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Abstract

Crowdsourced live video broadcasting (livecast) services such as Twitch and Douyu have become increasingly

popular in recent years. In such a service, how to allocate limited service capacities, including video transcoding

and delivery capacities among numerous channels, is a critical problem. Previous studies allocate capacities

based on popularity. In this paper, we analyze Douyu, a leading crowdsourced livecast website in China,

with a measurement approach. We find that Douyu is deployed upon a video delivery network (VDN), and it

prioritizes popular channels when allocating service capacities; we also find that viewers’ willingness to donate

monetary gifts in a channel is closely related to their streaming experiences, which are decided by service

capacities allocated in the channel. On the other hand, a livecast channel’s profitability is only moderately

correlated to its popularity. In other words, there exists a mismatch between the popularity-based service

strategies and Douyu’s business model. Motivated by our analysis, we propose that channels’ profitability as

well as popularity should be considered in capacity allocating. We present proactive and reactive algorithms,

which balance viewers’ satisfaction with system’s monetary profit, for allocating transcoding capacity among

livecast channels. We also propose a practical strategy for VDN edge nodes to select channels to replicate, by

taking channels’ popularity, profitability, and bandwidth consumptions into consideration. Experiments driven

by real-world measurement data show that our proposed solutions can effectively improve the overall benefits

for a crowdsourced livecast system and individual VDN edge nodes, and avoid adjusting channels’ transcoding

schemes too often during livecast sessions.
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1. Introduction

Internet crowdsourced live video broadcasting (livecast for short) services, which allow anyone to broadcast

live videos from anywhere on the Internet, have attracted millions of audience and formed a big entertainment

industry in recent years. For example, Twitch.tv, the leading crowdsourced livecast website owned by Amazon,

has become the fourth largest source of the Internet peak traffic in the US [1]; and Douyu.com, the most

prominent Chinese crowdsourced livecast website, had attracted over two billion RMB of investment by 2014,

and accumulated over 200 million registered users by the year 2017.
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Comparing with conventional IPTV systems (e.g., [2] and [3]), a crowdsourced livecast system has several

unique characteristics. First, the system is large in scale and highly dynamic, as there are up to thousands

of concurrent channels, and an amateur broadcaster may start or stop a livecast session anytime; Second, the

system is computationally intensive as it is preferred that raw videos uploaded from broadcasters are transcoded

into multiple representations in real time for better viewer experience [4][5][6]; Third, the system is bandwidth

intensive by simultaneously delivering numerous livecast channels, each may contain multiple representations,

to a massive number of viewers, and both broadcasters and viewers are geographically dispersed [7][8].

Unfortunately, the computation and bandwidth resources employed by a livecast system are expensive. For

example, infrastructure-as-a-service (IaaS) cloud providers like Amazon and Tencent Cloud charge dozens of

US dollars per CPU core per month; and ISPs price dedicated point-to-point bandwidths thousands of dollars

per Mbps per year. Given the large number of concurrent channels, it is infeasible for a livecast system to

provide “full service” in all the channels, and how to allocate the limited service capacities among the channels

becomes a critical problem.

Previous solutions focus on saving the system’s operation cost on renting cloud instances and bandwidths by

prioritizing popular channels, that is, the system transcodes videos only for popular channels, and selects video

streams to replicate to edge delivery servers based on channel’s local popularity [5][6][8][9]. The underlying

assumption is that viewers are equally important, thus by prioritizing channels with many viewers, the system’s

overall benefit can be maximized. However, the assumption is valid only under the business model that most

viewers watch videos for free, and the livecast website lives on advertisements. Although many websites

such as Twitch initially adopt such a business model, however, a new business model that allows viewers to

donate monetary virtual gifts to broadcasters, becomes increasingly popular in recent years. For example,

study shows that viewers on Douyu have donated 65 million pieces of virtual gifts, which are worth over 6.8

million US dollars, in only four weeks [10]. Leading websites like Twitch and YouTube Live also adopt this

business model: Twitch allows viewers to purchase “bits”, a monetary virtual goods, and donate to broadcasters

since 20171; and YouTube Live allows viewers to purchase “super chats” with real money to highlight their

comments2. Obviously with such a business model, a channel’s profitability, which measures how capable it

attracts monetary donations from viewers, is vitally important.

In this paper, we consider the problem that with the monetary donation business model, how to allocate

service capacities among numerous channels for improving a crowdsourced livecast system’s overall benefit. To

understand this problem, we take Douyu as an example, dissect its video delivery network (VDN ), and analyze

a measurement dataset on it. We find that Douyu’s system is highly dynamic with many short livecast sessions,

and it follows the popularity-based service strategies in transcoding and replicating channels; moreover, the

popularity and profitability of livecast channels are only moderately correlated. We also find that different

genres of channels have different profitability levels, and for a livecast channel, viewers’ monetary donations are

closely related to the experience that they have perceived when watching the channel, therefore if more service

1https://help.twitch.tv/customer/portal/articles/2449458
2https://support.google.com/youtube/answer/7277005
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capacities are allocated in a channel for improving viewers’ streaming experience, more monetary donations

can be expected. Our observations suggest that there exists a mismatch between the popularity-based service

strategies and the business model that relies heavily on monetary donations, and channels’ profitability should

also be considered in allocating service capacities.

Motivated by our analysis, we present algorithms that allocate transcoding capacity among livecast channels

for maximizing the system’s overall benefit, which balances viewers’ satisfaction with the platform’s monetary

profit. Our proposed proactive algorithm is optimal, and the reactive algorithm can avoid adjusting channels’

transcoding schemes too often. We also present a practical strategy for VDN edge nodes to select channels

to replicate, by taking channels’ popularity, profitability, and bandwidth consumptions into consideration. We

evaluate our proposals with experiments driven by real-world measurement data, and the results indicate that

by smartly selecting channels for transcoding and replicating, the overall benefits of a crowdsourced livecast

system and individual VDN edge nodes can be effectively improved.

The remainder part of this paper is organized as follows. We discuss the related works in Section 2. Section 3

introduces Douyu and gives an overview of its infrastructure. In Section 4, we present our analysis on the Douyu

measurement data that motivates this work. We formulate the transcoding capacity allocating and channel

replicating problems in Section 5, and present our solutions. Section 6 evaluates our proposed approaches and

we conclude in Section 7.

2. Related Work

Live video streaming has been an Internet killer application for decades [11][12], and there is a rich literature

on constructing, analyzing, and improving Internet IPTV systems (e.g., [2][3]). With the technological advances

of cloud computing and mobile Internet, crowdsourced livecast services have emerged and become popular in

recent years. Unlike the conventional IPTV services, in a crowdsourced livecast service, live videos are uploaded

from many geo-distributed broadcasters, and are dispatched to viewers all over the world [8].

Since its emergence, crowdsourced livecast systems have attracted increasing attentions. Zhang et al. [7]

examine the message and streaming latencies in livecast channels on Twitch, and study the view patterns that

are influenced by both events and livecast sources. Wang et al. [13] investigate performances of two popular

platforms, namely Periscope and Meerkat, and analyze causes of the streaming latencies. Ray et al. propose

a live streaming upload solution for improving the overall quality of experience for viewers in crowdsourced

livecast services [14]. Many works study channel popularity in terms of simultaneous viewers. Kaytoue et al.

[15] analyze the influence of video game tournaments on channel popularity, and show that it is feasible to

accurately predict a tournament channel’s viewer population. Deng et al. [16] investigate the high churn in

channel popularity that is caused by game tournaments broadcasted on Twitch. Pires et al. [17] study YouTube

Live and Twitch, and find that on the two websites, popularity of livecast channels is more heterogeneous than

what has been observed on other user-generated contents. Jia et al. [18] also observe that game broadcasters

on Twitch have highly skewed popularity, with a significant heavy tail phenomenon.

There are relatively few works investigating the novel interactions between viewers and broadcasters. Zhang
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et al. [19] analyze the touch operations in mobile gamecasting to predict viewers’ gazing patterns for smartphone

energy saving. He et al. [20] study danmu comments in a VoD service, and use the comment volume to predict

video popularity. Zhu et al. [21] present a statistical study on the virtual gifts received by broadcasters on

Douyu. Jia et al. [22] analyze the social features of the videos on a YouTube-like website formed by danmu

interactions. Ma et al. [23] present a suite of distributed algorithms for synchronizing cross-viewer community

interactions. Wang et al. [10] present a comprehensive and insightful analysis on the interactions of posting

comments and donating monetary virtual gifts on Douyu, and develop a suite of models for capturing the

interaction patterns.

For improving service and reducing cost, Chen et al. [24] propose algorithms that allocate video transcoding

server instances at geo-distributed cloud sites for saving the cloud server rental cost. Pires et al. [5] address

the trade-off between the benefit and cost of video transcoding, and present strategies to select channels for

adaptive bitrate streaming. He et al. [6] jointly consider video transcoding and cloud instance placement,

and present algorithms for scheduling and allocating video transcoding server instances among geo-distributed

cloud sites. Bilal et al. [9] take the latency constraints and price factors into consideration when allocating

the cloud instances. Nevertheless, previous studies use viewer population to measure a channel’s importance,

under the assumption that viewers are equally important. In this work, we focus on livecast systems with

the monetary donation business model, where donations from viewers are important revenue sources for both

broadcasters and the website. We exploit channel properties that are derived from viewer interactions, especially

the profitability of the channels, for improving the services. Moreover, unlike previous studies [5][6][9] that

periodically execute proactive algorithms, we propose reactive algorithm that better handles the system-wide

channel dynamics caused by starts and stops of the short livecast sessions, and avoids frequently adjusting the

channels’ transcoding schemes.

3. Background and System Overview

In this section, we give a brief introduction on Douyu. We particularly introduce the danmu-enabled

viewer-broadcaster interactions, and present an overview of Douyu’s infrastructure.

3.1. Background

Douyu.com is a leading Internet crowdsourced livecast website in China. Similar to Twitch, any registered

user can set up a channel on Douyu and broadcast live videos on the Internet. Although initially focused on

games, Douyu allows a wide range of contents to be broadcasted. For example, a broadcaster can sing, rap, tell

stories and jokes, share experiences and opinions in her channel, or she can broadcast outdoor activities such

as fishing, hiking, sightseeing to her audience. Figure 1 demonstrates viewer interface of a livecast channel,

which is featured with a good-looking broadcaster playing video games.

Like many Chinese video sites, Douyu enhances video streaming with danmu. Danmu is a word originated

from Japanese, literally meaning “bullet curtain”, and it refers to a commentary sharing mechanism in which

viewers can paste comments directly on top of the video while watching it. As shown in Figure 1, when
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Figure 1: An example of a livecast channel on Douyu. Danmu messages are sliding from right to left, and the message starting

with a space ship icon (in white circle) indicates a gift donating event; virtual gifts (in red rectangle) under different prices are

displayed below the video area for viewers to purchase and donate.

Edge node

Danmu servers

Viewers / 

Broadcasters

Origin servers / 

Delivery servers

Uploading (RTMP)
Streaming (RTMP / HTTP-FLV)
Danmu communication

Transcoding servers

VDN backbone

Core node

Figure 2: Overview of Douyu’s infrastructure.

watching a channel, a viewer can see comments from other viewers who are watching the same channel sliding

over his video screen in real time. Besides posting comments, Douyu also allows viewers to donate monetary

virtual gifts to broadcasters, and announces the gift donations with danmu messages. Douyu provides many

different virtual gifts, with prices ranging from 0.1 to thousands of RMB yuan, for viewers to purchase and

donate. Danmu-enabled interactions are very popular in China, as by interacting with the broadcaster and

other viewers, a viewer can feel more engaged in the broadcasted activity [10][25].

3.2. Infrastructure Overview

Douyu relies on its dedicated infrastructure to provide a nationwide service. To understand Douyu’s in-

frastructure, we have registered a number of broadcaster and viewer accounts, upload and stream live videos

to/from Douyu, monitor the communications between servers and our broadcaster/viewer clients, and analyze

the traffics with a number of techniques including DNS resolution, IP-to-ASN mapping [26], and IP geolocation

[27]. Note that here we do not intend to have a comprehensive measurement study on Douyu’s infrastructure,

but motivate further study.

Figure 2 demonstrates an overview of Douyu’s infrastructure. Unlike Twitch, which deploys its servers in

a few cloud data centers [8], Douyu is deployed upon a video delivery network (VDN ). Logically, a VDN is

composed of a core node and a number of geographically distributed edge nodes. A VDN edge node contains

at least two types of servers, origin servers and delivery servers. An origin server receives raw videos uploaded
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from broadcasters through the RTMP protocol [28], and transfers them to the VDN core node for further

processing, such as transcoding and watermarking; the delivery server replicates channel streams from the core

node, and streams them to viewers using RTMP or FLV-HTTP [29]. The VDN core node resides in cloud

and provides many different services, in particular, the transcoding servers are responsible for transcoding raw

videos uploaded from broadcasters into multiple representations in various resolutions and bitrates. All VDN

nodes are inter-connected with a backbone network, which provides guaranteed point-to-point bandwidths

rented from the ISPs [30][31]. Douyu simultaneously employs three VDN providers, namely Wangsu3, Tencent

Cloud4, and Dnion5. Among them, Wangsu is used by default, but a viewer is free switch to other providers.

Besides the VDN, Douyu directly manages a set of danmu servers, which maintain the danmu message channels

with viewers.

4. Analysis and Motivation

In this section, we present our measurement study on Douyu that provides insights and motivations. We

first describe the measurement dataset. By mining the data, we analyze Douyu’s service strategies and system

dynamics, we then investigate channels’ properties and study the relationship between a channel’s profitability

and viewers’ streaming experience in the channel. Finally, we discuss our observations, and show that there

exists a mismatch between Douyu’s current service strategies and its business model.

4.1. Dataset

We employ a dataset from a previous measurement study on Douyu for our analysis [10][32]. By repeatedly

crawling Douyu’s portal webpage and webpages of the channels with on-going livecast sessions every five

minutes, the dataset traces all the sessions in each channel, and records the channel’s metadata such as channel

ID, available video representations, and number of viewers. For some channels, raw video information like

bitrate and resolution can also be collected. In addition, by employing a probing process to subscribe to a

channel’s danmu server using Douyu’s REST APIs [33], we collect real-time danmu messages in all the livecast

channels. In particular, two types of messages are recorded:

� Comment message: the message contains the comment text posted by a viewer in the channel, as well

as the timestamp and ID of the comment posting viewer.

� Gift donating message: the message indicates a gift donating event in the channel, and contains the

information such as the timestamp, the donating viewer’s ID, and the gift ID. Note that we can obtain a

gift’s monetary price according to gift ID.

3https://www.wangsu.com/
4https://cloud.tencent.com/
5http://www.dnion.com/
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Figure 3: Distributions of (a) resolutions and (b) bitrates of raw videos uploaded to Douyu.

The dataset contains data in four weeks from Nov. 22 to Dec. 19, 2016, during which a total number

of 1, 789, 027 livecast sessions were broadcasted by 242, 697 distinct broadcasters6. By mining the danmu

messages, we have identified 7, 482, 937 distinct viewers, who have posted 250, 291, 347 danmu comments, and

have donated 6, 894, 747 pieces of virtual gifts worth 6, 807, 524.94 US dollars7 in total.

4.2. Service Strategies

We first analyze Douyu’s service strategies, in particular, we are interested in the strategy for allocating

transcoding capacities among the channels, and the strategy for selecting channels to replicate to VDN edge

nodes.

4.2.1. Transcoding strategy

Crowdsourced broadcasters usually upload raw videos of high qualities. To show this, we randomly select

800 broadcasters, and present the distributions of the resolutions and bitrates of their uploaded raw videos in

over 1, 700 livecast sessions in Figure 3. From the figures we can see that, most broadcasters upload raw videos

with high resolutions of 1280p and 1920p, and the mean video bitrate is close to 2Mbit/s.

Unfortunately in many cases, the high-quality raw videos are not suitable to be streamed to viewers directly,

as viewers using different devices (e.g., PC, pad, smartphone) prefer different resolutions (e.g., 720p, 1080p),

and viewers under different bandwidth conditions (e.g., Ethernet, Wi-Fi, 4G/5G) prefer different bitrates. To

cope with such heterogeneity, the livecast platform needs to transcode raw videos into representations with

various resolutions and bitrates, so that viewers using different devices and with different bandwidths can have

good experiences. Study shows that transcoding is essential for maintaining viewers’ satisfaction levels in video

streaming services [4].

As we have discussed in Section 1, real-time transcoding is computationally expensive, and since there are

a large number of concurrent channels, it is infeasible to transcode videos for all the channels. For example,

6We assume that each broadcaster has a unique channel ID, and in the remaining part of this paper, we use the terms

“broadcaster” and “channel” interchangeably.
7Virtual gifts are priced in RMB. In this paper, we use a fixed rate of 1 US dollar = 6.9 RMB yuan.
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Figure 4: Concurrent channels and channels with transcoded video representations on Douyu collected every 5 minutes in Nov.

29, 2016.

it is reported that Twitch provides transcoding in only a few hundred channels that are most popular, despite

that there are 10, 000+ concurrent channels [6]. In Figure 4, we plot the concurrent livecast channels on

Douyu, as well as the channels that contain transcoded video representations, in every five minutes in a day

from our measurement. We can see that Douyu concurrently hosts thousands of channels in peak hours, but

on average, only one third of them have two transcoded representations, targeting low and medium video

qualities respectively. Further investigation tells us that Douyu only transcode videos for channels with over

15, 000 simultaneous viewers, while for the other channels, the high-quality raw videos are streamed to viewers

directly, regardless of their devices and bandwidth conditions.

4.2.2. Channel replicating strategy

As discussed in Section 3, after being processed by servers in the VDN core node, livecast channels are

replicated at the VDN edge nodes, so that viewers can stream from servers that are proximate to them.

However, as we have seen in Figure 4, since there are thousands of concurrent channels, while the backbone

connecting to an VDN edge node has limited bandwidth, it is infeasible to replicate all the channels to each

edge node. A widely-adopted approach is to replicate channels based on popularity. For example, it is reported

that Twitch only replicates popular channels to multiple regions, and 67% of the channels with 0 viewers are

hosted in only one region [8]. We carry out an experiment on Douyu and have a similar observation. In our

experiment, we create a channel on Douyu, upload live videos from a remote city, but stream (with a different

viewer account) using a local computer. We repeat the experiment several times by uploading from different

remote cities (using a VPN network), and each time we geolocate the origin server we upload to and the delivery

server we stream from. Not surprisingly, the two servers are always at a same VDN edge node that is proximate

to the broadcaster. The observation suggests that Douyu also applies the popularity-based channel replicating

strategy, and our experimental channel, which is obviously among the least popular channels, can be streamed

from only one edge node where it is uploaded.
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Figure 5: (a) Distribution of sessions initiated by broadcasters, and (b) distribution of session lengths.

4.3. System Dynamics and Channel Properties

We then investigate dynamics of the livecast channels on Douyu, and profile the channels based on the

viewer-broadcaster interactions.

4.3.1. Broadcasting frequency and session length

As a crowdsourced livecast service, Douyu relies on amateur broadcasters to provide live video contents,

and a broadcaster may start or stop a livecast session anytime. We consider: 1) how frequently a broadcaster

initiates livecast sessions, and 2) how long a livecast session lasts.

Figure 5(a) presents the distribution of the sessions initiated by the 242, 697 broadcasters in the dataset.

From the figure we can see that overall the broadcasters are inactive, as half of them have no more than 6

sessions in four weeks. However, there also exist considerable active broadcasters. For example, we observe

that on average, over 13% broadcasters each has at least one session per day; and for the top-10% broadcasters,

averagely each has initiated over 90 sessions in four weeks.

In Figure 5(b), we present the distribution of the session lengths. We can see that most sessions do not last

long: the mean session duration is 0.53 hours, and over 50% sessions last less than 10 minutes; even the top-10%

longest sessions last only 3.29 hours on average. We also find that there are considerable sessions lasting exactly

30 minutes, which can be explained as Douyu rewards a broadcaster if she continuously broadcasts for over 30

minutes, therefore many broadcasters stop immediately after the threshold.

Our observations suggest that for active broadcasters, it is feasible to build profiles from their histories, as

they broadcast frequently and regularly. On the other hand, most livecast sessions do not last long, therefore

the livecast system is highly dynamic with broadcasters starting and terminating livecast sessions anytime, and

the system needs to allocate/revoke the service capacities dynamically among the channels.

4.3.2. Popularity and profitability

We profile livecast channels based on the viewer-broadcaster interactions. For traditional TV channels,

the only and most important interaction between a viewer and a channel is watching, and the property that

measures how many viewers are simultaneously watching a channel is termed as the channel’s popularity. On
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Figure 6: Rank distributions of the (a) popularity and (b) profitability of the 3, 503 livecast channels.

the other hand, for Douyu and similar websites that allow monetary donations, another important channel

property is the value of the virtual gifts that are donated during a unit broadcasting time (e.g., an hour), and

we refer to such a property as the channel’s profitability.

We employ the Douyu dataset to investigate the popularity and profitability of the livecast channels on

Douyu. Instead of studying all the channels as in our previous work [10], here we only focus on the broadcasters

that attract many viewers and gift donations, as they are indeed the candidates for allocating service capacities.

More specifically, we select the top-2, 500 broadcasters of the highest popularity, and the top-2, 500 most

profitable broadcasters from the 242, 697 broadcasters. By combining them, we obtain a collection of 3, 503

broadcasters. Although these broadcasters constitute only 1.44% of the broadcaster population, however, they

attract as many as 87.47% monetary donations and 80.40% danmu comments. Note that Douyu provides

transcoding services in all the 3, 503 channels.

In Figure 6, we present the rank distributions of the popularity and profitability of the 3, 503 channels.

One can see that a livecast channel can be very popular and profitable: averagely there are as many as 14, 261

viewers simultaneously watching a channel, and a channel receives virtual gifts worth 83.1 US dollar per hour

on average. Moreover, even among the most attractive 3, 503 broadcasters, they still significantly vary: For

example, the top-10% most popular channels have their mean popularity 6.5 times of the averaged one from

all the 3, 503 channels; and the top-10% most profitable channels have their mean profitability 2.5 times of the

global mean.

Since a livecast channel has two important properties, one nature question is, are they closely correlated?

To answer this question, we rank the 3, 503 channels according to their popularity and profitability respectively,

and compute the Spearman’s rank correlation coefficient [34] between the two ranks as

ρ = 1−
6
∑n

i=1(rp,i − rg,i)
2

n(n2 − 1)
(1)

where n is the total number of the channels, rp,i and rg,i are the positions of channel i in the popularity and

profitability ranks respectively. By applying Equation (1), we have ρ = 0.547. The value indicates that the two

channel properties are only moderately correlated. In other words, a popular livecast channel on Douyu is not
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Figure 8: Accumulative gift value donated from a viewer on average since the viewer has joined, for the five channels selected from

3, 503 channels.

necessarily equally profitable, and vice versa.

4.4. Factors influencing profitability

We further investigate the factors that influence a livecast channel’s profitability. Note that livecast channels

on Douyu are categorized into several genres according to their contents. We first compare the profitability

levels of different genres. More specifically, in the 3, 503 livecast channels, we find that 1, 716 of them are of the

“gamecast” genre, and 1, 321 belong to the “showcast” genre. Figure 7 presents the popularity and profitability

distributions of the gamecast and showcast channels. We can see that although the two kinds of channels have

similar popularity, the showcast channels have much higher profitability levels than the gamecast ones. The

observation suggests that content (including the broadcaster herself) is an important factor that influences a

livecast channel’s profitability.

We then analyze the relation between a viewer’s watching time and his monetary donations. More specif-

ically, for a livecast channel, we examine how much gift value a viewer has donated after he has joined the

channel. We aggregate the data from all the viewers that have donated in the channel, and normalize with

the viewer number. For each channel under study, we obtain a series of (minutes, value) tuples as result, in

which each tuple means on average, how much money a viewer has donated since he has joined the channel for
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a certain period of time (in minutes). We have studied over 150 channels, and find that statistically, the longer

a viewer watches the channel, the more monetary donations the broadcaster can expect to receive from him.

To show this, we present the (minutes, value) series from five representative channels in Figure 8. We can see

that, for all the five channels, the curves are monotonically increasing with time. The observation indicates

that for improving a livecast channel’s profitability, it is essential to keep the donating viewers in the channel

as long as possible.

4.5. Discussion

From our analysis in this section, we can see that Douyu follows the service strategies by transcoding and

replicating livecast channels based on their popularity. On the other hand, with the monetary donation business

model, a channel’s profitability, which measures how capable a broadcaster attracts monetary virtual gifts, is

vitally important. However, our study shows that popularity and profitability of livecast channels are only

moderately correlated.

Meanwhile, it is well known that good video streaming experience will improve viewer engagement. For ex-

ample, previous study reports that in live video streaming, a viewer’s watching time is monotonically increasing

with the highest bitrate he can stream [35]. In a crowdsourced livecast service, when a channel is allocated

with more transcoding capacity, it can provide more representations, and a viewer can select a representation

that best suites his bandwidth condition; similarly, replicating a channel to edge nodes that are close to viewers

will also improve their streaming experience. Since better streaming experience leads to longer watching time,

and according to our observation, the longer a donating viewer watches the channel, the more monetary gifts

he will donate, we can conclude that by allocating more service capacities to a livecast channel, more monetary

donations from viewers can be expected.

The above analysis suggests that there exists a mismatch between Douyu’s current service strategies and its

business model: with the popularity-based strategies, some profitable but not equally popular livecast channels

will not be allocated with sufficient service capacities. As a result, in these channels, viewers may have few

video representation choices, or are forced to stream from remote delivery servers. As a consequence, suffering

poor streaming experience, viewers will have a shorter channel watching time, and donate less virtual gifts

comparing with the case if the channels are allocated with sufficient service capacities.

5. Improving Crowdsourced Livecast Service

Inspired by the insights from our measurement study, we believe that in addition to livecast channels’

popularity, profitability should also be considered in a Douyu-like livecast system’s service strategies. In this

section, we address the problems of allocating transcoding and delivery capacities among numerous channels,

and present our solutions. To make our approaches more tractable, we restrict our discussion on Douyu-like

platforms.
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5.1. Allocating Video Transcoding Capacity

5.1.1. Problem formulation

As discussed in Section 4.2, since it is infeasible for a crowdsourced livecast system to transcode videos in

all the channels, then for each channel, the system must decide whether its video should be transcoded or not,

and if yes, how many representations should be transcoded?

We formulate the transcoding capacity allocating problem as the following. We suppose that the livecast

system supports a set of m representations, denoted as R. We use Ωj to denote all the possible representation

sets that each set is a subset of R, and contains j representations. For example, suppose a channel’s raw

video representation is 1280p, and the system is capable to transcode it into two representations as 720p

and 1080p, then we have Ω1 = {{1280p}}, Ω2 = {{720p, 1080p}, {720p, 1280p}, {1080p, 1280p}}, and Ω3 =

{{720p, 1080p, 1280p}}. Here we assume that if only one representation is provided to viewers, it is the raw

video’s representation, as observed in Section 4.2.

For each channel, say channel i, the livecast system applies a transcoding scheme wi to it, whose value is a

subset of R, and if the set contains j representations, we say wi ∈ Ωj . For example, if wi ∈ Ω1, it means that

the raw video is directly streamed to viewers without transcoding; while wi ∈ Ωm indicates that in addition to

the raw video, the channel also contains all the representations that the system supports (i.e., full transcoding).

Different transcoding schemes bring different levels of user experience quality. In this work, we follow the

method in [4][6] to model the relationship between a transcoding scheme wi and its streaming experience as

s(wi) = a · log(|wi|) + b (2)

where the constant a and b are chosen so that if wi ∈ Ωm, s(wi) = 1, that is, full transcoding leads to the best

streaming experience.

Applying a transcoding scheme wi on channel i consumes transcoding capacity and incurs cost. Since the

VDN core node is deployed on a cloud, we use the cost of renting server instances as the transcoding cost.

Specifically, we use c(wi) to denote the per-hour rental cost associated with the transcoding scheme wi, and

clearly if wi ∈ Ω1, we have c(wi) = 0.

For each livecast channel, the system traces two of its properties, i.e., popularity and profitability : A channel,

say channel i’s popularity pi, is defined as the number of its simultaneous viewers in a recent period of time,

and its profitability gi is the per-hour value of the virtual gifts donated by the viewers recently. Clearly, the

higher the gi/pi ratio is, the more generous the viewers are in donating virtual gifts in the channel.

If a transcoding scheme wi is applied to channel i, then we can compute the channel’s satisfaction as

Si(wi) = pi · s(wi) (3)

and its profit, which is the income from the received monetary donations minus the transcoding cost, can be

computed as

Pi(wi) = Γ(s(wi)) · gi − c(wi) (4)
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where Γ(·) is the function that reflects the relationship between viewers’ streaming experience and their will-

ingness to continue to watch the channel and donate. In general, Γ(s(wi)) should be monotonically increasing

with s(wi), as observed in Section 4.4, better streaming experience leads to more donations from viewers.

Combining Si(wi) and Pi(wi), we can define channel i’s gain at a transcoding scheme wi as

Gi(wi) = α · Si(wi) + β · Pi(wi) (5)

where α and β are weight parameters with α+β = 1, and their values reflect how the system balances viewers’

satisfaction with monetary profit.

With the above formulation, we formulate the transcoding capacity allocating problem as: for each livecast

channel i with on-going sessions, decide a transcoding scheme wi, so as to maximize the system’s overall gain

as G(w1, · · · , wn) =
∑n

i Gi(wi), under the constraint of the system’s available transcoding capacity C, i.e.,

Maximize G(w1, · · · , wn) =
∑n

i=1 Gi(wi)

s.t.
∑n

i=1 c(wi) ≤ C
(6)

Note that for a cloud-based VPN core node, its capacity C should be right-sized with the diurnal workload.

However, in this work we do not address the capacity right-sizing problem, as it is well studied [36]. For

simplicity, C is assumed as a constant.

5.1.2. Proactive Transcoding Capacity Allocating

Before presenting our solution, we first introduce some notations. For a livecast channel i, suppose its

current transcoding scheme is wi ∈ Ωj , where j = 0, 1, · · · ,m, we denote w+
i as a transcoding scheme if it

contains one more representation than wi, i.e., w
+
i ∈ Ωj+1, if j = 0, 1, · · · ,m − 1; or w+

i = wi, if j = m.

And we denote w−
i as the transcoding scheme if one representation is removed from wi, that is, w

−
i ∈ Ωj−1 if

j = 1, · · · ,m, or w−
i = wi, if j = 0.

With the notations, we define ∆G+
i (wi) = Gi(w

+
i ) − Gi(wi) or ∆G−

i (wi) = Gi(w
−
i ) − Gi(wi) as the

differences of channel i’s gain if its transcoding scheme is promoted from wi to w+
i or demoted from wi to w−

i

respectively.

We first present a proactive transcoding capacity allocating algorithm (P-TCAA) for solving the problem. As

presented in Algorithm 1, the algorithm iteratively executes, and in each iteration, it allocates the transcoding

capacity among all the channels with on-going sessions. Initially, the algorithm temporarily sets all the channels’

transcoding schemes as wi ∈ Ω1 and revokes the capacity (line 1-2). Then iteratively, the algorithm compares

the gain increases ∆G+
i (wi) for all the channels given that each channel’s transcoding scheme is hypothetically

promoted to w+
i ; it selects channel x that has the largest gain increase, promotes its transcoding scheme to w+

x ,

and updates the system’s spare capacity (line 5-9). The iteration aggressively promotes channels’ transcoding

schemes until no spare capacity can be further allocated (line 11).

Theorem 1. The P-TCAA algorithm is optimal.

Proof. Suppose that the system has a capacity for transcoding C video representations in real time. We prove

by induction that after C iterations, the algorithm achieves the maximum overall gain G.
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Algorithm 1 Proactive transcoding capacity allocating algorithm (P-TCAA)

1: for each livecast channel i do

2: wi ∈ Ω1; ◃ Initialize transcoding schemes

3: end for

4: repeat

5: Sort ∆G+
i (wi) in descending order for all channels;

6: Let x be the first channel in the rank;

7: if (∆G+
x (wx) > 0) then

8: wx ← w+
x ;

9: Update ∆G+
x (wx) and the spare capacity;

10: end if

11: until no spare transcoding capacity can be allocated

For the basic case of C = 1, clearly the algorithm is optimal by selecting the channel with the largest gain

increase ∆G+
i (wi). Now assume that after the kth iteration, a maximum system gain G(w1, · · · , wn) is achieved.

For the (k+1)th iteration, suppose that the algorithm selects channel x to promote, i.e., wx ← w+
x . If the result-

ing overall gain G(w1, · · · , w+
x , · · ·wn) is not maximal, then there exists a channel y such that by promoting wy

to w+
y , the maximum system gain G(w1, · · · , w+

y , · · · , wn) can be achieved. Recall that G(w1, · · · , w+
x , · · ·wn) =

G(w1, · · · , wn)+∆G+
x (wx), clearly ifG(w1, · · · , w+

y , · · · , wn) > G(w1, · · · , w+
x , · · · , wn), we shall have ∆G+

y (wy) >

∆G+
x (wx), which contradicts the fact the x ranks first among all the channels regarding G+

i (wi). Therefore,

channel y doesn’t exist, and G(w1, · · · , w+
x , · · ·wn) is the maximum overall gain of the livecast system after the

(k + 1)th iteration.

5.1.3. Reactive Transcoding Capacity Allocating

One drawback of the periodically executed proactive algorithm is that when a channel starts to broadcast

after an algorithm execution, it doesn’t have any transcoding capacity allocated, until next time the algorithm

executes. However, from Section 4.3 we can see that most livecast sessions do not last long, thus if the

algorithm’s execution interval is too long, some channels with short sessions may never have transcoding

capacity allocated. To overcome this problem, we present the reactive transcoding capacity allocating algorithm

(R-TCAA), as presented in Algorithm 2.

The R-TCAA algorithm is invoked on the event when a broadcaster x initiates a new livecast session. The

algorithm first examines whether there is spare transcoding capacity, if yes, the algorithm behaves similarly to

P-TCAA: it compares all the channels’ gain increases ∆G+
i (wi) and selects the one with the largest increase to

promote; the iteration continues until no capacity can be further allocated (line 2-10).

When there is no spare capacity, the algorithm seeks to demote some existing channels’ transcoding schemes,

revokes the capacity, and allocates to the new channel x. To find the channels for demoting, the algorithm

compares all the channels’ gain decreases ∆G−
i (wi), and selects the one with the smallest decrease to demote

(line 13-18). The iteration repeats until the system’s overall gain G can not be further improved (line 15 and
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Algorithm 2 Reactive transcoding capacity allocating algorithm (R-TCAA)

Input: New livecast channel x;

1: wx ∈ Ω1;

2: if there is spare transcoding capacity then

3: repeat

4: Sort ∆G+
i (wi) in descending order for all channels and channel x;

5: Let y be the first channel in the rank;

6: if (∆G+
y (wy) > 0) then

7: wy ← w+
y ;

8: Update ∆G+
y (wy) and the spare capacity;

9: end if

10: until no spare transcoding capacity can be allocated

11: else

12: repeat

13: Sort ∆G−
i (wi) in descending order for all channels;

14: Let y be the first channel in the rank;

15: if (∆G+
x (wx) + ∆G−

y (wy) > 0) then

16: wx ← w+
x ; wy ← w−

y ;

17: Update ∆G+
x (wx), ∆G−

x (wx), ∆G+
y (wy), and ∆G−

y (wy);

18: end if

19: until no adjustment can be performed

20: end if
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19).

One consequence of Algorithm 2 is that it may adjust a channel’s transcoding scheme too often. To

overcome this problem, we amend the algorithm as the following: each time a channel is selected for promoting

or demoting, we examine the time of its last transcoding scheme adjustment, and skip the channel if its last

adjustment happened no earlier than a threshold τ .

5.2. Channel Replicating Strategy

We also consider the channel replicating problem, that is, among the numerous livecast channels, which

channels a VDN edge node should select to replicate, with its limited backbone bandwidth B connecting to the

core node.

One straightforward way is to select the top-N channels with the most local viewers under the constraint of∑N
i=1 b(wi) ≤ B, where b(wi) is the bandwidth required to receive all video representations in channel i under

its transcoding scheme wi. Note that Twitch and Douyu currently replicate channels based on popularity [8].

However, as we have analyzed in Section 4, on a Douyu-like platform, a channel’s profitability should also be

considered in making the replicating decisions.

Our key idea is to compute a local utility for each candidate channel, and select the top-N channels with

the highest utility-bandwidth ratios. More specifically, for a candidate channel i, the edge node traces its local

popularity pl(i) as the portion of the channel’s viewers in the node’s region divided by the local viewers in all

the channels. Similarly, the node also traces the channel’s local profitability rl(i) as the ratio of the gift value

from the local viewers in channel i divided by the gift value donated by all the local viewers. With the two

metrics, the edge node computes channel i’s local utility as

ul(i) = c1 · pl(i) + c2 · rl(i) (7)

where c1 and c2 are weight parameters with c1+c2 = 1. The VDN edge node computes the local utility-bandwidth

ratio for channel i as

o(i) =
ul(i)

b(wi)
(8)

and it selects the top-N channels with the highest ratios until there is no spare backbone bandwidth.

Finally, we want to point out that although we focus on a Douyu-like system, however the general principle

of balancing both popularity and profitability of channels in allocating service capacities, is applicable to other

system contexts. For example in Twitch, which places its servers in a few cloud data centers in different

countries [8], by taking the factors such as various bandwidth and server rental prices across different data

center locations into consideration, we can formulate a problem for maximizing the system’s overall benefit,

like the one in Equation (6), and such a problem can be solved with similar techniques as we have used in

Algorithm 1 and Algorithm 2.
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Figure 9: (a) Overall gain, (b) overall satisfaction, and (c) overall profit of simulated livecast system under different transcoding

capacity allocating algorithms with the proactive algorithms’ execution intervals varying from 0.5 to 2.0 hours.
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6. Evaluation

6.1. Experiment Setup

We simulate a crowdsourced livecast system for evaluating our proposed solutions. The simulation experi-

ments are driven by the data from our real-world measurement on Douyu. More specifically, in the experiments,

a channel’s session length follows the distribution as in Figure 5(b), and we control the Poisson session join

rate so that on average, there are 2, 000 active channels in the simulated system. For each livecast channel,

we associate it to a random channel from the Douyu dataset, so that the simulated channel has a real-world

channel’s popularity and profitability, and for all the simulated channels, the two properties have a Spearman’s

rank correlation coefficient of 0.547. We assume that transcoding one video representation in real time requires

one unit capacity (e.g., one CPU core), and consult the rental price of Tencent Cloud8 for the transcoding cost.

For the function Γ(·) in Equation (4), which reflects the relation between viewers’ streaming experience in

the channel and the their willingness to continue to watch and donate, we temporarily set Γ(s(w)) = (s(w))γ ,

with γ = 1 in our simulation. We recognize that it is challenging to find a function that accurately describes

the relation, and leave it for our future work.

The other parameters are set as the following. The simulated livecast system supports up to |R| = 5 video

representations. We let b = 0.4 in Equation (2), so that even under no transcoding, viewers still have a 40%

streaming satisfaction. We set the parameters α and β in Equation (5) as 0.5, and let c1 = c2 = 0.5 in Equation

(7).

6.2. Evaluating Transcoding Capacity Allocating Algorithms

We consider the transcoding capacity allocating problem at a VDN core node that is capable to transcode

C = 1, 000 video representations in real time. We evaluate and compare the following algorithms.

� P-TCAA: The algorithm is presented in Algorithm 1, and if not otherwise specified, the algorithm’s

periodical execution interval is set as one hour.

� R-TCAA: The algorithm is presented in Algorithm 2. We denote the R-TCAA algorithm with a channel

adjusting interval threshold τ as R-TCAA(τ), and by default, τ is set as 0.5 hours.

� TopN -Popularity : We refer TopN -Popularity to the case that only channels’ popularity is considered

when applying the P-TCAA algorithm, by letting α = 1.0 and β = 0.0 in Equation (5). Note that Twitch

and Douyu allocate transcoding capacity based on popularity only, as analyzed in Section 4.

� TopN -Profitability : We refer TopN -Profitability to the case that only channels’ profitability is considered

when running the P-TCAA algorithm, by letting α = 0.0 and β = 1.0 in Equation (5), and for the

TopN -Popularity and TopN -Profitability algorithms, their default execution intervals are one hour.

8https://buy.cloud.tencent.com/price/cvm/calculator
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Figure 10: Distributions of channels’ transcoding scheme adjustment intervals under different algorithms.

We examine the overall gain G of the simulated livecast system as defined in Equation (6). We also

evaluate the viewers’ overall satisfaction and the system’s overall profit, which are sums of the individual

channel’s satisfaction and profit as in Equation (3) and Equation (4) respectively.

6.2.1. Overall performance

We first have an overall evaluation on different capacity allocating algorithms. Since the algorithms of P-

TCAA, TopN -Popularity, and TopN -Profitability are periodically executed, we vary the algorithms’ execution

intervals from 0.5 to 2.0 hours. And for the R-TCAA algorithm, we consider the case that there is no constraint

for adjusting a channel’s transcoding scheme (i.e., R-TCAA(0.0)), and the case that the constraint threshold τ

is 0.5 hours (i.e., R-TCAA(0.5)).

Figure 9 presents the overall gain, overall satisfaction, and overall profit of the livecast system under different

algorithms. All the metrics are normalized against the ones that are achieved by R-TCAA(0.0) with unlimited

transcoding capacity (i.e., C =∞). From the figures we can make the following observations: First, among the

proactive algorithms, P-TCAA outperforms TopN -Popularity and TopN -Profitability, while TopN -Popularity

or TopN -Profitability only has good performance in satisfaction or profit. Second, the three proactive algorithms

have better performances when they are executed more frequently, while the reactive R-TCAA algorithm has

superior performances comparing with the proactive ones, suggesting that R-TCAA better handles the system-

wide channel dynamics caused by the starts and stops of livecast sessions. Finally, when imposing a channel

adjustment interval constraint of τ = 0.5 hours (i.e., R-TCAA(0.5)), the system’s overall gain is only slightly

reduced, comparing with the case that no constraint is imposed (i.e., R-TCAA(0.0)).

6.2.2. Transcoding scheme adjustment frequency

Besides the overall gain, we also examine the intervals between an individual channel’s consecutive adjust-

ments on its transcoding scheme during a session, since if a channel’s transcoding scheme is adjusted too often,

viewers may feel upset by having to re-select the representation frequently.

Figure 10 plots the distributions of the channels’ transcoding scheme adjustment intervals under R-TCAA(0.0),

R-TCAA(0.5), and P-TCAA. From the figure we can see that, when no constraint is imposed on the reactive

R-TCAA algorithm, many channels have their transcoding schemes adjusted very frequently, as over 80% of the

20



TopN-
Popularity

T
ra

n
s
c
o
d
in

g
 s

c
h
e
m

e

 
1

 
2

 
3

 
4

 
5

TopN-
Profitability

P-TCAA R-TCAA
(0.0)

R-TCAA
(0.5)

Figure 11: Adjustments of an exemplary channel’s transcoding scheme within a 236-minute session under different algorithms.

inter-adjustment intervals are less than 10 minutes; nevertheless, when a constraint threshold of τ = 0.5 hours

is imposed, such frequent adjustments are avoided, while the system’s overall gain is only slightly reduced, as

indicated in Figure 9(a). For the proactive P-TCAA algorithm, it is observed that over 90% of the channels

have their transcoding schemes adjusted on every algorithm execution, suggesting that the proactive algorithm,

which adjust channels’ transcoding schemes periodically, can not respond to the channel dynamics in time.

6.2.3. Case study

To better understand the different transcoding capacity allocating algorithms, we present evolution of an

exemplary channel’s transcoding scheme during a 236-minute livecast session under different algorithms in

Figure 11. We can see that under the TopN -Popularity algorithm, the channel’s transcoding scheme stays at

Ω1 without any capacity allocated all the time, but with TopN -Profitability, the channel is assigned with the

full transcoding scheme Ω5 at the first time the algorithm is executed, due to the channel’s high profitability

but relatively low popularity. The P-TCAA and R-TCAA algorithms set the channel’s transcoding scheme at

Ω3 most of the time, which is more reasonable. However, under P-TCAA, the channel has no capacity allocated

for over 30 minutes, while R-TCAA(0.0) adjusts the channel’s transcoding scheme as many as 7 times. Only

under R-TCAA(0.5), the channel is assigned with the transcoding scheme Ω3 immediately after the session

starts, does not have its transcoding scheme frequently adjusted, but is still sensitive enough to the system-

wide channel dynamics by having its transcoding scheme adjusted to Ω1 and Ω2 at the 183rd and 215th minute

respectively.

6.2.4. Influence of available transcoding capacity

In the previous experiments, we assume that the VDN core code is capable to transcode C = 1, 000 video

representations simultaneously. In this experiment, we vary the system’s transcoding capacity C, and investigate

how it influences the transcoding capacity allocating algorithms.

Figure 12 presents the simulated livecast system’s overall gains achieved by different algorithms under

various C. We can see that the reactive algorithms outperform proactive ones all the time. More importantly,

we find that the performance is not linearly improved with the available transcoding capacity; and for all the

algorithms, after the capacity C exceeds 5, 000, the improvements are trivial. We explain the observation with
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Figure 13: Influences of channels’ popularity-profitability rank correlation on different algorithms.

the fact that although transcoding more video representations in channels can improve viewers’ satisfaction

levels and their willingness to donate, however, it also incurs cost for renting cloud server instances. For

some channels with low popularity and profitability, the benefit of having more video representations doesn’t

compensate for the cost, and the algorithms do not allocate transcoding capacities to these channels.

6.2.5. Influence of popularity-profitability correlation

In the previous experiments, livecast channels’ popularity and profitability are only moderately correlated,

with a Spearman’s rank correlation coefficient of 0.547, as observed from our measurement study. In this

experiment, we investigate the impact of the channels’ popularity-profitability correlation.

Our simulation requires livecast channels to have a desired popularity-profitability correlation. More specifi-

cally, we seek to synthesize n livecast channels with their popularity and profitability following the distributions

as in Figure 6(a) and Figure 6(b) respectively, but their popularity-profitability rank correlation coefficient ρ

can be arbitrarily given.

We use the following method to generate the desired channel data [37]. We first select two random variables

i1 and i2 from [1, · · · , n], and compute

j1 = ρ× i1 +
√

(1− ρ2)× i2, (9)

where ρ is the desired rank correlation coefficient. We then create a channel x, and assign its popularity and
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Figure 14: Comparison of utility-bandwidth ratio-based channel replication strategy and popularity-based strategy under varying

backbone bandwidth B.

profitability with the ith1 and jth1 highest values in the popularity and profitability ranks from the measurement

data respectively. By repeating these steps, we can create a set of livecast channels, and statistically, their

Spearman’s rank correlation coefficient between popularity and profitability is ρ.

We synthesize five groups of livecast channels, each containing 5, 000 channels, and their popularity-

profitability rank correlation coefficients are 0.1, 0.3, 0.5, 0.7, and 0.9 respectively. For each group, we apply

the R-TCAA, P-TCAA, TopN -Popularity, and TopN -Profitability algorithms to allocate transcoding capacity.

Figure 13 presents the experiment results, from which we can see that in general, the system’s overall gain

is reduced when the correlation between the channels’ popularity and profitability is weak, especially for the

TopN algorithms, as only one channel property is considered; on the other hand, the algorithms of P-TCAA

and R-TCAA are less influenced, as in these algorithms, both the viewers’ satisfaction and the monetary profit

are taken into consideration.

6.3. Evaluating Channel Replicating Strategy

We evaluate our proposed channel replicating strategy in this section. As in our previous experiments,

we use the channels’ popularity and profitability data as collected from Douyu to drive the simulation. We

assume that the bandwidth consumptions of the five video representations are 400 kbit/s, 600 kbit/s, 850 kbit/s,

1150 kbit/s, and 1500 kbit/s respectively, and the system employs the R-TCAA algorithm with τ = 0.5 hours

to allocate the transcoding capacity among the channels. We consider a VDN edge node with a backbone

bandwidth of B, which we vary in the experiment.

In Figure 14, we present the aggregated utility of the channels that are replicated by the edge node using

the strategy based on utility-bandwidth ratio as proposed in Section 5.2, and we also plot the aggregated

utility achieved by the popularity-based strategy for comparison. For both strategies, we vary the backbone

bandwidth B form 100Mbit/s to 400Mbit/s. From the figure one can see that our proposed strategy obviously

outperforms the popularity-based one. The better performance can be explained as in our proposed strategy,

a channel’s popularity is combined with its profitability when being considered for replicating. Moreover, we

use the utility-bandwidth ratio as the criteria, thus can avoid replicating the channels that have only moderate
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utilities in the local region but require much bandwidth with many video representations.

7. Conclusion

In this paper, we sought to understand and improve Internet crowdsourced live video broadcasting (livecast)

services. By analyzing real-world measurement data from Douyu, the leading crowdsourced livecast website in

China, we found that its system is deployed upon a video delivery network (VDN), and how to allocate limited

service capacities, including the transcoding and delivery capacities, among the numerous channels becomes

a critical problem. Moreover, we found that Douyu follows the strategies that prioritize popular channels in

terms of simultaneous viewers in allocating service capacities, and there is a mismatch between such service

strategies and the website’s business model that heavily relies on monetary donations from viewers.

Motivated by our analysis, we proposed that channels’ profitability, which measures how capable a channel

attracts monetary donations from viewers, should be considered in allocating service capacities. We presented

algorithms that balance viewers’ satisfaction with the system’s monetary profit in allocating transcoding capac-

ity among livecast channels, and we also proposed a practical strategy for VDN edge nodes to select channels

to replicate. The experiments driven by real-world measurement data indicated that our proposed approaches

can effectively improve the overall benefits of a livecast system and individual VDN edge nodes.
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