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Abstract. A mathematical description of the solar wind flow-tube geometry is proposed. The ex-
pansion factor of the flow tube f (r) (= a/r2, r is the heliocentric distance and a is the flow-tube
cross-section area) increases monotonically from 1 at the coronal base to fm at rc, and approaches
its asymptotic value f∞ nearly in a width of 2σc . The flow tube with fm = f∞ is demonstrated
to be approximately equivalent to that given by Kopp and Holzer (1976) for the fast solar wind,
and it presumably represents slow wind tubes as fm is substantially larger than f∞. In terms of an
Alfvén wave-driven solar wind model, the effect of the flow-tube geometry on solar wind properties
is examined. It is found that with the same flow conditions at the coronal base an expansion factor
which increases monotonically with the radial distance results in a fast solar wind solution, whereas
a flow tube which undergoes an expansion-contraction-reexpansion process creates a slow solar wind
solution. Among the four flow-tube parameters the maximum expansion factor fm has the strongest
effect, and the associated Laval-nozzle formed by the contraction and reexpansion of the flow tube
plays a crucial role in determining solar wind properties. It is suggested that one must take the effect
of the flow-tube geometry into account while constructing reasonable flow-tube models for the slow
solar wind.

1. Introduction

It is well known that the slow and fast solar winds have completely different prop-
erties. The slow wind is characterized by a high density, low flow velocity and
proton temperature, large proton flux, and high variability in the flow conditions as
compared to the fast wind (Bame et al., 1977; Feldman et al., 1977). It was con-
jectured that the slow wind would have different sources on the Sun and different
acceleration and heating mechanisms in the corona (e.g. Gosling, 1996).

The cascade model of Alfvén waves proposed by Tu et al. (1984) and Tu (1987)
serves as a plausible and well-considered driving mechanism for the solar wind,
and was used to explain the extended heating of the solar wind plasma and the
radial evolution of the Alfvén fluctuation spectrum (Tu, 1987, 1988; Hu et al.,
1999), and the preferential acceleration and heating of the heavy ions near the Sun
(Hu and Habbal, 1999; Hu et al., 2000) as well. However, these studies were limited
to the fast solar wind. As observed by Helios spacecraft, the Alfvén waves exist in
both fast and slow wind regions (Marsch et al., 1981; Roberts, 1987), but the slow
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wind is not so efficiently accelerated and heated as the fast wind is. Then, what is
the main cause responsible for such discrepancy? To answer this question, Chen
and Hu (2001, referred to as Paper I hereinafter) carried out a two-dimensional
numerical simulation of the Alfvén wave-driven solar wind. They also presented
a one-dimensional analysis for two flow tubes of distinctive geometries, and the
solutions obtained with the same coronal base conditions corresponded to a fast
wind and a slow one, respectively. This indicated that the flow-tube geometry plays
a decisive role in generating the low proton temperature and flow velocity and
high proton flux inherent to the slow solar wind. Nevertheless, the mathematical
description of the flow-tube geometry proposed in paper I is limited to the slow
wind case and inconvenient for a comprehensive study of the effect of the flow-tube
parameters on solar wind properties.

On the basis of paper I, the present study presents a systematic analysis of the
effect of the flow-tube geometry on solar wind properties. The basic equations
and a new mathematical description of the flow-tube geometry are addressed in
Section 2, and the numerical results are discussed in Section 3. Concluding remarks
are given in Section 4.

2. Physical Model and Boundary Conditions

The one-dimensional, time dependent, MHD equations describing an electron-
proton solar wind in the presence of Alfvén waves can be written in the form
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Neutrality and zero current are assumed so that ne ≈ np = n and ve ≈ vp = v. n
is the number density, v the flow velocity, Te and Tp the electron and proton tem-
peratures, pw = ρ〈δv2〉/2 the Alfvén wave pressure, M, G, k, and γ are the Sun’s
mass, the gravitational constant, the Boltzman constant, and the adiabatic index
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Figure 1. (a) The expansion factor of the flow tubes versus r given by Equation (6) for several separate
values of fm with rc = 3Rs , σc = 4.2Rs and f∞ = 2; (b) Comparison between the expansion factor
profiles expressed by Equation (6) with fm = f∞ and rc = 3Rs in solid and by Equation (7) with
σ = 0.51Rs and r1 = 1.31Rs in dashed for fm = 2, 8, and 16.

(γ = 5/3) respectively, and νE the electron-proton collision frequency taken to be
9.094 × 10−8nT

−3/2
e (Braginskii, 1965), where n is in the unit of m−3 and Te, in

the unit of K. Following Hu et al. (1997), we use the classical thermal conductivity
for electrons (Spitzer, 1962) and ignore the proton thermal conduction.

The flow tube cross-section area is given by a = r2f (r), where f (r) is the
expansion factor. In this study, we construct the following expansion factor:

f (r) =
{

fm − (fm − 1)(r − rc)
2/(rc − Rs)

2, r < rc,

f∞ + (fm − f∞) exp[−(r − rc)
2/σ 2

c ], r ≥ rc,
(6)

where fm, f∞, rc, and σc are the parameters of the flow tube. Such an expansion
factor increases monotonically from 1 at the coronal base to fm at rc, and then
approaches an asymptotic value f∞ in a width of 2σc. For slow wind tubes, rc is
close to the radial distance of the Y-type neutral point of the helmet streamer. With
rc = 3Rs , σc = 4.2Rs , and f∞ = 2, the radial profiles of the expansion factor
are shown in Figure 1a for several separate values of fm. When fm = 2 (= f∞),
f (r) remains constant after it reaches fm at rc, as shown in Figure 1a by the dotted
curve. The expansion factor defined by Kopp and Holzer (1976), i.e.

f1(r) = fme(r−r1)/σ + 1 − (fm − 1)e(Rs−r1)/σ

e(r−r1)/σ + 1
(7)

was extensively used in literature for the study of the fast solar wind. Hereinafter,
the two flow tubes defined by Equations (6) and (7) are called C-H tube and K-H
tube for short, respectively. To some extent, the K-H tube may be approximately
considered as a special case of the C-H tube by taking fm = f∞ and a suitably
selected rc based on the values of r1 and σ for the K-H tube. Incidentally, the
value of σc does not affect f (r) in this case. For instance, given r1 = 1.31Rs and
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Figure 2. Radial profiles of (a) the density and velocity, (b) the proton and electron temperatures.
The expansion factors for tubes f and s are shown in Figure 1 with fm = 2 and 16 respectively.
The solid circles in Figure 2a denote the critical point of sound speed. The open circles correspond
to the upper and lower limits of density inferred from white light coronagraph observations (Fisher
and Guhathakurta, 1994).

σ = 0.51Rs , we may take rc = 3Rs . The resultant profiles of f (r) and f1(r)

are shown in Figure 1b by solid and dashed curves, respectively, for fm = 2, 8
and 16. The two sets of expansion factors turn out to be very close to each other.
A small discrepancy does exist in the near Sun region below rc = 3Rs , but it
has no appreciable influence on the obtained solutions, as will be demonstrated in
Section 3.1.

Following the practice of Paper I, we adopt the Kolmogorov rate (Hollweg,
1986) as the dissipation rate of the Alfvén waves, expressed by

Q = ρ〈δv2〉3/2/Lc (8)

where 〈δv2〉 is the velocity variance associated with the wave field, and Lc is the
correlation length of the fluctuations given by Lc = Lc0(Bc/B)1/2 (Bc is the mag-
netic field strength at the coronal base and Lc0 is set to be 1.05 × 105 km in this
study).

In order to achieve a better resolution near the Sun, a non-uniform mesh with
N = 500 grid points is laid out from 1Rs to 1.2 AU. The grid spacing increases
monotonically from 4.5 × 10−4Rs at the base to 1.96Rs at 100Rs in terms of a
geometric series of common ratio 1.02, and then remains invariant up to 1.2 AU.
The boundary conditions at the coronal base are specified as follows: n0 = 1 × 108

cm−3, T0 = 1.14 × 106 K, B0 = 1.6f∞ G, and pw0 = 7.5 × 10−4 dyn cm−2 that is
equivalent to a wave amplitude 〈δv2〉1/2 = 30 km s−1. Equations (1)–(5) are solved
by the time-dependent method developed by Hu et al. (1997).



EFFECT OF FLOW-TUBE GEOMETRY ON SOLAR WIND PROPERTIES 451

Figure 3. Comparison between density and velocity profiles of the solutions for the three pairs of
tubes shown in Figure 1b: (a) fm = 2, (b) fm = 8, fm = 16.

3. Numerical Results

In order to study the effect of the flow-tube geometry on solar wind properties,
we keep the coronal base conditions the same for all numerical examples to be
mentioned below. Two C-H tubes are singled out from those depicted in Figure 1a
with fm = 2 and 16, called tube f and tube s respectively. The steady solar
wind solutions obtained for the two flow tubes are depicted in Figures 2a and 2b
respectively. The density and velocity profiles are shown in Figure 2a by solid
and dot-dashed curves for tube f and by dashed and dotted curves for tube s,
respectively, whereas the proton and electron temperature profiles are shown in
Figure 2b by solid and dot-dashed curves for tube f and by dashed and dotted
curves for tube s, respectively. The solution associated with tube f yields the
following parameters at 1 AU: nv = 1.88×108 cm−2 s−1, n = 2.63 cm−3, v = 717
km s−1, Te = 8.70 × 104 K, Tp = 2.17 × 105 K, and 〈δB2〉/B2 = 0.76, and the
solution associated with tube s yields nv = 3.82 × 108 cm−2 s−1, n = 9.40 cm−3,
v = 406 km s−1, Te = 1.71 × 105 K, Tp = 5.95 × 104 K, and 〈δB2〉/B2 = 0.66.
The predicted parameters essentially agree with the observations for the fast and
slow winds respectively (Schwenn, 1991; Villante and Vellante, 1982). The open
circles in Figure 2a denote the data of electron density in the fast wind inferred
by Fisher and Guhathakurta (1994). The predicted number density profile is higher
than observed, implying an insufficient acceleration by the Alfvén waves in the
inner corona, a common deficiency inherent in other wave-driven solar wind mod-
els (Esser et al., 1987; Hu et al., 1999). The two density profiles are almost the
same below 3Rs but diverge beyond. The former stems from the fact that a larger
mass flux and a lower flow velocity in tube s compensate for the fall of the density
profile in the region below 3Rs caused by the rapid expansion of the tube. On the
other hand, the rapid contraction of tube s beyond 3Rs substantially slows down
the decay of the density profile there. As seen from Figure 2b, Tp is higher than
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Te in the fast wind and Tp is lower than Te beyond 50 Rs in the slow wind, which
agrees well with the Ulysess/SWOOPS measurements (Phillips et al., 1995). The
solid circles in the velocity profiles of Figure 2a denote the critical point of sound
speed, 3.83 Rs with the critical sound speed 209 km s−1 for the fast wind and
11.2 Rs with the critical sound speed 189 km s−1 for the slow wind. As mentioned
previously, the C-H tube includes the K-H tube approximately as a special case.
To further confirm this conclusion, we take the three pairs of flow tubes given in
Figure 1b and show the density and flow velocity profiles for the corresponding
steady solar wind solutions respectively. Again, the solutions associated with the
C-H tubes are depicted by solid curves and those associated with the K-H tubes by
dashed curves in Figure 3. It can be seen that the solutions for the K-H tubes nearly
coincide with those for the C-H tubes. Similar conclusions hold for the electron
and proton temperatures, but we omit showing them to save space. In summary, we
argue that a K-H tube can be always approximated by a C-H tube with fm = f∞
and a suitably selected rc. Therefore, one may use the C-H tube to achieve a unified
investigation of the effect of the tube geometries on the solar wind properties, as
we did in this study.

3.1. EFFECT OF THE FLOW-TUBE GEOMETRY ON SOLAR WIND PROPERTIES

To explore the effect of the flow-tube geometry on solar wind properties, we use
the C-H geometry, and adjust one of the four parameters appearing in Equation (6)
in an appropriate range while keeping the others fixed at certain reference values,
which are chosen to be fm = 16, rc = 3Rs , σc = 4.2Rs , and f∞ = 2, respectively.
A flow tube associated with these reference values is exactly tube s as defined
above.

Figure 4 shows the radial profiles of the cross-section area a of the C-H tube for
various flow-tube parameters. From bottom to top, the profiles of the cross-section
area a correspond to fm = 2, 6, 9, 16 and 20 in Figure 4a, rc = 2.5, 3.0, 3.5,
4.0 and 4.5 (Rs) in Figure 4b, σc = 2.6, 3.8, 5, 6.2 and 7.4 (Rs) in Figure 4c, and
f∞ = 1.5, 2.0, 2.5, 3.0 and 3.5 in Figure 4d, while the other unassigned parameters
take their reference values. It can be seen from Figure 4 that for those profiles with
a dip, the flow tube undergoes a contraction and then expands again along the radial
direction, shaped like Laval-nozzle. The radial distance of the throat of the Laval
nozzle increases slightly with increasing fm (Figure 4a) and rc (Figure 4b), but
sharply with increasing σc (Figure 4c), whereas it decreases slightly with increasing
f∞ (Figure 4d). The existence of a Laval-nozzle somewhere in the flow tube has
significant influence on solar wind properties, as will be discussed in detail below.

It is the energy flux of the Alfvén waves emitted from the solar surface that
determines the energy budget, i.e. the acceleration and heating of the solar wind
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Figure 4. The radial profiles of the cross-section area of the C-H tubes for 5 separate values of (a)
fm, (b) rc, (c) σc, and (d) f∞ while the unassigned parameters take their reference values: 16, 3 Rs ,
4.2 Rs , and 2 for fm, rc , σc , and f∞, respectively.

plasma. After normalization to 1 AU, the energy flux of the Alfvén waves is given
by:

F(r) = avpw

aE

(
3 + 2

MA

)
, (9)

where aE is the cross-section area of the flow tube near the Earth, and MA = v/vA,
vA is the Alfvén wave speed. F(Rs) ≈ 2a0vA0pw0/aE represents the energy flux of
the Alfvén waves emitted from the coronal base, which is almost exhausted within
1 AU, namely, F (1 AU) ≈ 0. Define

g(r) = F(Rs) − F(r)

F (Rs)
, (10)

that represents the proportion of the wave energy flux deposited in the region
between 1 Rs and r. Obviously, we have g(Rs) = 0 and g(r = 1 AU) ≈ 1.

3.1.1. Effect of the maximum expansion factor
Adjusting fm from 2 to 22, and fixing the other parameters at their reference
values, we obtain a group of solar wind solutions. The parameters at 1 AU as a
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Figure 5. The solar wind properties at 1 AU versus the maximum expansion factor fm with rc = 3Rs ,
σc = 4.2Rs and f∞ = 2.

Figure 6. Radial profiles of g(r) for the flow tubes of fm = 2 and 16 with rc = 3Rs , σc = 4.2Rs

and f∞ = 2. The solid and open circles denote the critical points associated with fm = 2 and 16
respectively.

function of fm are shown in Figure 5. The proton flux, number density and electron
temperature increase and the flow velocity and proton temperature decrease with
increasing fm, in other words, the solution tends to the slow wind as fm increases.
Figure 6 shows g(r) (see Equation (10)) for tube f (fm = 2) and s (fm = 16).
The solid and open circles in Figure 6 denote the critical points associated with
fm = 2 and 16 respectively. The radial distance of the critical point versus fm is
shown in Figure 7 by solid circles. It can be seen from Figures 6 and 7 that as
fm increases, the critical point moves outward away from the Sun, the deposition
region of the wave energy moves towards the Sun, and thus the solar wind tends to
the slow wind. As pointed out by Leer and Holzer (1980), an input of momentum
and energy in the supersonic flow region leads to an increase of the solar wind
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Figure 7. The radial distances of the critical point (solid circles) and the throat of the Laval nozzle
(open circles) versus fm while taking the other parameters to be their reference values (rc = 3Rs ,
σc = 4.2Rs , and f∞ = 2).

velocity and a decrease of the proton flux at 1 AU. On the contrary, the wind
velocity will decrease and the proton flux will increase at 1 AU if momentum and
energy are added in the subsonic flow region. This conclusion is consistent with the
numerical results described above. Taking vp > 500 km s−1 as a criterion for the
fast wind, the solutions associated with fm < 6 in Figure 5 is then approximately
taken for the fast wind, and those associated with fm > 6 for the slow wind. As
seen from Figure 4a, the flow tube is shaped like a Laval nozzle for fm ≥ 9. The
radial distance of the throat of the Laval nozzle versus fm is shown in Figure 7 by
open circles. The critical point lies outside the throat for fm ≥ 9, implying that the
Laval nozzle formed by the contraction and reexpansion of the flow tube does play
an important role in determining solar wind properties. The reason is as follows:
outside the throat of the Laval nozzle (about 10Rs), the influence of the gravity and
Alfvén waves on the solar wind are substantially weakened so that the Laval-nozzle
effect becomes dominant. Incidentally, even if the Laval nozzle does not appear for
fm < 9, the critical point still moves outward while fm increases, as clearly seen
from Figure 7. This is due to a less than spherical expansion of the flow tube for a
larger value of fm, which causes the outward shift of the critical point.

3.1.2. Effect of the location of the maximum expansion factor
The height of the helmet streamer is estimated to be about 3 Rs by Koutchmy
and Livshits (1992), so we have taken a reference value of 3 Rs for rc. Through
adjusting rc from 2.5 to 4.5 Rs and keeping the other three parameters fixed at
their reference values, another group of solutions are obtained. Figure 8 shows the
dependence of the solar wind parameters at 1 AU on rc. All solution are close to
the slow wind, implying that the effect of rc on solar wind properties at 1 AU is
small. The radial distances of the critical point of sound speed and the throat of
the Laval nozzle are shown in Figure 9. The critical point of sound speed is always
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Figure 8. The solar wind properties at 1 AU versus rc with fm = 16, σc = 4.2Rs and f∞ = 2.

Figure 9. The radial distances of the critical point (solid circles) and the throat of the Laval nozzle
(open circles) versus rc while taking the other parameters to be their reference values (fm = 16,
σc = 4.2Rs , and f∞ = 2).

located inside the corresponding throat of the Laval nozzle, implying a dominant
role taken by the Laval nozzle as mentioned above. The profiles of g(r) for rc =
2.5 and 4.5 Rs are shown in Figure 10, and the corresponding critical points are
marked by a solid and an open circle, respectively. As seen from Figure 10, the
increase of rc has two effects: (1) The critical point of sound speed moves outward,
and (2) The spatial distribution of the wave energy deposition changes. The first
effect leads to a slight increase of the wave energy deposition in the subsonic flow
region: g(r) at the critical point increases from 0.879 for rc = 2.5Rs to 0.894 for
rc = 4.5Rs . On the other hand, the increase of rc results in a shift of the wave
energy deposition away from the Sun within the subsonic flow region. The second
effect dominates so that more energy is deposited at larger distances. As a result,
the number density decreases, and the flow velocity and the proton temperature
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Figure 10. Radial profiles of g(r) for the two flow tubes of rc = 2.5 and 4.5 Rs with fm = 16,
σc = 4.2Rs and f∞ = 2. The solid and open circles denote the critical points associated with
rc = 2.5 and 4.5 Rs respectively.

Figure 11. The solar wind properties at 1 AU versus σc with fm = 16, rc = 3Rs and f∞ = 2.

increase with increasing rc, as clearly seen from Figure 8. Although the effect is
small, it does tell us that the solar wind properties are determined by not only the
relative amount of the wave energy deposited inside the critical point of sound
speed, but the detailed spatial distribution of the stored wave energy within the
subsonic flow region: the more energy is deposited in regions closer to the Sun, the
more like the slow wind the obtained solution will be.

3.1.3. Effect of the half-width of the contraction region of the flow tube
The third group of solutions are obtained by adjusting σc from 2.6 to 7.4 Rs while
keeping the other three parameters fixed at their reference values. The parameters
at 1 AU versus σc are shown in Figure 11. It is found that a smaller σc produces
a solution with a higher proton flux and number density and a lower flow velocity
and electron temperature, but the effect of σc on solar wind properties at 1 AU
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Figure 12. Radial profiles of g(r) for the two flow tubes of σc = 2.6 and 7.4 with fm = 16, rc = 3Rs

and f∞ = 2. The solid and open circles denote the critical points associated with σc = 2.6 and 7.4
Rs respectively.

Figure 13. The solar wind properties at 1 AU versus f∞ with fm = 16, rc = 3Rs and σc = 4.2Rs .

turns out to be small, too. The profiles of g(r) for σc = 2.6 and 7.4 Rs are shown
in Figure 12, and the corresponding critical points are marked by a solid and an
open circle, respectively. It can be seen from Figure 12 that the magnitude of σc

has a negligible effect on the radial distribution of the deposited wave energy. In
this situation, the solar wind properties rely mainly on the location of the critical
point of sound speed. As shown in Figure 4c, the throat of the Laval nozzle moves
outward with increasing σc, so does the critical point. As a result, more wave energy
is deposited in the subsonic flow region for a larger value of σc. That’s why the
solution tends to the slow wind while σc increases.
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3.1.4. Effect of the asymptotic expansion factor
Figure 13 shows the solar wind parameters at 1 AU as a function of f∞ in the
range of (1.5, 3.5). A larger f∞ leads to a lower proton flux, number density and
electron temperature, and a higher flow velocity and proton temperature, namely,
the solution tends to the fast wind with increasing f∞. The reason is twofold.
First, to match the predicted magnetic field strength at 1 AU with observations,
the magnetic field strength at the coronal base has been set to be B0 = 1.6f∞ G.
Thus B0 increases with increasing f∞, resulting in an increase of the wave energy
flux at the coronal base that is proportional to B0. Secondly, from Figure 4d, the
throat of the Laval nozzle moves inward with increasing f∞, so does the critical
point, and thereby the proportion of the wave energy stored in the supersonic flow
region increases. Obviously, both effects are in favor of the trend of the solution
towards the fast wind.

The preceding analysis was carried out for a special set of reference values of
the flow-tube parameters. Similar calculations were made for other combinations
of the reference parameters, and the conclusions were found to be similar to those
reached above.

4. Concluding Remarks

Taking a one-dimensional flow-tube model with Alfvén waves as the common
driving mechanism, we have presented a systematic analysis of the effect of the
flow-tube geometry on solar wind properties. A mathematical description of the
flow tube is proposed (see Equation (6)), and it involves four parameters: fm, the
maximum expansion factor, rc, the radial distance at which fm is located, f∞,
the asymptotic expansion factor, and σc, the half of the width across which the
expansion factor nearly approaches f∞. Such a flow-tube geometry approximately
includes that proposed by Kopp and Holzer (1976) as a special case of fm = f∞.
The study of the effect of the flow-tube geometry on solar wind properties shows:
(1) The maximum expansion factor fm has the strongest effect on solar wind prop-
erties, and the larger fm is, the closer the solution will be to the slow wind; (2) The
Laval-nozzle effect induced by the expansion-contraction-reexpansion of the flow
tube has significant effect on solar wind properties.

Our study is based on a one-dimensional Alfvén wave-driven solar wind model,
in which the flow-tube geometry affects the WKB damping and the cascade dis-
sipation of the Alfvén waves. To see whether the obtained conclusions are applic-
able to other heating and acceleration mechanisms, similar calculations were made
based on artificially prescribed heating and acceleration functions. It was found that
the flow-tube geometry can also produce similar effects on solar wind properties.
Thus we argue that the conclusions reached in this study hold for other heating and
acceleration mechanisms. In any case, an intimate attention must be paid to the
effect of the flow-tube geometry while constructing a solar wind model.
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In general, the magnetic field strength increases rapidly with latitude in the
neighborhood of the Y-type neutral point, and becomes comparable with that in
the polar region somewhere not too far from the equatorial plane. Correspondingly,
the maximum expansion factor of the flow tubes decreases sharply with latitude.
Consequently, the latitudinal width of the slow wind region and the transition layer
between the slow and fast winds must be very narrow, as observed by Ulysess
(Phillips et al., 1995).
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