Optimization Algorithms

yangzwQustc.edu.cn (USTC)

Zhouwang Yang
University of Science and Technology of China

2019-02-25

OptAlgorithms

25/02/2019

1/ 203



© Convex Optimization
@ Convex Set and Convex Function
@ Convex Optimization and Algorithms

© Sparse Optimization
@ Compressed Sensing
@ Sparse Modeling
@ Sparse Optimization Algorithms
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@ The course is devoted to the mathematical fundamentals of
optimization and the practical algorithms of optimization.

@ The course covers the topics of nonlinear continuous optimization,
sparse optimization, stochastic optimization, combinatorial
optimization, and global optimization.
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Objectives of the course are

@ to develop an understanding of the fundamentals of optimization;
@ to learn how to analyze the widely used algorithms for optimization;

@ to become familiar with the implementation of optimization
algorithms.

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 4 /203



@ Knowledge of Linear Algebra, Real Analysis, and Mathematics of
Operations Research will be important.

e Simultaneously, the ability to write computer programs of algorithms
is also required.
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Topics Covered

@ Unconstrained Optimization
o Constrained Optimization

@ Convex Optimization

@ Sparse Optimization

@ Stochastic Optimization

@ Combinatorial Optimization

@ Global Optimization
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(1) Homework (20%)
(2) Project (30%)

(3) Final Exam (50%)
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Outline

© Convex Optimization
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@ Convex Optimization
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About convex optimization

Convex optimization is a subfield of mathematical optimization that
studies the problem of minimizing convex functions over convex sets.
Whereas many classes of convex optimization problems admit

polynomial-time algorithms, mathematical optimization is in general
NP-hard.

We introduce the main definitions and results of convex optimization
needed for the analysis of algorithms presented in the section.
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© Convex Optimization
@ Convex Set and Convex Function
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Definition (affine set)
A set C C R" is affine if Vx1,xp € C and 0 € R, we have

0x1+(1—0)xx e C

i.e., if it contains the line through any two distinct points in it.

It can be generalized to more than two points: If C is an affine set,
X1y..., Xk € C and 01+...—|—9k:1, then 91x1+...+«9kxk e C.

We refer to a point of the form 01xy + ... + Oxx, where
01+ ...+ 0, =1, as an affine combination of the points xi, ..., xk.
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If C is an affine set and xg € C, then the set
V=C-xg={x—x|xeC}

is a (linear) subspace. We can express C as
C=V+x={v+x|veV}

The dimesion of an affine set C is the dimesion of the subspace
V =C-— xo.

Example (Solution set of linear equations)
For Ac R™*" b e R™, the set

C = {x|Ax = b}

is affine. Let V = {v|Av = 0} be a subspace, then C = V + b.
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Affine set

Definition (affine hull)
The set of all affine combinations of points in some set C C R” is called
the affine hull of C, denoted affC:

affC:{91x1+...+9kxk\x1,...7xke C,91+...+9k:1}.

The affine hull is the smallest affine set that contains C. )
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Convex set

Definition (convex set)

A set C is convex if Vxy,xo € C and 0 < 6 < 1, we have
Ox1 + (1 = 9)X2 e C

i.e., if it contains the line segment between any two points in it.

Generalization to more than two points: for any kK > 1, xy,...,xx € C and
01+...+0,=1where 0; >20,i=1,...,k, we have

O1x1 + ...+ 0kx, € C.

The form 61x; + ... + 0, xx is called the convex combination of the points
X1y ooy Xk, where 91,...,9k > 0 and Zf(zle,' =1.
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Convex hull

Definition (convex hull)

The convex hull of a set C, denoted convC, is the set of all convex
combinations of points in C:

COI‘IVC:{91X1+...+9;(X;{‘X,' €C,0,>20,i=1,...,k,01+...+0, = 1}.

The convex hull is the smallest convex set that contains C. )
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Convex set and convex hull

(a) (b) (c)

Figure: (a) A convex set (polyhydron). (b) A non-convex set. (c) The convex
hull of (b).
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Definition (cone)

A set C is called a cone, if Vx € C and 6 > 0 we have 6x in C.
A set C is a convex cone if it's convex and a cone, i.e., Vxi,x € C and
01,0, > 0, we have

O1x1 + Orx0 € C.

A point of the form 61x1 + ... + Oy xx with 01,...,0, > 0 is called a conic
combination of xi, ..., X.

Definition (conic hull)

The conic hull of a set C is the set of all conic combinations of points in
C, e,
{O1x1+ ...+ Okxk|xi € C,0; 2 0,i=1,... k}.
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Conic hull

0 0

Figure: Left. The shaded set is the conic hull of a set of fifteen points (not
including the origin). Right. The shaded set is the conic hull of the non-convex
kidney-shaped set that is surrounded by a curve.
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Some important convex examples

@ Hyperplane: A hyperplane is a set of the form
{x|a"x = b}.

It's also affine.

@ Halfspace: A (closed) halfspace is a set of the form
{x|a"x < b}.

A hyperplane divides R” into two halfspaces.
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Some important convex examples

@ Polyhedra: A polyhedron is defined as the solution set of a finite
number of linear equalities and inequalities:

P:{x|aij§bj,j:1,...,m,ckTX:dk,k:1,...,p}.

e Ball: A (Euclidean) ball in R” has the form
B(xe,r) = {xllx = xell2 < r}

where r > 0 and ||u2 = (u" u)*/? denotes the Euclidean norm.
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Some important convex examples

@ Norm balls and norm cones:
Suppose || - || is any norm on R”, a norm ball of radius r and center

Xc is given by
{xlllx = xell < r}-

The norm cone associated with the norm || - || is the set
C = {(x1)lllx| <t} SR

It's a convex cone.
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Some important convex examples

@ The positive semidefinite cone:
The set of symmetric n X n matrices S":

S"={XecR™"X=X"},
the set of symmetric positive semidefinite matrices S’ :
1 ={Xe8"X =0},
and the set of symmetric positive definite matrices S'  :
ST, ={XeS"X >0}

are all convex.
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Proper cones and generalized inequalities

A cone K C R" is called a proper cone if it satisfies the following:
@ K is convex.
@ K is closed.
@ K is solid, which means it has nonempty interior.
°

K is pointed, which means that it contains no line, i.e.,
xeKand —xe K = x=0.
A proper cone K can be used to define a generalized inequality:
x<ky<<=y—x€eK,

which is a partial ordering on R". Similarly, we define an associated strict
partial ordering by
X <K y<<=y—xecintK
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Properties of generalized inequalities

If x <k y and u <k v, then x + u <k y + v.

If x <k y and y <k z then x <k z.

If x <k y and a > 0 then ax <k ay.

o x <k X.

If x <k y and y <k x then x = y.

If x; <k yi fori=1,2,..., x; — x and y; — y as i — 0o, then
XKk Yy.
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Minimum and minimal elements

@ x € S is the minimum element of S (with respect to the generalized
inequality <k) if for every y € S we have x <k y, i.e.,

SCx+K,

where x + K = {x + y|ly € K}.

@ x € S is a minimal element of S (with respect to the generalized
inequality <k)ify € S,y Xk xonly if y = x, i.e,,

(x—K)N'S = {x},

where x — K = {x — y|ly € K}.

@ Maximum element and maximal element are defined in a similar way.
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Minimum and minimal elements

S

T

(a) (b)

Figure: Let K = {(u,v)|u,v > 0}. (@) x1 is the minimum element of S;. (b) x;
is a minimal element of S,.
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Minimum and minimal elements

If x is the minimum element of S, then x must be a minimal element of S
(with respect to the generalized inequality <k).

Brief proof: Suppose SC x+ K,and z€ (x — K)NS, ie, Jy e K
such that z=x—y. By z€ § C x + K, there exists w € K such
that z = x + w. Then we have w = —y, which leads to —w =y € K
and w € K. Since K is a proper cone, w =0 and z = x.

But the reverse proposition doesn’t hold.

Simple example: Let K = {(u, v)|u,v > 0} and L = {(x,y)|x = —y}.
Then every point of L is a minimal element, but none of them is the
minimum element of L.
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Definition

Definition (convex function)

A function f : R" — R is convex if domf is a convex set and if
Vx,y € domf and 0 with 0 < 6 < 1, we have

F(Ox + (1= 0)y) <OF(x) + (1 - O)f(y). (1)

A function is strictly convex if strict inequality holds in (1) whenever
x#yand0<6 <1

We say f is concave if —f is convex, and strictly concave if —f is strictly
convex.
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Geometrically, Eq.(1) means that the line segment between (x, f(x)) and
(y,f(y)) lies above the graph of f (as shown in Fig.4).

Figure: Graph of a convex function.
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First-order conditions

Suppose f is differentiable, i.e., its gradient Vf exists at each point in
domf.

Function f is convex if and only if domf is convex and for
Vx, y € domf, the following holds:

fly) = f(x) + VF(x) " (y — x).

Remark. As a simple result, if Vf(x*) =0, then for all y € domf,
f(y) = f(x*), i.e., x* is a global minimizer of the function f.
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First-order conditions

fl@) + V@) (y - =)

(z, f(x))

Figure: The tangent to a convex function.
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First-order conditions

Function f is strictly convex if and only if domf is convex and for
Vx,y € domf, x # y, we have

fy) > f(x)+ Vf(x)T(y — X).

Correspondingly, f is concave if and only if domf is convex and for
Vx,y € domf, we have

fy) < F(x) + V()" (y = x).
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Second-order conditions

Assume that f is twice differentiable.

Function f is convex if and only if domf is convex and for
Vx € domf,
V2f(x) = 0.

Similarly, f is concave if and only if domf is convex and V2f(x) < 0
for Vx € domf.
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Second-order conditions

Strict convexity can be partially characterized by second-order conditions.

If V2f(x) > 0 for Vx € domf, then f is strictly convex.

However, the converse is not true. For example, f : R — R given by
f(x) = x* is strictly convex but has zero second derivative at x = 0.
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o Exponential:
e? is convex on R, for any a € R.

@ Powers:
x? is convex on R4 when a > 1 or a < 0, and concave for 0 < a < 1.

@ Powers of absolute value:
|x|P, for p > 1, is convex on R.

o Logarithm:
log x is concave on R .

o Negative entropy:
x log x is convex on R, where 0log0 defined to be 0.
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o Norms:
Every norm on R” is convex.

e Max function:
f(x) = max{x1,...,xn} is convex on R".

o Log-sum-exp:
Then function f(x) = log(e* + ...+ €*) is convex on R". This
function can be interpreted as a differentiable approximation of the
max function, since for all x,

max{xy, ..., Xp} < f(x) < max{xy,...,xy} + logn.

@ Geometric mean:
f(x) = (I1f; x;)*/" is concave on domf = R" .

o Log-determinant:
f(X) = logdet X is concave on domf = S7 .
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Jensen’s inequality

The inequality (1), i.e., f(6x+ (1 —0)y) < 0f(x) + (1 — 0)f(y), is

sometimes called Jensen's inequality.

It is easily extended to convex combinations of more than two points:

If fis convex, x1,...,xx € domf, and 61,...,6, > 0 with
014+ ...+ 6, =1, then

f(01X1 + ...+ Qka) < 91f(X1) + ...+ Qkf(Xk).
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Operations that preserve convexity

e Nonnegative weighted sums:
If f1,...,f, are convex and wy, ..., w, > 0, then

f=wfL+ ...+ wnfn
is convex.

@ These properties extend to infinite sums and integrals:

If f(x,y) is convex in x for each y € A, and w(y) > 0 for each y € A,
then the function

g(x) = /A w(y)f (x, y)dy

is convex in x (provided the integral exists).
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Operations that preserve convexity

o Composition with an affine mapping:
Suppose f : R" — R, A€ R"™™ and b € R". Define g : R™ — R by

g(x) = f(Ax + b),

with domg = {x|Ax + b € domf}. Then if f is convex, so is g; if f is
concave, so is g.
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Operations that preserve convexity

@ Pointwise maximum:
If f1 and > are convex functions, then

f(x) = max{fi(x), f(x)},

with domf=dom#; N dom©, is also convex.

@ Extension to the pointwise supremum:
If for each y € A, f(x,y) is convex in x, then

g(x) = sup f(x,y)
yeA

is convex in x, where

domg = {x|(x,y) € domf for all y € A, sup f(x,y) < oo}.
yeA
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Functions closed to convex functions

@ Quasi-convex function: A function f : R” — R such that its domain
and all its sublevel sets

So = {x edomf|f(x)<a}, aeR

are convex.

o Log-concave function: A function f : R” — R such that
f(x) > 0,Vx € domf and log f is concave.
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Basic terminology

min  fo(x)
st fi(x) <0, i=1....m (2)
el =0, ji=l ..., @
x € R" the optimization variable
fo : R" — R the objective function or cost function
fi(x) <0 the inequality constraints

fi : R" — R the inequality constraint functions
hi(x) =0 the equality constraints
h; :R" — R the equality constraint functions

If there are no constraints (i.e., m = p = 0) we say the problem is
unconstrained.
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Basic terminology

@ The domain of the optimization problem (2) is given as

m P
D = ﬂ domf; N ﬂ domh;.
i=0 j=1

@ A point x € D is feasible if fi(x) <0,i=1,...,m, and
hi(x) =0,/ =1,...,p.

@ The problem (2) is said to be feasible if there exists at least one
feasible point, and infeasible otherwise.
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Basic terminology

The optimal value v* of the problem (2) is defined as
v =inf{fo(x)|fi(x) <0,i=1,...,m hj(x)=0,j=1,...,p}

If the problem is infeasible, we have v* = oo.

e We say x* is an optimal point, or solves the problem (2), if x* is
feasible and fp(x*) = v*.

@ We say a feasible points x is locally optimal if there is a constant
0 > 0 such that

fo(x) = inf{fo(2)|fi(z) <0,/ =1,....m,
hj(z) = 07./ = 1,---,P, ||27X||2 < 6}
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Convex optimization

A convex optimization problem is one of the form
min  fo(x)
st fi(x) < i=1,...,m (3)
Tx b j=1...,p

where fo, ..., fy, are convex functions.

Any locally optimal point of a convex optimization problem is also
globally optimal.
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An optimality criterion for differentiable f,

Suppose that the objective fy in a convex optimization problem is
differentiable. Let X denote the feasible set, i.e.,

X ={x|f(X)<0,i=1,....,mhj(x)=0,j=1,...,p}

Then x is optimal if and only if x € X and

Vhi(x) (y —x) >0, y € X. (4)
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An optimality criterion for differentiable f,

For an unconstrained problem, the condition (4) reduces to
Vio(x) =0 (5)

for x to be optimal.
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An optimality criterion for differentiable f,

For a convex problem with equality constraints only, i.e.,

min fo(x)
s.t. Ax=0>b

We assume that the feasible set is nonempty. The optimality
condition can be expressed as:

Viy(x)"u >0 for all u € N(A).

In other words,

Viy(x) L N(A).
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Linear optimization problems

A general linear program (LP) has the form

min c¢'x+d
s.t. Gx<h (6)
Ax=0b

where G € R™*" and A € RP*". It is common to omit the constant d in
the objective function.
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Quadratic optimization problems

A convex optimization problem is called quadratic program (QP) if it has
the form

1

min EXTPX +q'x+r

st. Gx < h (7)
Ax =b

where P € S", G € R™*", and A € RP*",

QPs include LPs as a special case by taking P = 0.
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Quadratic optimization problems

If the objective in (3) as well as the inequality constraint functions are
(convex) quadratic, as in

1
min EXTP()X + q(—)rx +r

1
s.t. EXTP;x—i—q;rx—i—r;gO, i=1,...,m (8)
Ax=b
where P; € S7,i =0,1,..., m, the problem is called a quadratically

constrained quadratic program (QCQP).

QCQPs include QPs as a special case by taking P, =0fori=1,..., m.
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Second-order cone programming

A problem that is closely related to quadratic programming is the
second-order cone program (SOCP):

min f'x
s.t. ||A,'X—{—b,'||2<C,-TX—|—d,', i=1,...,m (9)
Fx=g

where x € R" is the optimization variable, A; € R"*" and F € RP*",

When ¢; =0,i =1,...,m, the SOCP is equivalent to a QCQP. However,

second-order cone programs are more general than QCQPs (and of course,
LPs).
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Transform a QCQP into an SOCP

For a QCQP problem (8), let y be an auxiliary variable with constraint:

1
2xTPox + qux +rn <y,

then (8) becomes
min y

1
s.t. EXTP,-X—i—q,-Tx—i—r;gO, i=1...,m

1
2XTP0x+q0Tx+ro—y<0
Ax=b

whose objective is linear. To transform it into an SOCP, we need only
translate quadratic constraints into second-order conic ones.

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 56 / 203



Transform a QCQP into an SOCP

For a quadratic constraint

1
§XTPX+ q'x+r<0

with P € S', let A; € S| be the square root of P, i.e., AjA; = P. Let

0
A:|:A—|]5:|, b — ERIH_I’
q 0
r+3

then the constraint is equivalent to

1
|Ax + blla < —q'x —r+ 5
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The Lagrangian

Consider an optimization problem in the standard form (2):

min fo(x)
st. fi(x) <0, i=1,....m (10)
hj(X):07 J:]-a P

We assume its domain D = (i, domf; N (_; domh; is nonempty, and
denote the optimal value of (10) by v*, but do not assume the problem
(10) is convex.
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The Lagrangian

The basic idea of Lagrangian duality is to take the constraints in (10) into
account by augmenting the objective function with a weighted sum of the
constraint functions.
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The Lagrangian

We define the Lagrangian L : R" x R™ x RP — R associated with the
problem (10) as

L(x, A\, v) = fo(x +Z)\ fi(x) +ZVJ

with domL =D x R™ x RP.

@ Refer to \; as the Lagrange multiplier associated with the ith
inequality constraint f;(x) < 0.

@ Refer to v as the Lagrange multiplier associated with the jth equality
constraint h;j(x) = 0.

@ The vectors A\ and v are called the dual variables or Lagrange
multiplier vectors associated with the problem (10).
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The Lagrange dual function

We define the Lagrange dual function (or just dual function)
g:R"xRP — R as

m P

g(\v) = inf L(x, A v) = inf | fo(x) + ;A;ff(x) +;yjhj(x)

Since the dual function is the pointwise infimum of a family of affine

functions of (A, v), it is concave, even when the problem (10) is not
convex.
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Lower bounds on optimal value

For any A > 0 and any v we have

g\ v) < v (11)

Proof.

Suppose X is a feasible point for (10), then we have

m p

S OAf(R) + Y vihi(x) <0.
j=1

i=1

Hence
g\ v) = infD L(x, A\, v) < L(x,\,v) < fr(X).

xX€

Since g(\, ) < fo(X) holds for every feasible point X, the inequality (11)
follows. N

v
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Lower bounds on optimal value

The dual function gives a nontrivial lower bound on v* only when A > 0
and (\,v) € domg, i.e, g(\,v) > —oc.

We refer to a pair (A, v) with A > 0 and (\,v) € domg as dual feasible.
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Linear approximation interpretation

Let - : R - RU{oo} and Ip : R — RU {00} to be the indicator function
for the nonpositive reals and {0} respectively:

I_(u):{o u<0 Io(u):{o u=0

oo u>0" oo u#0

Then the original problem (10) can be rewritten as an unconstrained

problem:
m P

min fo(x) + Y -(£(x) + > ho(hi(x)) (12)

i=1 j=1
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Linear approximation interpretation

We replace the function /_(u) with the linear function \;u, where \; > 0,

and the function lp(u) with vju. The objective becomes the Lagrangian
function, i.e.,

p
min  L(x,\,v) = fy(x +Z>\f )+ vihi(x)
=1

In this formulation, we use a linear or “soft” displeasure function in
place of /_ and Ip.

Linear function is an underestimator of the indicator function. Since
Aiu < I-(u) and vju < lp(u) for all u, we see immediately that the
dual function yields a lower bound on the optimal value of the original
problem.
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The Lagrange dual problem

To attain the best lower bound that can be obtained from the Lagrange
dual function leads to the optimization problem

max g(\,v) (13)
st. A>0

This problem is called the Lagrange dual problem associated with the
problem (10). Correspondingly, the problem (10) is called the primal
problem.
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The Lagrange dual problem

The term dual feasible, to describe a pair (A, v) with A > 0 and
g(\,v) > —o0, now makes sense.

We refer to (\*,v*) as dual optimal or optimal Lagrange multipliers if
they are optimal for the Lagrange dual problem (13).

The Lagrange dual problem (13) is a convex optimization problem no
matter the primal problem is convex or not, since the objective to be
maximized is concave and the constraint is convex.
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Weak duality

For the optimal value of the Lagrange dual problem g*, we have

*

g < v (14)

This property is called weak duality.

v* — g* is the optimal duality gap of the original problem.
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Strong duality and Slater’s constraint qualification

If the equality
g =V (15)

holds, then we say that stong duality holds.
@ Strong duality does not, in general, hold.

@ For a convex primal problem, there are many additional conditions on
the primal problem, under which strong duality holds.
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Strong duality and Slater’s constraint qualification

One simple condition is Slater’s condition:

There exists an x € relintD such that
fi(x)<0, i=1,...,m,  Ax=bh, (16)
where relintD = {x € D|B(x, r) NaffD C D for some r > 0}. Such a

point is called strictly feasible.

Slater's theorem states that strong duality holds if Slater's condition holds
(and the problem is convex).
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Optimality conditions

Dual feasible points allow us to bound how suboptimal a given feasible
point is, without knowing the exact value of v*.

If x is primal feasible and (A, ) is dual feasible, then
fo(x) — v < fo(x) — g(A,v)

and
v € [g(Av), fo(x)], &" € lg(Av), fo(x)].
It leads to

g\ v) = fo(x) = v =fo(x) = g(A,v) = g".

We refer to fo(x) — g(A, v) as the duality gap associated with the primal
feasible point x and dual feasible point (), v).
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Complementary slackness

Suppose that the primal and dual optimal values are attained and equal,
let x* be a primal optimal and (\*,*) be a dual optimal points, then

p
= inf | fo(x +Z>\* )+ > vihi(x)
j=1
m P
(<) + DAY + Y vihi(x")
i=1

j=1
< fo(x™)
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Complementary slackness

By \f >0, fi(x*) <0,i=1,...,m, we have
NFf(x)=0, i=1,....,m. (17)
This condition is known as complementary slackness.

We can express it as

A7 > 0= fi(x*) =0,
fi(x*) < 0= \F =0.
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KKT optimality conditions

We now assume that the functions fy, ..., fm, h1,..., hp are differentiable.

As above, let x* and (\*,v*) be any primal and dual optimal points with
zero duality gap.

Since x* minimizes L(x, \*,v*) over x, it follows

m P
Vio(x*) + Z A VEi(x*) + Z v;Vhi(x*) = 0.
i=1 j=1
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KKT optimality conditions

Together with constraints and complementary slackness, we have

filx*)<0, i=1,....m

hi(x*) =0, j=1,...,p

>0, i=1,....,m (18)
Nfi(x*)=0, i=1,....,m

Vio(x*) + 321 MVE(x*) + 327, v Vhi(x*) =0

which are called the Karush-Kuhn-Tucker (KKT) conditions.
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KKT optimality conditions

For any optimization problem with differentiable objective and constraint
functions for which strong duality obtains, any pair of primal and dual
optimal points must satisfy the KKT conditions.

When the primal problem is convex, the KKT conditions are also sufficient
for the points to be primal and dual optimal.
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About optimization algorithm

There is no analytical formula for the solution of convex optimization
problems, not to mention general nonlinear optimization problems.

Thus we describe numerical methods for solving convex optimization
problems in the section.
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Recall: descent methods

To solve an unconstrained optimization problem
min f(x)

where f(x) is differentiable and convex, we usually employ descent
methods.
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Recall: descent methods

Given a starting point x(?), a descent method produces a sequence
x(K k=1,..., where

XU = (k) 4 Olk6>(<k)a f(X(k+1)) < f(X(k))' (19)
We usually drop the superscripts and use the notation x := x + ady
to focus on one iteration of an algorithm. a > 0 is called step size

and ¢, called search direction. Different methods differ from choices
of « or/and 0.
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Recall: gradient descent and Newton's method

Given a descent direction Jy, we usually use line search to determine step
size «.

Different search directions:
o Negative gradient:
Iy = —VI£(x).

o Normalized steepest descent direction (with respect to the norm || - ||):

Oxpeg = ArE min{Vf(x)Tv |[|v]| = 1}.

@ Newton step:
xe = —V2F(x)IVF(X).
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Equality constrained minimization problems

A convex optimization problem with equality constraints has the form

min  f(x)

20
s.t. Ax = b, (20)

where f : R" — R is convex and twice continuously differentiable, and
A € RP*™ with rankA = p < n. We assume that an optimal solution x*
exists and v* = f(x*).
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KKT condition

Recall the KKT conditions for (20): a point x* € domf is optimal if and
only if there is a multiplier v* € RP such that

Ax* =b, VF(x*)+ATv* =0. (21)

The first set of equations, Ax* = b, are called the primal feasibility
equations.

The second set of equations, Vf(x*) + ATv* = 0, are called the dual
feasibility equations.
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Newton's method with equality constraints

Newton’s method with equality constraints is almost the same as
Newton’s method without constraints, except for two differences:

@ The initial point must be feasible (i.e., x € domf and Ax = b).

@ The definition of Newton step dy,, is modified to take the equality
constraints into account.
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The Newton step

To derive the Newton step dy,, for problem (20) at the feasible point x, we
replace the objective with its second-order Taylor approximation near x

A

1
min  f(x+s) = f(x) + VFf(x)'s + ESTV2f(x)s

(22)
st. A(x+s)=b
with variable s. Suppose dy, is optimal for (22). By KKT conditions,
there exists associated optimal dual variable w € RP such that
V2f(x) AT e | | —VF(x)
[ A 0 wo| 0 ' (23)
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The Newton step

We can also derive the Newton Step d,,, by simply replacing x* and v* in
the KKT conditions for problem (20):

Ax* =b, VF(x)+ATv* =0

with x + dx,, and w, respectively, and replace the gradient term in the
second equation by its linearized approximation near x, to obtain the
equations

A(X + 5Xnt) = b7

VF(x 4+ 6x,) + A'w = VF(x) + V2f(x)0x, + A w = 0.

Xnt
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The Newton step

Using Ax = b, these become
Aby, =0, V2F(X)0xy +A'w = —VF(x),

which are precisely the equations (23).
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The Newton decrement

The Newton decrement is defined as
K(x) = (0 V2F(x)0x, ) /2.

Since 4
af(x + Oé(ant) = Vf()<)—r5xnt = _I{(X)27

a=0

the algorithm should terminate when £(x) is small.
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Newton's method with equality constraints

Algorithm. Newton's method for equality constrained minimization.

given starting point x € domf with Ax = b, tolerance ¢ > 0.
repeat

@ Compute the Newton step and decrement d,,, K(x).
@ Stopping criterion. quit if k?/2 < e.

© Line search Choose step size o by backtracking line search.

Q update. x := x + ady,,.

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 88 / 203



Infeasible start Newton method

Newton's method described above is a feasible descent method. Now we
describe a generalization of Newton's method that works with initial
points and iterates that are not feasible.
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Newton step at infeasible points

Let x denote the current point, which we do not assume to be feasible,
but we do assume satisfies x € domf.

Our goal is to find a step Jx so that x + J, satisfies the optimality
conditions (21), i.e.,, x + dx ~ x*.
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Newton step at infeasible points

Similarly, we substitute x + dx for x* and p for v* in
Ax* =b, VF(x)+ATv* =0
and use the first-order approximation for the gradient to obtain
A(x + 0x) = b,

VF(x+6,) + AT~ VF(x) + V2f(x)dx + A" = 0.

This is a set of linear equations for d, and p,

SRS FIES P
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Interpretation as primal-dual Newton step

We express the optimality conditions (21) as r(x*,v*) = 0, where
r:R" x RP — R" x RP is defined as

r(X7 V) = (rduaI(X7 V)? rpri(xv V))

Here
rd“al(x’y) ZVf(X)+ATU7 rPri(va) =Ax—b

are the dual residual and primal residual, respectively.

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 92 / 203



Interpretation as primal-dual newton step

The first-order Taylor approximation of r, near our current point
y =(x,v), is

r(y +98y) = F(y +dy) = r(y) + Jlr(y)ldy,

where J[r(y)] € R("P)*(7+P) s the derivative (Jacobian) of r,
evaluated at y.
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Interpretation as primal-dual Newton step

We define d,,, as the primal-dual Newton step for which
Py +46,) =0, ie,
J[r(y)ldy,g = —r(y). (25)

Note that dy, , = (dx,4,01,4) gives both a primal and a dual step.
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Interpretation as primal-dual Newton step

Equations (25) can be expressed as

0 i) [ o

Vpd Nori

Writing v + 6,4 as j1, we find it coincide with (24)

A I R P
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Residual norm reduction property

The Newton direction at an infeasible point is not necessarily a descent
direction for f.

The primal-dual interpretation, however, shows that the norm of the
residual decreases in the Newton direction. By calculation we have

d
ity +ady)lz| ==l

a=0

This allows us to use ||r||2 to measure the progress of the infeasible start
Newton method.
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Infeasible start Newton method

Algorithm. Infeasible start Newton method.

given starting point x € domf with Ax = b, tolerance € > 0,
7€(0,1/2),v € (0,1).
repeat

© Compute primal and dual Newton steps dy,,, 0

Unt*
@ Backtracking line search on ||r||2.
o =1
while ||r(x + adx,, v + ady, )2 > (1 — Ta)||r(x, v)|2, a:=~a.
© Update. x := X + 0y, V =V + Qdy,,.
until Ax = b and ||r(x,v)|l2 <e.
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Inequality constrained minimization problems

The convex optimization problems that include inequality constraints:

min  fo(x)
st. fi(x)<0, i=1,...,m (27)
Ax =D
where fy, ..., fn : R” — R are convex and twice continuously

differentiable, and A € RP*" with rankA = p < n.

We assume that an optimal x* exists and denote the optimal value
fo(x*) as v*.
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We also assume that the problem is strictly feasible, i.e., Ix € D satisfying
Ax =band fi(x) <O0fori=1,...,m.

This means that Slater’s constraint qualification holds, and therefore
strong duality holds, so there exists dual optimal A* € R™, v* € RP, which
together with x* satisfy the KKT conditions:

Ax*=b, fi(x*) < 0, i=1....m
A2 0 (28)
Vi(x*) + ST, NVE(x) +ATv = 0
XNifi(x*) = 0, i=1,...,m
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About interior-point method

Interior-point methods solve the problem (27) by applying Newton's
method to a sequence of equality constrained problems, or to a sequence
of modified versions of the KKT conditions.

We will introduce two particular interior-point algorithms:
@ The barrier method
@ The primal-dual interior-point method
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Logarithmic barrier function

Rewrite the problem (27) and make the inequality constraints implicit in
the objective:

min fo(x) + I_(fi(x
o(x) ; (fi(x)) (20)
s.t. Ax = b,
where
0 wu<oO
I_(u)_{oo u>0
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Logarithmic barrier function

The basic idea of the barrier method is to approximate the indicator
function I_ by the function

I (u)=—(1/t)log(—u), domi_ = -R,,

where t is a parameter that sets the accuracy of the approximation.

Obviously, I_ is convex, nondecreasing and differentiable.
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Logarithmic barrier function

23 ) 1 0 1

Figure: The dashed lines show the function /_(u), and the solid curves show
I_(u) =—(1/t)log(—u), for t =0.5,1,2. The curve for t = 2 gives the best
approximation.
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Logarithmic barrier function

Substituting I_ for I_ in (29) gives the approximation

min  fo(x) + » —(1/t)log(—fi(x))
o2 : (30)
s.t. Ax=b.

The function

¢(x) = =Y _ log(—fi(x)), (31)
i=1

is called the logarithmic barrier for the problem (27). Its domain is the set
of points that satisfy the inequality constraints of (27) strictly:

dom¢ = {x € R"[fi(x) <0,i=1,...,m}.
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Logarithmic barrier function

The gradient and Hessian of ¢ are given by

Vo(x) =3 - fl(x)w,(x),
i=1 L
2 X) = S XT S 1 2 X
V26(x) ;fl( VARV + ) Vi)
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Central path

We multiply the objective of (30) by t, and consider the equivalent

problem
min  tfo(x) + ¢(x) (32)
s.t. Ax=b.

We assume problem (32) can be solved via Newton's method, and, that it
has a unique solution for each t > 0.
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Central path

For t > 0 we define x*(t) = arg min{tfy(x) + ¢(x) s.t. Ax = b} as the
solution of (32).

The central path associated with problem (27) is defined as the set of
points {x*(t) | t > 0}, which we call the central points.
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Central path

Points on the central path are characterized by the following necessary and
sufficient conditions: x*(t) is strictly feasible, i.e., satisfies

Ax*(t) =b, fi(x*(t))<0,i=1,....m
and 37 € RP such that
0= tVh(x*(t)) + Vo(x*(t)) + AT
= 1

= tVRKC () + X oy
1 1

vitew) a5

i=

holds.
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Dual points from central path

Every central point yields a dual feasible point.

Define
Ai(t) = —71 =1 m *(t) =
“(t) = i=1,... v =
! tfi(x*(t))’ oy

Because fj(x*(t)) < 0,i =1,...,m, it's clear that \*(¢) > 0.

~ |

(34)
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Dual points from central path

By expressing (33) as
Vi(x*(t)) + zm: N ()VE(x* (1)) + ATv*(t) = 0,
i=1

we see that x*(t) minimizes the Lagrangian

m

L(x, A\, v) = fo(x) + > Aifi(x) + v (Ax — b)

i=1

for A = A*(t) and v = v*(t). Thus (A\*(t),v*(t)) is a dual feasible pair.
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Dual points from central path

Therefore the dual function g(A*(t),v*(t)) = min L(x, \*(t),v*(t)) is
finite and

(N (), (1) = fo(x* (1)) + ixf(t)f,-(x*(r)) +(2) (Ax*(t) — b)
— BOe(0) = m
o As an important consequence, we have
Hlx* (1)) - v < m/t.

@ This confirms that x*(t) converge to an optimal point as t — co.
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Interpretation via KKT conditions

Since we have assumed that x*(t) is the unique solution to problem (32)
for each t > 0, a point is equal to x*(t) if and only if I\, v such that

Ax = b, fi(x) < 0, i=1,...,m
A >0
Vi(x)+ T ANVE(x)+ ATy = 0 (35)
—/\,'f,'(X) = 1/1‘, i=1, ,m

The only difference between (35) and the KKT condition (28) is that the
complementarity condition —\;fj(x) = 0 is replaced by the condition
—)\iﬁ(x) = l/t.

In particular, for large t, x*(t) and A*(t),v*(t) ‘almost’ satisfy the
KKT optimality conditions for the problem (27).
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The barrier method

Algorithm. Barrier method

given strictly feasible x, t := t(9) > 0, > 1, tolerance ¢ > 0.
repeat

@ Centering step. Starting at x, compute x*(t) by minimizing
tfo(x) + ¢(x), subject to Ax = b.

@ Update. x := x*(t)
© Stopping criterion. quit if m/t < e.

© Increase t. Let t := yt.

An execution of step 1 is called an outer iteration. We assume that
Newton’s method is used in step 1, and we refer to the Newton iterations
or steps executed during the centering step as inner iterations.
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The barrier method

e Computing x*(t) exactly is not necessary.

@ The choice of the parameter ~y involves a trade-off:
If v is small (i.e., near 1) then centering step will be easy since the
previous iterate x is a very good starting point but of course there will
be a large number of outer iterations.
On the other hand, a large y resulting in fewer outer iterations but
more inner iterations.

e Choice of t(9);
If t©) is chosen too large, the first outer iteration will require too
many iterations.
If t(©) is chosen too small, the algorithm will require extra outer
iterations.
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Newton step for modified KKT equations

In the step 1 of the barrier method, the Newton step d,,, and associated
dual variable are given by the linear equations

T ][] 799,70

These Newton steps for the centering problem can be interpreted as
Newton steps for directly solving the modified KKT equations
Vi(x)+ YT AVAE(x)+ ATy = 0

=Nifi(x) = 1/t, i=1,...,m (37)
Ax = b.
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Newton step for modified KKT equations

Let \; = —1/(tfi(x)). This transforms (37) into
T —
Vio(x +Z_tf x)+ATv=0, Ax=b. (38)

For small d,,

“ 1
Vfo(x+5x)+z V£i(x + 6x)

— —tfi(x + dx)

1 1
~RVhH(X) + > T()()Vﬂ(x) + V2 (x)0x + > _tf_(X)sz,-(x)dx
=1 =1

m

+ Z} tf(lx)zw(x)w(x)m.

i
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Newton step for modified KKT equations

Let
2 (AT
H = V2f(x +§ _tf +§ tf x)Vfi(x)

g = Vify(x Z 5 Vi)

Observe that
H = Vi(x)+(1/t)V?(x), &= Vi(x)+(1/t)Ve(x).
The Newton step for (38) is
Hoy +ATv=—g, Aj,=0.
Comparing this with (36) shows that

Ope = ey W= —

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 117 / 203



Feasibility and phase I method

o The barrier method requires a strictly feasible starting point x(®).

@ When such a point is not known, the barrier method is preceded by a
preliminary stage, called phase I, in which a strictly feasible point is
computed and used as the starting point for the barrier method.
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Basic phase I method

To find a strictly feasible solution of inequalities and equalities

filx) <0, i=1,...,m, Ax=b, (39)

min s
st. filx)<s, i=1,....,m (40)
Ax=0>b

in the variable x € R” s € R. It's always strictly feasible, and called the
phase I optimization problem associated with the inequality and equality
system (39).
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Basic phase I method

Let V* be the optimal value of (40).

e If v* <0, then (39) has a strictly feasible solution. In fact, we can
terminate solving the problem (40) when s < 0.

o If v* > 0, then (39) is infeasible. In fact, we can terminate when a
central point give a positive lower bound of v* > 0.

o If v =0 and the minimum is attained at x* and s* = 0, then the set
of inequalities is feasible but note strictly feasible. If v* = 0 and the
minimum is not attained, then the inequalities are infeasible.
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Primal-dual search direction

The modified KKT conditions (37) can be expressed as r(x, A, v) = 0,
where

re(x, A\, v) = —diag(\)f(x) — (1/t)1
Ax — b

and t > 0. Here f : R” — R™ and J[f] are given by

(41)

Vh(x) + JIF)]TA+ ATy ]

f1(x) VA(x)"
f(x) = : , Jif(x)] = :
fm(x) Vin(x)"
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Primal-dual search direction

If x, A\, v satisfy r¢(x, \,v) =0 (and fi(x) < 0), then x = x*(t), A = \*(t)
and v = v*(t).

@ The first block component of ry,
Fawal = Vo(x) + DF(x) 'A + ATw

is called the dual residual.

@ The last block component, r,; = Ax — b, is called the primal residual.
@ The middle block

fcent = _diag()‘)f(x) - (l/t)17

is the centrality residual, i.e., the residual for the modified
complementarity condition.
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Primal-dual search direction

Let y = (x, A, v) denote the current point and 0, = (dx, dx, d, ) denote the
Newton step for solving the equation r¢(x, A, ) = 0, for fixed t where
f(x) < 0,A > 0.

The Newton step is characterized by

re(y + 0y) = re(y) + J[re(y)]doy, = 0.
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Primal-dual search direction

In terms of x, A, v, we have

V200 + ST AVG)  JFGT AT [ b -
“diag(VJIF ()] —diag(f(x) 0 | | o | = | reem

A 0 0 oy o

(42)

The primal-dual search direction 6y, = (x4 Oxpas 0u,4) is defined as the
solution of (42).
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The surrogate duality gap

In the primal-dual interior-point method the iterates x(¥), A(K) and v(¥) are
not necessarily feasible. We cannot easily evaluate a duality gap as we do
in the barrier method.

Instead, we define the surrogate duality gap, for any x that satisfies
f(x)<0and A >0, as

Alx, A) = —F(x) T\,

The surrogate gap 7 would be the duality gap, if x were primal feasible
and A\, v were dual feasible. Note that the value of the parameter t
corresponding to the surrogate duality gap 7 is m/7}.
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Primal-dual interior-point method

Algorithm. Primal-dual interior-point method.
given x that satisfies

fi(x) <0,...,fm(x) <O,A> 0,7 > 1, €feas > 0,€ > 0.
repeat

@ Determine t. Set t := ym/1).
© Compute primal-dual search direction 4y, ,.

© Line search and update.
Determine step length o > 0 and set y := y + ady,,.

until ||rpri||2 < €feas) ”rdual||2 < €feas, and 77 e
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Line search in primal-dual interior-point method

The line search in step 3 is a standard backtracking line search.

For a step size a, let

xt X Oxod
vt v Oy g

Let

o™ =sup{a € [0,1]|]A + ady = 0} = min {1, min{—\;/dy,[6), < O}}

to be the largest positive step length the gives AT > 0.
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Line search in primal-dual interior-point method

We start backtracking with o = 0.99a™2*, and multiply a by 8 € (0, 1)
until we have f(x™) < 0. We continue multiplying o by 3 until we have

lre (A%, )2 < (1 = Ta)|lre(x, A, v) -

Here 7 is typically chosen in the range 0.01 to 0.1.
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Exercises

Ex 1. Let C C R" be the solution set of a quadratic inequality,
C={xeR"x"Ax+ b'x+ c <0},

with A€ S". b € R"”, and c € R.

(a) Show that C is convex if A = 0.

(b) Show that the intersection of C and the hyperplane defined by

g x+h=0 (where g # 0) is convex if A+ \gg ' = 0 for some \ € R.

Ex 2. Let A\i(X) = A2(X) > ... = Ap(X) denote the eigenvalues of a

matrix X € S”. Prove that the maximum eigenvalue \;(X) is convex.

Moreover, Show that Zf'(:l Ai(X) is convex on S". Hint. Use the

variational characterization

k
D Xi(X) = sup{tr(VIXV)|V e R™K VTV =T}
=il
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Exercises

Ex 3. Find the dual function of the LP

min ¢’x
st. Gx=<h
Ax = b.

Give the dual problem, and make the implicit equality constraints
explicit.
Ex 4. Consider the equality constrained least-squares problem

min  ||Ax — b||3
st. Gx=h

where A € R™*" with rankA = n, and G € RP*" with rankG = p.
Give the KKT conditions, and derive expressions for the primal
solution x* and the dual solution v*.
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Exercises

Ex 5. Suppose @ = 0. The problem

min  f(x) + (Ax — b) T Q(Ax — b)
st. Ax=b

is equivalent to the original equality constrained optimization problem

(20). What is the Newton step for this problem? Is it the same as
that for the original problem?
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Exercises

Ex 6. Suppose we use the infeasible start Newton method to minimize f(x)
subject to a,-Tx =bj,i=1,...,p.
(a) Suppose the initial point x(9) satisfies the linear equality a;" x(®) = b;.
Show that the linear equality will remain satisfied for future iterates,
ie., al xk) = b; for all k.
(b) Suppose that one of the equality constraints becomes satisfied at
iteration k, i.e., we have a;'—x(kfl) = b;, a;'—x(k) = b;. Show that at

iteration k, all the equality constraints are satisfied.
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Exercises

Ex 7. Suppose we add the constraint x ' x < R? to the problem (27):

min  fo(x)

st. fi(x)<0, i=1,....m
Ax=b
xTx < R?

Let ¢ denote the logarithmic barrier function for this modified
problem. Find a > 0 for which V2(tfo(x) + ¢(x)) = al holds, for all
feasible x.
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Exercises

Ex 8. Consider the problem (27), with central path x*(t) for t > 0, defined
as the solution of (32).
For u > p*, let z*(u) denote the solution of

min  —log (u — fo(x)) — Y74 log (—fi(x))
st. Ax=0b

Show that the curve define by z*(u), for u > p*, is the central path.
(In other words, for each u > p*, there is a t > 0 for which

x*(t) = z*(u), and conversely, for each t > 0, there is a u > p* for
which z*(u) = x*(t)).
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Sparse Optimization

Many problems of recent interest in statistics and related areas can be
posed in the framework of sparse optimization. Due to the explosion in
size and complexity of modern data analysis (BigData), it is increasingly
important to be able to solve problems with a very large number of
features, training examples, or both.
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Electronic commerce data
Social network data
Financial data
Multimedia data
Bioinformatics data

Geometric data
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High-dimensional data and sparsity

Techniques:

Statistics (Bayesian/Lasso)

Priors and Transforms

Sparse and Redundant Representations
Low Rank Representations
Optimization (OMP/BP)
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Compressed Sensing

In recent years, Compressed Sensing (CS) has attracted considerable
attention in areas of applied mathematics, computer science, and signal
processing [Candes and Tao 2005; Donoho 2006; Bruckstein et al. 2009].
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Compressed Sensing

The central insight of CS is that many signals are sparse, i.e., represented
using only a few non-zero coefficients in a suitable basis or dictionary and

such signals can be recovered from very few measurements (undersampled
data) by an optimization algorithm.

@%@i Rl

Incoherent linear projection

i oio ey
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The Sparsest Solution of Ax =b

(Po) min|x|lp s.t. Ax=h. (43)
X

For the underdetermined linear system of equations Ax = b (a full-rank
matrix A € R™*" with m << n), the following questions are posed:

Q1: When can uniqueness of the sparsest solution be claimed?
Q2: Can a candidate solution be tested to verify its (global) optimality?
Q3: Can the solution be reliably and efficiently found in practice?

Q4: What performance guarantees can be given for various approximate
and practical solvers?
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Uniqueness via the Spark

o Definition 01: The spark of a given matrix A is the smallest number
of columns from A that are linearly dependent.

@ Theorem 02: If a system of linear equations Ax = b has a solution x
obeying ||x||o < spark(A)/2, this solution is necessarily the sparsest
possible.
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Uniqueness via the Mutual Coherence

o Definition 03: The mutual coherence of a given matrix A is the
largest absolute normalized inner product between different columns
from A. Denoting the k-th column in A by ag, the mutual coherence
is given by

la/aj]

p(A) = max e

1<iZi<n ||aj]|2[|aj|2

e Lemma 04: For any matrix A € R™*" the following relationship
holds:

spark(A) > 1+ ——.
W=t

@ Theorem 05: If a system of linear equations Ax = b has a solution x
obeying ||x|lo < (1 + 1/u(A))/2, this solution is necessarily the
sparsest possible.
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Pursuit Algorithms

Greedy strategies are usually adopted in solving the problem (Pp).

The following algorithm is known in the literature of signal processing
by the name Orthogonal Matching Pursuit (OMP).

Task: Approximate the solution of (Pp): minx [|x|o subjectto Ax = b.
Parameters: We are given the matrix A, the vector b, and the error threshold eg.
Initialization: Initialize £ = 0, and set

o The initial solution x° = 0.

e The initial residual r = b — Ax” = b.

o The initial solution support S° = Support{x"} = (.
Main Iteration: Increment k by | and perform the following steps:

e Sweep: Compute the errors ¢(j) = min.; [la;z; — rf=1|2 for all j using the
optimal choice 2} = al r¥~!/||a;||3.
Update Support: Find a minimizer jo of €(5): V j ¢ S*~', €(jo) < €(4), and
update S* = SF71 U {jo}.
Update Provisional Solution: Compute x*, the minimizer of || Ax — b||3 subject
to Support{x} = S*.
Update Residual: Compute r* = b — Ax".
Stopping Rule: If [|r*|| < o, stop. Otherwise, apply another iteration.

Output: The proposed solution is x* obtained after £ iterations.
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Geometry of £,-Norm
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Pursuit Algorithms

Convex relaxation technique is a second way to render (Py) more tractable.

Convexifying with the ¢; norm, we come to the new optimization
problem
(P1) min||Wx|y st. Ax=Db (44)
X

where W is a diagonal positive-definite matrix that introduces the
precompensating weights.
It was named Basis Pursuit (BP) when all the columns of A are

normalized (and thus W =1).
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Pursuit Algorithms

@ Theorem 06: For a system of linear equations Ax = b, if a solution x
exists obeying [|x|lo < (1 + 1/u(A))/2, then an OMP algorithm run
with threshold parameter ¢y = 0 is guaranteed to find it exactly.

@ Theorem 07: For a system of linear equations Ax = b, if a solution x
exists obeying [|x|lo < (1 + 1/u(A))/2, that solution is both the
unique solution of (P;) and the unique solution of (Pp).
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From Exact to Approximate Solutions

An error-tolerant version of (Pg) is defined by

(PS) min|xllo st [b-Ax| <e (45)
X

@ Theorem 08: Consider the instance of problem (P§) defined by the
triplet (A; b;€). Suppose that a sparse vector xg satisfies the sparsity
constraint ||xgllo < (14 1/u(A))/2, and gives a representation of b to
within error tolerance € (i.e., ||b — Axg|| < €). Every solution x§ of
(Pg) must obey

4¢?
1 — p(A)(2llxollo — 1)

Ix§ — xol3 <
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From Exact to Approximate Solutions

An error-tolerant version of (P;) is defined by

(Pf) min|x|[[1 s.t. |b—Ax| <e. (46)

@ Theorem 09: Consider the instance of problem (P5) defined by the
triplet (A; b; €). Suppose that a sparse vector xg is a feasible solution
to (Py) satisfying the sparsity constraint ||xgl/o < (1 + 1/1(A))/4.
The solution x§ of (P{) must obey

4¢?
1 — pu(A)(4llxollo — 1)

Ix§ — xol[3 <
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Restricted Isometry Property

e Definition 10: A matrix A € R™*" is said to have the restricted
isometry property RIP(4;s) if each submatrix As formed by
combining at most s columns of A has its nonzero singular values
bounded above by 1 4+ ¢ and below by 1 —§.

@ Theorem 11: Candés and Tao have shown that A € RIP(\/2 — 1;2s)
implies that (P1) and (Pg) have identical solutions on all s-sparse
vectors and, moreover, that (Pj) stably approximates the sparsest
near-solution of b = Ax + v with a reasonable stability coefficient.
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¢y and ¢, Recovery
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Recovery
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Compressed Sensing

Designing measurement/sensing matrices with favorable properties and
constructing suitable transforms/dictionaries are the important research
topics in Compressed Sensing.

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 154 / 203



Outline

© Sparse Optimization

@ Sparse Modeling

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 155 / 203



Sparse Modeling

All the previous theorems have shown us that the problem of finding a
sparse solution to an under-determined linear system (or
approximation of it) can be given a meaningful definition and can also
be computationally tractable.

We now turn to discuss the applicability of these ideas to signal,
image, and geometric processing, i.e., sparsity-seeking representations.
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Priors and transforms for signals

The Bayesian framework imposes a Probability-Density-Function
(PDF) on the signals — a prior distribution P(y).

Priors are extensively used in signal processing, serving in inverse
problems, compression, anomaly detection, and more.
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Priors and transforms for signals

Consider the denoising problem: a given image b is known to be a noisy
version of a clean image y, contaminated by an additive perturbation
vector v, known to have a finite energy |[v|[2 < ¢, ie, b=y +v.

The optimization problem

max P(y) s.t. |ly—b|2<e¢
y

leads to the most probable image y that is an effective estimate of y.

This way the prior is exploited for solving the noise cleaning problem.
The above formulation of the denoising problem is in fact that
Maximum-A-posteriori-Probability (MAP) estimator.
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Priors and transforms for signals

Much effort has been allocated in the signal and image processing
communities for forming priors as closed-form expressions.

One very common way to construct P(y) is to guess its structure
based on intuitive expectations from the data content. For example,
the Gibbs distribution P(y) = Const - exp{—A||Ly||3} uses a Laplacian
matrix to give an evaluation of the probability of the image y.

In such a prior, smoothness, measured by the Laplacian operator, is
used for judging the probability of the signal.
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Priors and transforms for signals

This prior is well-known and extensively used in signal processing, and is
known to be related to both Tikhonov regularization and Wiener filtering.

The prior leads to an optimization problem of the form
min||Ly[3 s.t. [y —bl2<e
which can be converted to
min A[Ly[|3 + [ly — b|3

where we have replaced the constraint by an equivalent penalty.
The closed-form solution is easily obtained as

g=0+ALTL)" b,

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 160 / 203



Priors and transforms for signals

The above specific prior stressing smoothness is known to cause blurring of
the image when used in various restoration tasks. The remedy for this
problem was found to be the replacement of the ¢>-norm by a more robust

measure, such as an #1-norm, that allows heavy tails for the distribution of
the values of Ly.

A prior of the form P(y) = Const - exp{—A\||Ly||1} is far more
versatile and thus became popular in recent years.

Similar to this option is the Total-Variation (TV) prior

P(y) = Const - exp{—A||ly||7v} [Rudin, Osher, and Fatemi, 1993]
that also promotes smoothness, but differently, by replacing the
Laplacian with gradient norms.
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Priors and transforms for signals
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Priors and transforms for signals

A different property that can be used for constructing a prior is assuming a
structure on the signals transform-coefficients.

One such example is the JPEG compression algorithm, which relies on
the fact that 2D-DCT coefficients of small image patches tend to
behave in a predicted way (being concentrated around the origin).

Another well-known example refers to the wavelet transform of signals
and images, where the coefficients are expected to be sparse, most of
them tending to zero while few remain active.
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Priors and transforms for signals

For a signal y, the wavelet transform is given by Ty where the matrix
T is a specially designed orthogonal matrix that contains in its rows
spatial derivatives of varying scale, thereby providing what is known
as multi-scale analysis of the signal.

Wavelet
x10* Coefficients

2
15
1
0.5
0
-0.5

-1

0 2 4 6 8 10
x 10°

Therefore, the prior in this case becomes
P(y) = Const - exp{—\|| Ty||5} with p < 1 to promote sparsity.
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Priors and transforms for signals

A rich family of signal priors assign likelihood for an image based on the
behavior of its transform coefficients Ty. In the signal and image
processing literature, such priors were postulated in conjunction with a
variety of transforms, such as

o the Discrete-Fourier-Transform (DFT)
o the Discrete-Cosine-Transform (DCT)
o the Hadamard-Transform (HT)

@ the Principal-Component-Analysis (PCA)
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Bayesian perspective

@ Using Bayes' rule, the posterior probability of y given the
measurements is formulated by

Ply 1) = )

o Considering the fact that the denominator P(z) is not a function of
the unknown y, and as such it can be disregarded, the MAP
estimation amounts to

Ymap = arg S Py |z)=arg iy P(z | y)P(y).
@ The probability P(z | y) is known as the likelihood function, and the

probability P(y) is the known/unknown's prior.
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The Sparse-Land model

The linear system Dx =y can be interpreted as a way of constructing
signals y. Every column in D is a possible signal in R" — we refer to
these m columns as atomic signals, and the matrix D displays a
dictionary of atoms.

The multiplication of D by a sparse vector x with ||x||o = ko < n
produces a linear combination of kg atoms with varying portions,
generating the signal y. The vector x that generates y will be called
its representation.
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The Sparse-Land model

The Sparse-Land model M(D, ko, ., €):

y=Dx+v

@ Consider all the possible sparse representation vectors with cardinality
x]lo = ko < n, and assume that this set of CX0 possible cardinalities
are drawn with uniform probability.

@ Assume further that the non-zero entries in x are drawn from the
zero-mean Gaussian distribution Const - exp{—ax?}.

@ Postulate that the observations are contaminated by a random
perturbation (noise) vector v € R” with bounded power ||v|]2 < €.
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The quest for a dictionary

In the quest for the proper dictionary to use in applications, one line
of work considers choosing pre-constructed dictionaries, such as
undecimated wavelets, steerable wavelets, contourlets, curvelets, and
more.

Some of these proposed dictionaries (which are often referred to also
as transforms) are accompanied by a detailed theoretical analysis
establishing the sparsity of the representation coefficients for such
simplified content of signals.
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The quest for a dictionary

While pre-constructed or adapted dictionaries typically lead to fast
transforms, they are typically limited in their ability to sparsify the
signals they are designed to handle. Furthermore, most of those
dictionaries are restricted to signals/images of a certain type, and
cannot be used for a new and arbitrary family of signals of interest.

This leads us to yet another approach for obtaining dictionaries that
overcomes these limitations — by adopting a learning point-of-view.

As opposed to the pre-constructed and adapted dictionaries, the
learning method is able to adapt to any family of signals that
complies with the Sparse-Land model.
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Dictionary learning

Assume that a training database {yj} * , is given, and thought to have
been generated by some fixed but unknown model M(D, ko, «, €).

@ Control the deviation:

min, Z Ixjllo st [lyj = Dxjll2 <€ j=1,--- N
D, {x;}}! J=1 j=1

@ Control the sparsity:
min ZnyJ Dx;|3 s.t. |xjllo < ko, j=1,---,N

D{XJJ 1j=1
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Analysis versus Synthesis

@ Synthesis based modeling

(Ps) ¥s=D-argmin|x||, st. |z—Dx||<e (47)
X

@ Analysis based modeling

(Pa) ya=argmin||Tyll, st. [lz—y]<e (48)
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Dictionary learning algorithms

The optimization problem for dictionary learning (sparse representations
and coding):

min|Y — DX|lpa 5t [xilo < ko, j=1, N (49)

where
Y = (y17"' 7yN) S ]RHXN7

D= (dy, - ,dpm) € R™™,

X = (Xl,"- ,XN) S RmXN.
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Dictionary learning algorithms

There are two training mechanisms, the first named Method of Optimal

Directions (MOD) by Engan et al., and the second named K-SVD, by
Aharon et al..

e MOD

e K-SVD
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Applications

Image deblurring

Facial image compression
@ Image denoising

@ Image inpainting
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Applications

Image with missing data Inpainting result
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Applications
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Application

Original Image

Noisy Image (22.1307 dB, 6=20)

Denoised Image
Adaptive Duuon.xry (30. 8295 dB)

Denoised Image Using
G]obd] Trained chlmndry (288528 dB)

wQustc.edu.cn (USTC) OptAlgorithms



References

1. Emmanuel J. Candes, Terence Tao. Decoding by linear programming.
Information Theory, IEEE Transactions on 51.12 (2005): 4203-4215.

2. Emmanuel J. Candes, Justin Romberg, Terence Tao. Robust
uncertainty principles: Exact signal reconstruction from highly

incomplete frequency information. Information Theory, IEEE
Transactions on 52.2 (2006): 489-509.

3. Emmanuel J. Candeés, Michael B. Wakin. An introduction to
compressive sampling. Signal Processing Magazine, |IEEE 25.2
(2008): 21-30.

4. Alfred M. Bruckstein, David L. Donoho, Michael Elad. From sparse
solutions of systems of equations to sparse modeling of signals and
images. SIAM review 51.1 (2009): 34-81.

5. Michael Elad. Sparse and Redundant Representations: From Theory
to Applications in Signal and Image Processing. Springer, 2010.

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 179 / 203



© Sparse Optimization

@ Sparse Optimization Algorithms

yangzwQustc.edu.cn (USTC) OptAlgorithms 25/02/2019 180 / 203



0-norm optimization

(Po) minxllo st. Ax=b. (50)
X

(P5) min|x[[o s.t. |b—Ax| <e. (51)
X
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Greedy algorithms

Greedy strategies are usually adopted in solving the 0-norm problems. The
following algorithm is known in the literature of signal processing by the
name Orthogonal Matching Pursuit (OMP).

Task: Approximate the solution of (P): minx ||x||o subjectto Ax =b.
Parameters: We are given the matrix A, the vector b, and the error threshold €.
Initialization: Initialize £ = 0, and set
o The initial solution x° = 0.
o The initial residual r® = b — Ax" = b.
o The initial solution support S° = Support{x"} = 0.
Main Iteration: Increment k by | and perform the following steps:
o Sweep: Compute the errors €(j) = min, [|a;jz; — r* '[|3 for all j using the
optimal choice 2} = alr¥~!/|a;|3.
e Update Support: Find a minimizer jo of €(j): V j ¢ S*7%, e(jo) < €(j), and
update S* = S*~ U {jo}.
o Update Provisional Solution: Compute x*, the minimizer of || Ax — b)|3 subject
to Support{x} = S*.
e Update Residual: Compute r* = b — Ax".
e Stopping Rule: If ||r*||> < €0, stop. Otherwise, apply another iteration.

Output: The proposed solution is x* obtained after k iterations.
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Dictionary learning

The optimization model of dictionary learning for sparse and redundant
representations:

min|Y — DXlpa st [xjlo < ko, j=1, N (52)

where

Y = (y17"' 7yN) S ]RHXN7
D= (dy, - ,dy) € R™™

X = (Xl,"- ,XN) S RmXN.
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Dictionary learning

There are two training mechanisms, the first named Method of Optimal

Directions (MOD) by Engan et al., and the second named K-SVD, by
Aharon et al..

e MOD

e K-SVD
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Convex relaxation

Convex relaxation technique is a way to render 0-norm more tractable.

Convexifying with the ¢; norm, we come to the new optimization
problem
(P1) min||Wx|; st. Ax=Db (53)
X

where W is a diagonal positive-definite matrix that introduces the
precompensating weights.

An error-tolerant version of (Py) is defined by
(P{) min|[Wx]|j;1 s.t. |b—Ax| <e (54)
X

It was named Basis Pursuit (BP) when all the columns of A are
normalized (and thus W =1).
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Basic pursuit
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BP denoising and LASSO

(BP;) min|Ax —bl|j3 st. |x|1 <7,
X

(BP.) min|lx[y + 5Ax — bJ|3,

(BPs) min|x||z s.t. [JAx—b]|2 <é.
X

Questions:

@ Are they equivalent? and in what sense?

@ How to choose parameters?
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Sparse under basis W

min{||s||1 : AWs = b}
S

i Ean

Incoherent linear projection

If W is orthogonal, the problem is equivalent to

min{||W*x||; : Ax = b}.
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Sparse after transform L

mxin{HEle : Ax = b}

Examples of L:
o DCT, wavelets, curvelets, ridgelets, ...
o tight frames, Gabor, ...

o total (generalized) variation
Ref: E. J. Cands, Y. Eldar, D. Needell and P. Randall. Compressed sensing

with coherent and redundant dictionaries. Applied and Computational
Harmonic Analysis, 31(1): 59-73.
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Joint/group sparsity

Decompose {1,2,---,n} =G1JG2U---UGs, and G;(G; =0,i # .

Joint/group sparse recovery model:
min{[[x[lg.2,1 : Ax = b}

where
S

Ixllg.21 = ) wslixg,ll2-

s=1
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Side constraints

@ Nonnegativity: x > 0
@ Box constraints: Ib < x < ub

@ Linear inequalities: Qx < c

They generate “corners” and can be very effective in practice.
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Shrinkage

Shrinkage is popular in sparse optimization algorithms

In optimization, non-smooth functions like ¢; has difficulty using
general smooth optimization methods.

But, ¢1 is component-wise separable, so it does get along well with
separable (smooth or non-smooth) functions.

For example,

. 1 )
min 1 + o= x — 2/

is equivalent to solving rrlln |xi| + %|x,- — z|? over each i.
1
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Soft-thresholding shrinkage

The problem is separable and has an explicit solution
Zi — T zZi > T,
(shrink(z, 7)); = 0 —7<z<T,
Zi+T zi < —T.
The shrinkage operator can be written in Matlab code as:
y = max(abs(x)-tau,0).*sign(x)

Graph of y = shrink(x, 7)

2
-~
15[ - - - y=shrink(x,1/2)
1 — y=shrink(x,1)
0.5
> 0
0.5
-1
a5t
2% -1 0 1 2

<
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Soft-thresholding shrinkage

@ The following problem is called Moreau-Yosida regularization
min r(x) + ~x 2]
| - — o
X 2T 2
@ For example r(x) = ||x||2, the solution to

: 1
min [xl2 + o [x — 213
is, if we treat 0/0 =0,

Xopt = max{|[z[|2 — 7,0} - (2/l|z]|2)-

@ Used in joint/group-sparse recovery algorithms.
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Soft-thresholding shrinkage

@ Consider the following nuclear norm optimization
in (X1l + —[|X — 21

min — [ X — .

X 2 F

Let Z = UXV' be the singular value decomposition of Z.
o Let 3 be the diagonal matrix with diagonal entries
diag(3) = shrink(diag(X), 7)),
then
Xopt = USVT.

@ In general, matrix problems with only unitary-invariant functions (e.g.,
Il - [l«, |l - ||F, spectral norm, trace) and constraints (e.g., positive or
negative semi-definiteness) typically reduce to vector problems
regarding singular values.
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Prox-linear algorithm

Consider the general form
min r(x) + f(x).
X
where r is the regularization function and f is the data fidelity function.

The prox-linear algorithm is:

1
x1 = arg mxin r(x) + F(x*)+ < VF(x¥),x — xK > +§||X — x¥|I5.

The last term keeps x**1 close to x¥, and the parameter ¢ determines the
step size. It is equivalent to

k+1

X

= arg mxin r(x) + — 5ka(xk))||%.

(kK
5 = (x
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Alternating direction method of multipliers (ADMM)

The Alternating Direction Method of Multipliers (ADMM) was developed
in the 1970s, with roots in the 1950s, and is equivalent or closely related
to many other algorithms, such as dual decomposition, the method of
multipliers, Douglas-Rachford splitting, Spingarns method of partial
inverses, Dykstras alternating projections, Bregman iterative algorithms for
1-norm problems, proximal methods, and others.
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The ADMM can be applied to a wide variety of statistical and machine
learning problems of recent interest, including the lasso, sparse logistic

regression, basis pursuit, covariance selection, support vector machines,
and many others.
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ADMM

i X||, + ||AX — B 55
min_ulXll, + | AX — Bl (55)
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ADMM

i X||, + ||AX — B 55
min_ulXll, + | AX — Bl (55)

Let p:={2,1}, g := {1, 1} which denote joint convex norm, we have

min | X|l2,1 + [|AX = B||11
XeCnxT

T T
where [[X]l21 =377 (/2 m1 xG (XMl = 207 35y Il
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ADMM

i X||, + ||AX — B 55
min_ulXll, + | AX — Bl (55)

Let p:={2,1}, g := {1, 1} which denote joint convex norm, we have

min | X|l2,1 + [|AX = B||11
XeCnxT

T T
where [[X]l21 =377 (/2 m1 xG (XMl = 207 35y Il

For example T =1,
mi + ||Ax — b||4.
XE'C[‘,,MHXHP |Ax g
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ADMM

yangzwQustc.edu.cn (USTC)

min [z, + [lyllq

st.x—z=0 (56)
Ax—y=b
OptAlgorithms 25/02/2019 200 / 203



ADMM

min l|z[|p + [lyllq
st.x—z=0 (56)
Ax—y=b

L(x,¥,2, Ay, Az, p) =pill2llp + lyllq + Re(A] (x = 2) + AJ (Ax — y — b))

+ 2k — 2|3+ | Ax—y — b]3)
(57)
where A\, € C", A\, € C™ are the Lagrangian multipliers and p >0 is a
penalty parameter.
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ADMM

xkH1 = argmin 1(|[x — 2¥ + u¥||3 -: uAX —y*—b+uf|3)
y<t = argmin [yllg + 5y — (A< —b) — uf|3 (58)
zK = argmin p|z]|, + 5|z — x*T1 — uf]|3

After solving three subproblems, we update the Lagrangian multipliers as

follows: ok Pt pen
0 i (59)
us ™t = uf + (AT — yktl —b)
where u, = %)\y,uz = %)\z,'y > 0 is the step size.
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Thanks for your attention!
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