tiny radius and gradually expanding it until
it bumps into H. This first point of intersection is by definition
the vector that solves (8). The combination of the anisotropy of
the �1 ball and the flatness of the space H results in this inter-
section occurring at one of the points, precisely where sparse
signals are located.

Compare to what would happen if we replaced the �1 norm
with the �2 norm (which would make the recovery a least-
squares problem). Figure 3(c) replaces the diamond-shaped �1

ball with the spherical and perfectly isotropic �2 ball. We can
see that the point of first intersection of H and the expanding
�2 ball does not have to be sparse at all. In high dimensions
this difference becomes very dramatic. Despite the seemingly
innocuous difference in the definitions of the �1 and �2 norms
(sum of magnitudes versus sum of magnitudes squared), they
are totally different creatures. 

�1 RECOVERY AND UNCERTAINTY PRINCIPLES
The precise arguments demonstrating that (8) recovers sparse
signals (given that � obeys the uncertainty principle) are a

little more involved than those
we made for the combinatorial
recovery below (7), but they have
much of the same flavor. We will
give only an outline of the rea-
soning here; interested readers
can consult [4], [12], and [24] for
the details. We want to show that
if α0 is sparse, then for all α′

with ‖α′‖�1 ≤ ‖α0‖�1 we have �α ′ �= �α0. Returning to our
diagram, we can see that (8) will recover α0 if the line H does
not “cut through” the �1 ball at α0. Another way to say this is
that for every h in the cone of descent from the facet of the �1

ball on which α0 lives (meaning ‖α0 + h‖�1 ≤ ‖α0‖�1 ), we will
have �h �= 0.

The key, just as in the combinatorial case, is that all
descent vectors h are concentrated on the same (relatively
small) set as α0. Of course, they do not have to be supported
exactly on this set, but the “pointiness” of the �1 ball at the
low-dimensional facet on which α0 lives severely constrains
how descent vectors can behave. We have seen that (6) directly
implies that vectors supported on sets with size proportional
to S cannot be in the null space of �; showing that this
extends to vectors which are merely concentrated on such sets
is what [4], [12], and [24] accomplish.

RECOVERY OF SPARSE TRANSFORMS
In general, we are not as interested in reconstructing signals
that are by themselves sparse but rather are sparse in some
known transform domain. Making this transition is straightfor-
ward; instead of (8), we use (3) in the introduction, with an
orthonormal � representing the transform in which we expect
our signals of interest to be sparse. Of course, now we need to
take measurements that are incoherent in the � domain;

[FIG3] Geometry of �1 recovery. (a) �1 ball of radius r; the orange region contains all α ∈ R2 such that |α(1)| + |α(2)| ≤ r. (b) Solving the
min −�1 problem (8) allows us to recover a sparse α0 from y = �α0, as the anisotropy of the �1 ball favors sparse vectors. Note that the
descent vectors h pointing into the �1 ball from α0 will be concentrated on the support of α0. (c) Minimizing the �2 norm does not
recover α0. Since the �2 ball is isotropic, the min −�2 solution α�

�2
will in general not be sparse at all.
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`1 and `2 Recovery

sensing mechanism and 2) is amenable to rigorous proofs, and
thus perhaps triggered the many CS developments we have wit-
nessed and continue to witness today. Suppose that we are
interested in sampling ultra-wideband but spectrally sparse sig-
nals of the form f(t) =

∑n−1
j=0 xj e i 2 π j t/ n, t = 0, . . . , n − 1,

where n is very large but where the number of nonzero compo-
nents xj is less than or equal to S (which we should think of as
comparably small). We do not know which frequencies are
active nor do we know the amplitudes on this active set.
Because the active set is not necessarily a subset of consecutive
integers, the Nyquist/Shannon theory is mostly unhelpful
(since one cannot restrict the bandwidth a priori, one may be
led to believe that all n time samples are needed). In this special
instance, Theorem 1 claims that one can reconstruct a signal
with arbitrary and unknown frequency support of size S from
on the order of S log n time samples, see [1]. What is more,
these samples do not have to be carefully chosen; almost any
sample set of this size will work. An illustrative example is pro-
vided in Figure 2. For other types of theoretical results in this
direction using completely different ideas see [11]–[13].

It is now time to discuss the role played by probability in all
of this. The key point is that to get useful and powerful results,
one needs to resort to a probabilistic statement since one can-
not hope for comparable results holding for all measurement
sets of size m. Here is why. There are special sparse signals
that vanish nearly everywhere in the " domain. In other
words, one can find sparse signals f and very large subsets of
size almost n (e.g.,  n − S ) for which yk = 〈 f,ϕk〉 = 0 for all
k ∈ M. The interested reader may want to check the example
of the Dirac comb discussed in [14] and [1]. On the one hand,
given such subsets, one would get to see a stream of zeros and
no algorithm whatsoever would of course be able reconstruct
the signal. On the other hand, the theorem guarantees that the
fraction of sets for which exact recovery does not occur is truly
negligible (a large negative power of n). Thus, we only have to
tolerate a probability of failure that is extremely small. For
practical purposes, the probability of failure is zero provided
that the sampling size is sufficiently large.

Interestingly, the study of special sparse signals discussed
above also shows that one needs at least on the order of
µ2 · S · log n samples as well. (We are well aware that there
exist subsets of cardinality 2S in the time domain which can
reconstruct any S-sparse signal in the frequency domain.
Simply take 2S consecutive time points, see “What Is
Comprehensive Sampling?” and [11] and [12], for example.
But this is not what our claim is about. We want that most
sets of a certain size provide exact reconstruction.) With fewer
samples, the probability that information may be lost is just
too high and reconstruction by any method, no matter how
intractable, is impossible. In summary, when the coherence is
one, say, we do not need more than S log n samples but we
cannot do with fewer either.

We conclude this section with an incoherent sampling exam-
ple, and consider the sparse image in Figure 1(c), which as we
recall has only 25,000 nonzero wavelet coefficients. We then

[FIG2] (a) A sparse real valued signal and (b) its reconstruction
from 60 (complex valued) Fourier coefficients by $1
minimization. The reconstruction is exact. (c) The minimum
energy reconstruction obtained by substituting the $1 norm
with the $2 norm; $1 and $2 give wildly different answers. The
$2 solution does not provide a reasonable approximation to
the original signal.
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sensing mechanism and 2) is amenable to rigorous proofs, and
thus perhaps triggered the many CS developments we have wit-
nessed and continue to witness today. Suppose that we are
interested in sampling ultra-wideband but spectrally sparse sig-
nals of the form f(t) =

∑n−1
j=0 xj e i 2 π j t/ n, t = 0, . . . , n − 1,

where n is very large but where the number of nonzero compo-
nents xj is less than or equal to S (which we should think of as
comparably small). We do not know which frequencies are
active nor do we know the amplitudes on this active set.
Because the active set is not necessarily a subset of consecutive
integers, the Nyquist/Shannon theory is mostly unhelpful
(since one cannot restrict the bandwidth a priori, one may be
led to believe that all n time samples are needed). In this special
instance, Theorem 1 claims that one can reconstruct a signal
with arbitrary and unknown frequency support of size S from
on the order of S log n time samples, see [1]. What is more,
these samples do not have to be carefully chosen; almost any
sample set of this size will work. An illustrative example is pro-
vided in Figure 2. For other types of theoretical results in this
direction using completely different ideas see [11]–[13].

It is now time to discuss the role played by probability in all
of this. The key point is that to get useful and powerful results,
one needs to resort to a probabilistic statement since one can-
not hope for comparable results holding for all measurement
sets of size m. Here is why. There are special sparse signals
that vanish nearly everywhere in the " domain. In other
words, one can find sparse signals f and very large subsets of
size almost n (e.g.,  n − S ) for which yk = 〈 f,ϕk〉 = 0 for all
k ∈ M. The interested reader may want to check the example
of the Dirac comb discussed in [14] and [1]. On the one hand,
given such subsets, one would get to see a stream of zeros and
no algorithm whatsoever would of course be able reconstruct
the signal. On the other hand, the theorem guarantees that the
fraction of sets for which exact recovery does not occur is truly
negligible (a large negative power of n). Thus, we only have to
tolerate a probability of failure that is extremely small. For
practical purposes, the probability of failure is zero provided
that the sampling size is sufficiently large.

Interestingly, the study of special sparse signals discussed
above also shows that one needs at least on the order of
µ2 · S · log n samples as well. (We are well aware that there
exist subsets of cardinality 2S in the time domain which can
reconstruct any S-sparse signal in the frequency domain.
Simply take 2S consecutive time points, see “What Is
Comprehensive Sampling?” and [11] and [12], for example.
But this is not what our claim is about. We want that most
sets of a certain size provide exact reconstruction.) With fewer
samples, the probability that information may be lost is just
too high and reconstruction by any method, no matter how
intractable, is impossible. In summary, when the coherence is
one, say, we do not need more than S log n samples but we
cannot do with fewer either.

We conclude this section with an incoherent sampling exam-
ple, and consider the sparse image in Figure 1(c), which as we
recall has only 25,000 nonzero wavelet coefficients. We then

[FIG2] (a) A sparse real valued signal and (b) its reconstruction
from 60 (complex valued) Fourier coefficients by $1
minimization. The reconstruction is exact. (c) The minimum
energy reconstruction obtained by substituting the $1 norm
with the $2 norm; $1 and $2 give wildly different answers. The
$2 solution does not provide a reasonable approximation to
the original signal.
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sensing mechanism and 2) is amenable to rigorous proofs, and
thus perhaps triggered the many CS developments we have wit-
nessed and continue to witness today. Suppose that we are
interested in sampling ultra-wideband but spectrally sparse sig-
nals of the form f(t) =

∑n−1
j=0 xj e i 2 π j t/ n, t = 0, . . . , n − 1,

where n is very large but where the number of nonzero compo-
nents xj is less than or equal to S (which we should think of as
comparably small). We do not know which frequencies are
active nor do we know the amplitudes on this active set.
Because the active set is not necessarily a subset of consecutive
integers, the Nyquist/Shannon theory is mostly unhelpful
(since one cannot restrict the bandwidth a priori, one may be
led to believe that all n time samples are needed). In this special
instance, Theorem 1 claims that one can reconstruct a signal
with arbitrary and unknown frequency support of size S from
on the order of S log n time samples, see [1]. What is more,
these samples do not have to be carefully chosen; almost any
sample set of this size will work. An illustrative example is pro-
vided in Figure 2. For other types of theoretical results in this
direction using completely different ideas see [11]–[13].

It is now time to discuss the role played by probability in all
of this. The key point is that to get useful and powerful results,
one needs to resort to a probabilistic statement since one can-
not hope for comparable results holding for all measurement
sets of size m. Here is why. There are special sparse signals
that vanish nearly everywhere in the " domain. In other
words, one can find sparse signals f and very large subsets of
size almost n (e.g.,  n − S ) for which yk = 〈 f,ϕk〉 = 0 for all
k ∈ M. The interested reader may want to check the example
of the Dirac comb discussed in [14] and [1]. On the one hand,
given such subsets, one would get to see a stream of zeros and
no algorithm whatsoever would of course be able reconstruct
the signal. On the other hand, the theorem guarantees that the
fraction of sets for which exact recovery does not occur is truly
negligible (a large negative power of n). Thus, we only have to
tolerate a probability of failure that is extremely small. For
practical purposes, the probability of failure is zero provided
that the sampling size is sufficiently large.

Interestingly, the study of special sparse signals discussed
above also shows that one needs at least on the order of
µ2 · S · log n samples as well. (We are well aware that there
exist subsets of cardinality 2S in the time domain which can
reconstruct any S-sparse signal in the frequency domain.
Simply take 2S consecutive time points, see “What Is
Comprehensive Sampling?” and [11] and [12], for example.
But this is not what our claim is about. We want that most
sets of a certain size provide exact reconstruction.) With fewer
samples, the probability that information may be lost is just
too high and reconstruction by any method, no matter how
intractable, is impossible. In summary, when the coherence is
one, say, we do not need more than S log n samples but we
cannot do with fewer either.

We conclude this section with an incoherent sampling exam-
ple, and consider the sparse image in Figure 1(c), which as we
recall has only 25,000 nonzero wavelet coefficients. We then

[FIG2] (a) A sparse real valued signal and (b) its reconstruction
from 60 (complex valued) Fourier coefficients by $1
minimization. The reconstruction is exact. (c) The minimum
energy reconstruction obtained by substituting the $1 norm
with the $2 norm; $1 and $2 give wildly different answers. The
$2 solution does not provide a reasonable approximation to
the original signal.
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Compressed Sensing

Designing measurement/sensing matrices with favorable properties and
constructing suitable transforms/dictionaries are the important research
topics in Compressed Sensing.
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Sparse Modeling

All the previous theorems have shown us that the problem of finding a
sparse solution to an under-determined linear system (or
approximation of it) can be given a meaningful definition and can also
be computationally tractable.

We now turn to discuss the applicability of these ideas to signal,
image, and geometric processing, i.e., sparsity-seeking representations.
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Priors and transforms for signals

The Bayesian framework imposes a Probability-Density-Function
(PDF) on the signals – a prior distribution P(y).

Priors are extensively used in signal processing, serving in inverse
problems, compression, anomaly detection, and more.
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Priors and transforms for signals

Consider the denoising problem: a given image b is known to be a noisy
version of a clean image y, contaminated by an additive perturbation
vector v, known to have a finite energy ‖v‖2 6 ε, i.e., b = y + v.

The optimization problem

max
y

P(y) s.t. ‖y − b‖2 6 ε

leads to the most probable image ŷ that is an effective estimate of y.

This way the prior is exploited for solving the noise cleaning problem.
The above formulation of the denoising problem is in fact that
Maximum-A-posteriori-Probability (MAP) estimator.
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Priors and transforms for signals

Much effort has been allocated in the signal and image processing
communities for forming priors as closed-form expressions.

One very common way to construct P(y) is to guess its structure
based on intuitive expectations from the data content. For example,
the Gibbs distribution P(y) = Const · exp{−λ‖Ly‖22} uses a Laplacian
matrix to give an evaluation of the probability of the image y.

In such a prior, smoothness, measured by the Laplacian operator, is
used for judging the probability of the signal.
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Priors and transforms for signals

This prior is well-known and extensively used in signal processing, and is
known to be related to both Tikhonov regularization and Wiener filtering.

The prior leads to an optimization problem of the form

min ‖Ly‖22 s.t. ‖y − b‖2 6 ε

which can be converted to

minλ‖Ly‖22 + ‖y − b‖22

where we have replaced the constraint by an equivalent penalty.

The closed-form solution is easily obtained as

ŷ = (I + λLTL)−1b.
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Priors and transforms for signals

The above specific prior stressing smoothness is known to cause blurring of
the image when used in various restoration tasks. The remedy for this
problem was found to be the replacement of the `2-norm by a more robust
measure, such as an `1-norm, that allows heavy tails for the distribution of
the values of Ly.

A prior of the form P(y) = Const · exp{−λ‖Ly‖1} is far more
versatile and thus became popular in recent years.

Similar to this option is the Total-Variation (TV) prior
P(y) = Const · exp{−λ‖y‖TV } [Rudin, Osher, and Fatemi, 1993]
that also promotes smoothness, but differently, by replacing the
Laplacian with gradient norms.
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Priors and transforms for signals
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Priors and transforms for signals

A different property that can be used for constructing a prior is assuming a
structure on the signals transform-coefficients.

One such example is the JPEG compression algorithm, which relies on
the fact that 2D-DCT coefficients of small image patches tend to
behave in a predicted way (being concentrated around the origin).

Another well-known example refers to the wavelet transform of signals
and images, where the coefficients are expected to be sparse, most of
them tending to zero while few remain active.
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Priors and transforms for signals

For a signal y, the wavelet transform is given by T y where the matrix
T is a specially designed orthogonal matrix that contains in its rows
spatial derivatives of varying scale, thereby providing what is known
as multi-scale analysis of the signal.

theory tells us that, if f(t) actually has very low band-
width, then a small number of (uniform) samples will suf-
fice for recovery. As we will see in the remainder of this
article, signal recovery can actually be made possible for a
much broader class of signal models.

INCOHERENCE AND THE SENSING OF SPARSE SIGNALS
This section presents the two fundamental premises underlying
CS: sparsity and incoherence.

SPARSITY
Many natural signals have concise representations when
expressed in a convenient basis. Consider, for example, the
image in Figure 1(a) and its wavelet transform in (b).
Although nearly all the image pixels have nonzero values, the
wavelet coefficients offer a concise summary: most coeffi-
cients are small, and the relatively few large coefficients cap-
ture most of the information.

Mathematically speaking, we have a vector f ∈ Rn (such as
the n-pixel image in Figure 1) which we expand in an orthonor-
mal basis (such as a wavelet basis) ! = [ψ1ψ2 · · ·ψn] as follows:

f(t) =
n∑

i=1
xi ψi(t), (2)

where x is the coefficient sequence of f , xi = 〈 f,ψi〉. It will be
convenient to express f as !x (where ! is the n × n matrix
with ψ1, . . . ,ψn as columns). The implication of sparsity is
now clear: when a signal has a sparse expansion, one can dis-
card the small coefficients without much perceptual loss.
Formally, consider fS(t) obtained by keeping only the terms
corresponding to the S largest values of (xi) in the expansion
(2). By definition, fS := !xS, where here and below, xS is the
vector of coefficients (xi) with all but the largest S set to zero.
This vector is sparse in a strict sense since all but a few of its
entries are zero; we will call S-sparse
such objects with at most S nonzero
entries. Since ! is an orthonormal
basis (or “orthobasis”), we have
‖ f − fS‖#2 = ‖x − xS‖#2 , and if x is
sparse or compressible in the sense
that the sorted magnitudes of the (xi)

decay quickly, then x is well approxi-
mated by xS and, therefore, the error
‖ f − fS‖#2 is small. In plain terms,
one can “throw away” a large fraction
of the coefficients without much loss.
Figure 1(c) shows an example where
the perceptual loss is hardly noticeable
from a megapixel image to its approxi-
mation obtained by throwing away
97.5% of the coefficients.

This principle is, of course, what
underlies most modern lossy coders
such as JPEG-2000 [4] and many

others, since a simple method for data compression would be to
compute x from f and then (adaptively) encode the locations
and values of the S significant coefficients. Such a process
requires knowledge of all the n coefficients x, as the locations
of the significant pieces of information may not be known in
advance (they are signal dependent); in our example, they tend
to be clustered around edges in the image. More generally,
sparsity is a fundamental modeling tool which permits efficient
fundamental signal processing; e.g., accurate statistical estima-
tion and classification, efficient data compression, and so on.
This article is about a more surprising and far-reaching impli-
cation, however, which is that sparsity has significant bearings
on the acquisition process itself. Sparsity determines how effi-
ciently one can acquire signals nonadaptively.

INCOHERENT SAMPLING
Suppose we are given a pair ($,!) of orthobases of Rn. The first
basis $ is used for sensing the object f as in (1) and the second is
used to represent f . The restriction to pairs of orthobases is not
essential and will merely simplify our treatment.

DEFINITION 1
The coherence between the sensing basis $ and the representa-
tion basis ! is

µ($,!) =
√

n · max
1≤k, j≤n

|〈ϕk,ψ j〉|. (3)

In plain English, the coherence measures the largest correlation
between any two elements of $ and !; see also [5]. If $ and !
contain correlated elements, the coherence is large. Otherwise,
it is small. As for how large and how small, it follows from linear
algebra that µ($,!) ∈ [1,

√
n].

Compressive sampling is mainly concerned with low coher-
ence pairs, and we now give examples of such pairs. In our first
example, $ is the canonical or spike basis ϕk(t) = δ(t − k ) and

[FIG1] (a) Original megapixel image with pixel values in the range [0,255] and (b) its
wavelet transform coefficients (arranged in random order for enhanced visibility).
Relatively few wavelet coefficients capture most of the signal energy; many such images
are highly compressible. (c) The reconstruction obtained by zeroing out all the coefficients
in the wavelet expansion but the 25,000 largest (pixel values are thresholded to the range
[0,255]). The difference with the original picture is hardly noticeable. As we describe in
“Undersampling and Sparse Signal Recovery,” this image can be perfectly recovered from
just 96,000 incoherent measurements.
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Therefore, the prior in this case becomes
P(y) = Const · exp{−λ‖T y‖pp} with p 6 1 to promote sparsity.
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Priors and transforms for signals

A rich family of signal priors assign likelihood for an image based on the
behavior of its transform coefficients T y. In the signal and image
processing literature, such priors were postulated in conjunction with a
variety of transforms, such as

the Discrete-Fourier-Transform (DFT)

the Discrete-Cosine-Transform (DCT)

the Hadamard-Transform (HT)

the Principal-Component-Analysis (PCA)
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Bayesian perspective

Using Bayes’ rule, the posterior probability of y given the
measurements is formulated by

P(y | z) =
P(z | y)P(y)

P(z)
.

Considering the fact that the denominator P(z) is not a function of
the unknown y, and as such it can be disregarded, the MAP
estimation amounts to

ŷMAP = arg max
y

P(y | z) = arg max
y

P(z | y)P(y).

The probability P(z | y) is known as the likelihood function, and the
probability P(y) is the known/unknown’s prior.
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The Sparse-Land model

The linear system Dx = y can be interpreted as a way of constructing
signals y. Every column in D is a possible signal in Rn – we refer to
these m columns as atomic signals, and the matrix D displays a
dictionary of atoms.

The multiplication of D by a sparse vector x with ‖x‖0 = k0 � n
produces a linear combination of k0 atoms with varying portions,
generating the signal y. The vector x that generates y will be called
its representation.

yangzw@ustc.edu.cn (USTC) OptAlgorithms 25/02/2019 167 / 203



The Sparse-Land model

The Sparse-Land model M(D, k0, α, ε):

y = Dx + v

Consider all the possible sparse representation vectors with cardinality
‖x‖0 = k0 � n, and assume that this set of C k0

m possible cardinalities
are drawn with uniform probability.

Assume further that the non-zero entries in x are drawn from the
zero-mean Gaussian distribution Const · exp{−αx2

i }.

Postulate that the observations are contaminated by a random
perturbation (noise) vector v ∈ Rn with bounded power ‖v‖2 6 ε.
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The quest for a dictionary

In the quest for the proper dictionary to use in applications, one line
of work considers choosing pre-constructed dictionaries, such as
undecimated wavelets, steerable wavelets, contourlets, curvelets, and
more.

Some of these proposed dictionaries (which are often referred to also
as transforms) are accompanied by a detailed theoretical analysis
establishing the sparsity of the representation coefficients for such
simplified content of signals.
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The quest for a dictionary

While pre-constructed or adapted dictionaries typically lead to fast
transforms, they are typically limited in their ability to sparsify the
signals they are designed to handle. Furthermore, most of those
dictionaries are restricted to signals/images of a certain type, and
cannot be used for a new and arbitrary family of signals of interest.

This leads us to yet another approach for obtaining dictionaries that
overcomes these limitations – by adopting a learning point-of-view.

As opposed to the pre-constructed and adapted dictionaries, the
learning method is able to adapt to any family of signals that
complies with the Sparse-Land model.
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Dictionary learning

Assume that a training database {yj}Nj=1 is given, and thought to have
been generated by some fixed but unknown model M(D, k0, α, ε).

Control the deviation:

min
D,{xj}Nj=1

N∑

j=1

‖xj‖0 s.t. ‖yj − Dxj‖2 6 ε, j = 1, · · · ,N

Control the sparsity:

min
D,{xj}Nj=1

N∑

j=1

‖yj − Dxj‖22 s.t. ‖xj‖0 6 k0, j = 1, · · · ,N
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Analysis versus Synthesis

Synthesis based modeling

(Ps) ŷs = D · arg min
x
‖x‖p s.t. ‖z− Dx‖ 6 ε. (47)

Analysis based modeling

(Pa) ŷa = arg min
y
‖T y‖p s.t. ‖z− y‖ 6 ε. (48)
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Dictionary learning algorithms

The optimization problem for dictionary learning (sparse representations
and coding):

min
D,X
‖Y − DX‖Frob s.t. ‖xj‖0 6 k0, j = 1, · · · ,N (49)

where
Y = (y1, · · · , yN) ∈ Rn×N ,

D = (d1, · · · ,dm) ∈ Rn×m,

X = (x1, · · · , xN) ∈ Rm×N .
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Dictionary learning algorithms

There are two training mechanisms, the first named Method of Optimal
Directions (MOD) by Engan et al., and the second named K-SVD, by
Aharon et al..

MOD

K-SVD

......
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Applications

Image deblurring

Facial image compression

Image denoising

Image inpainting

......
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Applications
SPARSE MODELING OF SIGNALS AND IMAGES 67

Original image Cartoon part Texture part

Image with missing data Inpainting result

Fig. 6 Top row: MCA for image separation to texture and cartoon [148, 147]. Bottom row: Image
inpainting—filling in missing pixels (the text) in the image [68].

5.2. The Quest for a Dictionary. A fundamental ingredient in the definition of
Sparse-Land’s signals and the deployment to applications is the dictionary A. How
can we wisely choose A to perform well on the signals we have in mind? One line of
work considered choosing preconstructed dictionaries, such as undecimated wavelets
[149], steerable wavelets [145, 37, 136], contourlets [38, 39, 40, 70, 71], curvelets [146,
12], and others [22, 123]. These are generally suitable for stylized “cartoon-like”
image content, assumed to be piecewise smooth and with smooth boundaries. Some
of these papers provide detailed theoretical analysis establishing the sparsity of the
representation coefficients for such content.

Alternatively, one can use a tunable selection, in which a basis or frame is gener-
ated under the control of particular parameter (discrete or continuous): wavelet pack-
ets (parameter is time-frequency subdivision) [28, 29, 121] or bandelettes (parameter
is spatial partition) [105, 117]. A third option is to build a training database of signal
instances similar to those anticipated in the application, and build an empirically-
learned dictionary, in which the generating atoms come from the underlying empirical
data rather than from some theoretical model; such a dictionary can then be used in
the application as a fixed and redundant dictionary. We now explore this third option
in detail.

Assume that a training database {yi}Mi=1 is given, thought to have been generated
by some fixed but unknown model M{A,k0,α,ε}. Can this training database allow us
to identify the generating model, specifically the dictionary A? This rather difficult
problem was studied initially by Olshausen and Field [128, 126, 127], who were moti-
vated by an analogy between the atoms of a dictionary and the population of simple
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Applications

74 ALFRED M. BRUCKSTEIN, DAVID L. DONOHO, AND MICHAEL ELAD

Fig. 9 Candidate dictionaries; The globally trained K-SVD dictionary for general images and the
K-SVD dictionary trained on the noisy Barbara image directly.

Original Image Noisy Image (22.1307 dB, σ=20)

Denoised Image Using
Global Trained Dictionary (28.8528 dB)

Denoised Image Using
Adaptive Dictionary (30.8295 dB)

Fig. 10 Denoising comparisons: Additive noise standard deviation σ = 20; i.e., unprocessed
PSNR = 22.13dB. The results using the globally trained and the adapted K-SVD dic-
tionaries with patches of 8× 8 show an improvement of 6.7 and 8.7dB, respectively.
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0-norm optimization

(P0) min
x
‖x‖0 s.t. Ax = b. (50)

(Pε
0) min

x
‖x‖0 s.t. ‖b− Ax‖ 6 ε. (51)
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Greedy algorithms

Greedy strategies are usually adopted in solving the 0-norm problems. The
following algorithm is known in the literature of signal processing by the
name Orthogonal Matching Pursuit (OMP).

42 ALFRED M. BRUCKSTEIN, DAVID L. DONOHO, AND MICHAEL ELAD

A greedy strategy abandons exhaustive search in favor of a series of locally op-
timal single-term updates. Starting from x0 = 0 it iteratively constructs a k-term
approximant xk by maintaining a set of active columns—initially empty—and, at
each stage, expanding that set by one additional column. The column chosen at each
stage maximally reduces the residual �2 error in approximating b from the currently
active columns. After constructing an approximant including the new column, the
residual �2 error is evaluated; if it now falls below a specified threshold, the algorithm
terminates.

Exhibit 1 presents a formal description of the strategy and its associated notation.
This procedure is known in the literature of signal processing by the name orthogonal
matching pursuit (OMP), but is very well known (and was used much earlier) by other
names in other fields—see below.

Task: Approximate the solution of (P0): minx ‖x‖0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the error threshold ε0.

Initialization: Initialize k = 0, and set
• The initial solution x0 = 0.
• The initial residual r0 = b−Ax0 = b.
• The initial solution support S0 = Support{x0} = ∅.

Main Iteration: Increment k by 1 and perform the following steps:
• Sweep: Compute the errors ε(j) = minzj ‖ajzj − rk−1‖22 for all j using the

optimal choice z∗j = aTj rk−1/‖aj‖22.
• Update Support: Find a minimizer j0 of ε(j): ∀ j /∈ Sk−1, ε(j0) ≤ ε(j), and

update Sk = Sk−1 ∪ {j0}.
• Update Provisional Solution: Compute xk , the minimizer of ‖Ax−b‖22 subject

to Support{x} = Sk .
• Update Residual: Compute rk = b−Axk .
• Stopping Rule: If ‖rk‖2 < ε0, stop. Otherwise, apply another iteration.

Output: The proposed solution is xk obtained after k iterations.

Exhibit 1. OMP—a GA for approximating the solution of (P0).

If the approximation delivered has k0 nonzeros, the method requires O(k0mn)
flops in general; this can be dramatically better than the exhaustive search, which
requires O(nmk0k0

2) flops.
Thus, this single-term-at-a-time strategy can be much more efficient than exhaus-

tive search—if it works! The strategy can fail badly, i.e., there are explicit examples
(see [154, 155, 36]) where a simple k-term representation is possible, but this approach
yields an n-term (i.e., dense) representation. In general, all that can be said is that
among single-term-at-a-time strategies, the approximation error is always reduced by
as much as possible, given the starting approximation and the single-term-at-a-time
constraint. This explains why this type of algorithm has earned the name “greedy
algorithm” in approximation theory.

Many variants on this algorithm are available, offering improvements in accuracy
or in complexity or both [118, 34, 33, 23, 130, 30, 159, 82]. This family of GAs is
well known and extensively used, and, in fact, these algorithms have been reinvented
in various fields. In the setting of statistical modeling, greedy stepwise least squares
is called forward stepwise regression and has been widely used since at least the
1960s [31, 90]. When used in the signal processing setting this goes by the name of
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Dictionary learning

The optimization model of dictionary learning for sparse and redundant
representations:

min
D,X
‖Y − DX‖Frob s.t. ‖xj‖0 6 k0, j = 1, · · · ,N (52)

where
Y = (y1, · · · , yN) ∈ Rn×N ,

D = (d1, · · · ,dm) ∈ Rn×m,

X = (x1, · · · , xN) ∈ Rm×N .
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Dictionary learning

There are two training mechanisms, the first named Method of Optimal
Directions (MOD) by Engan et al., and the second named K-SVD, by
Aharon et al..

MOD

K-SVD

......
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Convex relaxation

Convex relaxation technique is a way to render 0-norm more tractable.

Convexifying with the `1 norm, we come to the new optimization
problem

(P1) min
x
‖W x‖1 s.t. Ax = b (53)

where W is a diagonal positive-definite matrix that introduces the
precompensating weights.

An error-tolerant version of (P1) is defined by

(Pε
1) min

x
‖W x‖1 s.t. ‖b− Ax‖ 6 ε. (54)

It was named Basis Pursuit (BP) when all the columns of A are
normalized (and thus W = I ).
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Basic pursuit

(BP) min
x
‖x‖1 s.t. Ax = b.

Basis pursuit

min{‖x‖1 : Ax = b}

xo

Ax =
b

x

z

y
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BP denoising and LASSO

(BPτ ) min
x
‖Ax− b‖22 s.t. ‖x‖1 6 τ,

(BPµ) min
x
‖x‖1 + µ

2‖Ax− b‖22,
(BPδ) min

x
‖x‖1 s.t. ‖Ax− b‖2 6 δ.

Questions:

Are they equivalent? and in what sense?

How to choose parameters?
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Sparse under basis Ψ

min
s
{‖s‖1 : AΨs = b}

Compressed Sensing

The central insight of CS is that many signals are sparse, i.e., represented
using only a few non-zero coefficients in a suitable basis or dictionary and
such signals can be recovered from very few measurements (undersampled
data) by an optimization algorithm.

yangzw@ustc.edu.cn (USTC) GeomSparsity 8/22/2014 7 / 45

If Ψ is orthogonal, the problem is equivalent to

min
x
{‖Ψ∗x‖1 : Ax = b}.
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Sparse after transform L

min
x
{‖Lx‖1 : Ax = b}

Examples of L:

DCT, wavelets, curvelets, ridgelets, ...

tight frames, Gabor, ...

total (generalized) variation

Ref: E. J. Cands, Y. Eldar, D. Needell and P. Randall. Compressed sensing
with coherent and redundant dictionaries. Applied and Computational
Harmonic Analysis, 31(1): 59-73.
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Joint/group sparsity

Decompose {1, 2, · · · , n} = G1
⋃G2

⋃ · · ·⋃GS , and Gi
⋂Gj = ∅, i 6= j .

Joint/group sparse recovery model:

min
x
{‖x‖G,2,1 : Ax = b}

where

‖x‖G,2,1 =
S∑

s=1

ws‖xGs‖2.
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Side constraints

Nonnegativity: x ≥ 0

Box constraints: lb ≤ x ≤ ub

Linear inequalities: Qx ≤ c

They generate “corners” and can be very effective in practice.
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Shrinkage

Shrinkage is popular in sparse optimization algorithms

In optimization, non-smooth functions like `1 has difficulty using
general smooth optimization methods.

But, `1 is component-wise separable, so it does get along well with
separable (smooth or non-smooth) functions.

For example,

min
x
‖x‖1 +

1

2τ
‖x− z‖22

is equivalent to solving min
xi
|xi |+ 1

2τ |xi − zi |2 over each i .
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Soft-thresholding shrinkage

The problem is separable and has an explicit solution

(shrink(z, τ))i =





zi − τ zi > τ,
0 −τ ≤ zi ≤ τ,

zi + τ zi < −τ.
The shrinkage operator can be written in Matlab code as:

y = max(abs(x)-tau,0).*sign(x)

Graph of y = shrink(x , τ )
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Soft-thresholding shrinkage

The following problem is called Moreau-Yosida regularization

min
x

r(x) +
1

2τ
‖x− z‖22.

For example r(x) = ‖x‖2, the solution to

min
x
‖x‖2 +

1

2τ
‖x− z‖22

is, if we treat 0/0 = 0,

xopt = max{‖z‖2 − τ, 0} · (z/‖z‖2).

Used in joint/group-sparse recovery algorithms.
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Soft-thresholding shrinkage

Consider the following nuclear norm optimization

min
X
‖X‖∗ +

1

2τ
‖X− Z‖2F .

Let Z = UΣVT be the singular value decomposition of Z.

Let Σ̂ be the diagonal matrix with diagonal entries

diag(Σ̂) = shrink(diag(Σ), τ)),

then
Xopt = UΣ̂VT .

In general, matrix problems with only unitary-invariant functions (e.g.,
‖ · ‖∗, ‖ · ‖F , spectral norm, trace) and constraints (e.g., positive or
negative semi-definiteness) typically reduce to vector problems
regarding singular values.
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Prox-linear algorithm

Consider the general form

min
x

r(x) + f (x).

where r is the regularization function and f is the data fidelity function.

The prox-linear algorithm is:

xk+1 = arg min
x

r(x) + f (xk)+ < ∇f (xk), x− xk > +
1

2δk
‖x− xk‖22.

The last term keeps xk+1 close to xk , and the parameter δk determines the
step size. It is equivalent to

xk+1 = arg min
x

r(x) +
1

2δk
‖x− (xk − δk∇f (xk))‖22.
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Alternating direction method of multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) was developed
in the 1970s, with roots in the 1950s, and is equivalent or closely related
to many other algorithms, such as dual decomposition, the method of
multipliers, Douglas-Rachford splitting, Spingarns method of partial
inverses, Dykstras alternating projections, Bregman iterative algorithms for
1-norm problems, proximal methods, and others.
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ADMM

The ADMM can be applied to a wide variety of statistical and machine
learning problems of recent interest, including the lasso, sparse logistic
regression, basis pursuit, covariance selection, support vector machines,
and many others.
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ADMM

min
X∈Cn×T

µ‖X‖p + ‖AX− B‖q (55)

Let p := {2, 1}, q := {1, 1} which denote joint convex norm, we have

min
X∈Cn×T

µ‖X‖2,1 + ‖AX− B‖1,1

where ‖X‖2,1 =
∑n

i=1

√∑T
j=1 x2

ij , ‖X‖1,1 =
∑n

i=1

∑T
j=1 |xij |.

For example T = 1,
min
x∈Cn

µ‖x‖p + ‖Ax− b‖q.
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ADMM

min µ‖z‖p + ‖y‖q
s.t. x− z = 0

Ax− y = b

(56)

L(x, y, z, λy , λz , ρ) =µ‖z‖p + ‖y‖q + Re(λTz (x− z) + λTy (Ax− y − b))

+
ρ

2
(‖x− z‖22 + ‖Ax− y − b‖22)

(57)
where λy ∈ Cn, λz ∈ Cm are the Lagrangian multipliers and ρ > 0 is a
penalty parameter.
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ADMM





xk+1 := arg min 1
2(‖x− zk + uk

z‖22 + ‖Ax− yk − b + uk
y‖22)

yk+1 := arg min ‖y‖q + ρ
2‖y − (Axk+1 − b)− uk

y‖22
zk+1 := arg minµ‖z‖p + ρ

2‖z− xk+1 − uk
z‖22

(58)

After solving three subproblems, we update the Lagrangian multipliers as
follows: {

uk+1
z = uk

z + γ(xk+1 − zk+1)

uk+1
y = uk

y + γ(Axk+1 − yk+1 − b)
(59)

where uy = 1
ρλy ,uz = 1

ρλz , γ > 0 is the step size.
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Thanks for your attention!
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