
PNPL: Simplifying Programming for Protocol-Oblivious SDN Networks

Xiaodong Wanga, Ye Tiana,∗, Min Zhaoa, Mingzheng Lia, Lei Meia, Xinming Zhanga

aAnhui Key Laboratory on High-Performance Computing
School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China

Abstract

Protocol-Oblivious Forwarding (POF) is a groundbreaking technology that enables a protocol-independent data

plane for the future Software-Defined Networking (SDN). Compared to OpenFlow and P4, POF provides more

generality and flexibility in the data plane, but at a cost of additional complexity in the control plane. To

overcome such complexity, in this paper we present PNPL, the first control plane programming framework

over the POF SDN data plane. PNPL provides an easy-to-use programming paradigm that includes a header

specification language and a set of protocol-agnostic programming APIs. With PNPL, a programmer can

arbitrarily define network protocols, and compose network policies over the self-defined protocols with high-level

abstractions. PNPL’s runtime system takes the user program as input, automatically produces and maintains

forwarding pipelines in POF switches. The pipeline efficiently parses the self-defined protocol headers and

enforces the programmer’s network policy. We have implemented a PNPL prototype, and experiment with

existing and novel protocols and a number of network applications. We show that PNPL can effectively

facilitate network innovations by simplifying programming over novel protocols, producing and maintaining

forwarding pipelines of high quality; compared to P4, PNPL doesn’t require a device configuration phase, and

improves network performance by significantly reducing the packet parsing overhead.

Keywords: Protocol-Oblivious Forwarding (POF), Software-Defined Networking (SDN), Network

programming

1. Introduction

Early Software-Defined Networking (SDN) programming languages [1][2][3][4][5][6][7][8][9] are based on

OpenFlow [10][11], which supports only limited network protocols. Recent progresses such as P4 [12][13],

BPFabric [14], and Protocol-Oblivious Forwarding (POF) [15][16][17] have proposed protocol-independent data

planes. In this paper, we focus on POF, a groundbreaking technology that seeks to shape the data plane of the

future SDN.

Similar to a computer architecture’s instruction set (e.g., RISC or CISC), POF defines a concise set of

protocol-independent instructions, and with the instructions, a POF switch can be programmed to support

arbitrary protocols and a wide range of network functionalities. A POF switch doesn’t have any protocol-specific

knowledge, but matches packet fields with their {offset, length} tuples in forwarding rules. By completely
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Figure 1: PNPL architecture.

decoupling control plane and data plane, POF enables the data plane infrastructures to evolve independently

from specific network protocols, thus can support new protocols and services of the future Internet.

As a data plane technology, POF provides more generality and flexibility comparing with OpenFlow and

P4, however, as we will see in this paper, the benefits come at a cost of additional complexity in programming,

as a programmer is forced to parse packets in bits from the control plane. We believe that for high-level network

programming, such packet parsing complexity should be hidden from the programmer, who only needs to focus

on his network policy. In addition, as POF introduces advanced features such as dynamic multi-table pipeline

and inter-table metadata, the programming language should also provide easy-to-use abstractions to exploit

these features.

In this paper, we present PNPL, the first SDN programming framework that allows user to program high-

level network policies over the POF data plane. PNPL provides two programming interfaces: a header specifi-

cation language that allows a user to arbitrarily define network protocols with complicated header structures,

and a set of protocol-agnostic programming APIs, with which the programmer can compose his network policy

over the self-defined network protocols.

PNPL has a runtime system that is responsible for generating, deploying, and maintaining forwarding

pipelines in POF switches. The runtime system parses the PacketIn packet reported by a POF switch ac-

cording to the header specification, and executes the network policy program to reach a policy decision. More

importantly, the runtime system traces the packet parsing and policy execution steps, and use them to handle

the subsequent PacketIn events.

The architecture of PNPL is demonstrated in Figure 1. PNPL transforms the header specification into a

static parse graph (PG) [18]. To cope with the dynamic nature of network packets and policy execution flows,

when a “policy miss” PacketIn event occurs, that is, the policy decision for the PacketIn packet is not traced

by the runtime system, the packet is firstly applied to PG to derive a dynamic parse graph instance (PGI ),

which is a subgraph of the PG and records the parsing results of the packet. Then PNPL’s runtime system

invokes the policy program upon the PGI, logs packet and metadata field accesses as a trace, and incrementally

constructs an extended tracing tree (xTT ). An xTT not only traces policy execution flows, but also traces packet
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parsing steps as well. Finally, the runtime system produces forwarding pipelines (FPs) from the xTT, which

contains multiple stages of rules for parsing network packets and enforcing the network policy, and installs them

in POF switches.

Comparing with OpenFlow-based SDN programming languages (e.g., [1][2][7]), PNPL provides a protocol-

independent SDN programming paradigm, which facilitates researchers to innovate with novel network proto-

cols. PNPL is also very different from P4 [12][13], as the latter is a device configuration language for configuring

individual P4 switches, while PNPL is a framework at the control plane for programming the entire POF data

plane. A PNPL programmer doesn’t need to configure individual POF switches explicitly, but only to describe

the protocol header formats and network-wide forwarding policy, while the high-performance runtime system

automatically generates pipelines for each of the individual POF switches.

We have implemented a PNPL prototype [19] and assess it with experiments. We find that the PNPL

program achieves comparable performance to the equivalent programs manually implemented on mainstream

OpenFlow controllers; more importantly, with PNPL, we can easily program a wide range of existing and novel

protocols and network applications, and PNPL produces FPs of high qualities; finally, comparing with P4, we

find that PNPL improves network performance by significantly reducing the packet parsing overhead.

The remainder of this paper is organized as follows. Section 2 discusses the related works; we introduce

the background and present our motivation in section 3; section 4 presents PNPL’s programming model, and

we describe its runtime system in section 5; section 6 presents and evaluates the PNPL prototype; finally, we

conclude this work in section 7.

2. Related Work

Programmable protocol-independent data plane. The P4 project [12][13] proposes a language to program

the data plane of programmable packet processors. P4 has two phases, in the configuration phase, a programmer

specifies the headers, parsers, actions, tables and control flows with the P4 language; the P4 compiler compiles

the target-independent program to a variety of target switches in an offline way. At run time, a controller uses

the API (e.g., OpenFlow) generated by the compiler to populate the flow table on the configured target switch.

Although POF shares many common features with P4, they have different goals. POF seeks to provide the

runtime programmability to an SDN data plane, so that the POF switches in a network can be dynamically

programmed to support various network protocols and network services at run time. For serving this purpose,

POF defines a unified set of forwarding instructions on general-purposed POF-compatible switches, and allow

a programmer to use the instructions to program the data plane at run time. As we will see in the next section,

comparing with P4, POF has a simple and general-purpose data plane, but shifts the complexity of packet

parsing to the control plane. One objective of this work is to simplify such complexity.

BPFabric [14] is a recently proposed SDN data plane architecture that is platform, protocol, and language-

independent. BPFabric is centered around eBPF [20], which provides a protocol and platform-independent

instruction set for packet filtering. BPFabric is highly flexible, and with it, a wide range of network services

such as statistic gathering and reporting, network telemetry, and anomaly detection can be delivered. BPFabric
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Figure 2: Comparison of POF and P4 operational environments.

has yet been implemented on hardware, and as a software approach in essence, it is unknown whether eBPF

can sustain a line speed of packet processing up to hundreds of Gbps for backbone networks.

SDN programming languages. In recent years, a number of high-level SDN programming languages have

been proposed. Pyretic [2][3] and Maple [1] employ an imperative paradigm that enables programmers to

directly manipulate the execution flows; on the other hand, declarative SDN programming languages use many

different paradigms, such as SQL-like queries, finite-state machines, and graphs, to describe network policies.

Examples include Frenetic [4], Merlin [5], FatTire [6], Kinetic [7], NetEgg [8], PGA [9], etc. Some SDN languages

exploit the advanced features such as multi-table pipeline, branching, and switch-level state-keeping provided

by the next generation SDN switch interfaces [12][15][21]. For example, Concurrent NetCore [22] provides a

language for a programmer to specify routing policies and graphs of processing tables at a same time; SNAP

[23] exploits the persistent state support from switches and provides a stateful model to manage the distributed

states in a centralized way.

In this work we present PNPL, the first control plane programming framework over the POF SDN data

plane. PNPL differs from the previous works in two aspects. First, comparing with the protocol dependent SDN

programming languages (e.g., the OpenFlow-based languages), PNPL provides a protocol-agnostic program-

ming paradigm, which facilitates network innovations by enabling a programmer to arbitrarily define network

protocols and describe the network policies upon the self-defined protocols. Second, as we will see in the next

section, comparing with the P4 language, which configures offline P4 switches to support specific network pro-

tocols, PNPL provides runtime programmability, with which a programmer can deploy self-defined protocols

and enforce his network policies on POF networks flexibly at run time.

3. Background and Motivation

3.1. POF Introduction

POF proposes that the future SDN’s data plane elements should play a similar role as CPU in computer

by providing a concise set of protocol oblivious instructions. The proposed POF instructions seek to cover

all the network data plane capabilities, including packet and metadata editing, packet forwarding, table entry

manipulation, etc. POF inherits OpenFlow’s communication paradigms between control plane and data plane.
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As demonstrated in Figure 2(a), a POF switch doesn’t offer any functionality until it connects to the control

plane, which programs the switch to provide specific network functionality. A runtime POF switch can be

viewed as a pipeline containing multiple stages of tables with “match + instruction” rules. POF defines a set

of controller-to-switch commands that enable a controller to dictate pipeline structure, allocate resources, and

deploy forwarding rules in POF switches at run time.

As its name suggests, a POF switch doesn’t have any protocol-specific knowledge such as packet formats,

therefore it handles incoming packets very differently from existing SDN data plane technologies. Taking

OpenFlow as an example, in an OpenFlow switch, an incoming packet is firstly parsed by a frontend parser,

which knows all the packet formats the switch can handle and parses the incoming packet comprehensively. In

a POF switch, however, there is no frontend parser. POF adopts on-demand parsing, where a packet field is

parsed only when the switch is programmed to have a rule that matches the field with its offset and length.

More specifically, for each incoming packet, a POF switch keeps a packet offset (denoted as p-offset) cursor

to point to the position where the match begins in the current table. The cursor can be moved forward and

backward using the MOVE_PACKET_OFFSET instruction, with positive or negative offset value as the instruction

parameter. To express a match key, POF employs an {r-offset, length} tuple, where r-offset indicates the

relative offset from the p-offset cursor, and length is the bits that should be included in the key starting from

the (p-offset+ r-offset) position within the packet. For example, for an IPv4 header, suppose that the p-offset

is pointing to the start position of the header, then the source and destination address fields can be expressed

as {12B, 4B} and {16B, 4B} respectively.

POF supports a dynamic multi-table pipeline. In POF, a controller program can dynamically create a flow

table and append it to the pipeline, using the TABLE_MOD command. For creating a new table, the control plane

must specify the table’s matching fields, which are the data pieces in packet (and its associated metadata)

that are supposed to be matched in the table, with their offsets and lengths. To move a packet (together with

its metadata) from one table to the next one in pipeline, POF defines the GOTO_TABLE instruction, and the

MOVE_PACKET_OFFSET instruction is usually executed with GOTO_TABLE, to move the p-offset cursor to the new

position within the packet where match begins in the next table. A match key of a data piece in metadata is

also expressed using an {offset, length} tuple. A detailed description of the POF instructions can be found in

[16], and a POF pipeline example is given in Section 3.3.

Since its introduction, POF has attracted extensive attentions from the industry and the research com-

munity. Huawei has opensourced a POF controller and software switch, and implemented NPU-based POF

switches in its NE40E and NE5000E backbone routers [15]. The European Telecommunications Standards

Institute (ETSI) considers POF as a candidate technology for the 5G Network Function Visualization (NFV)

[24], and the International Telecommunication Union (ITU-T) considers POF as a promising direction for the

IMT-2020 network [25].

3.2. Comparing with P4

P4 [12][13] is another protocol independent SDN data plane technology. Unlike POF that centers around

instructions, P4 defines a language for configuring a clean-slate P4 switch. More specifically, an operator defines
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protocol header formats, parser specification, match-action table specification, and control flow that indicates

the table execution sequence in a P4 program, and the P4 compiler compiles the program into configurations

in different target specific forms. As we can see in Figure 2(b), after the configuration, a P4 switch becomes

a specialized switch, which contains a protocol-specific frontend parser, and its pipeline structure is also fixed.

Note that P4 is not a control plane programming language. As one can see in Figure 2(b), after configuration,

a P4 switch still needs to connect to a specific controller (such as an OpenFlow controller if the switch is

configured to support OpenFlow), and populates its tables with the rules from the controller program.

P4 has been very successful in recent years by supporting a wide range of target switches, from ASIC and

FPGA switches to Linux-based software ones. However, by carefully comparing POF and P4, we find that

POF has its own merits. First, POF doesn’t have a configuration phase, and all capabilities of a POF switch

can be determined by the control plane program at run time. Second, POF allows an on-demand parsing

scheme, where a packet field will be parsed in a POF switch only when it is necessary; on the other hand, in P4,

the frontend parser comprehensively parses all the fields regardless of whether or not they are of interest [26].

Third, POF is more flexible by allowing a dynamic pipeline, where a flow table can be created and appended

to the pipeline at run time; on the other hand, after the configuration, the pipeline structure of a P4 switch

can not be changed anymore.

From the above discussion, we can see that as a data plane technology, POF provides more generality

compared to OpenFlow, and is more flexible than P4. However, these benefits come at a cost of additional

complexities in the control plane. In the following, we discuss these complexities and analyze the inherent

challenges in programming a POF network.

3.3. Challenges in POF Programming

Using {offset, length} tuples as match keys requires that, when deploying a forwarding rule, the programmer

must assign them with correct values. However, a programmer at the control plane can not anticipate how the

packets on the data plane will look like at the run time, therefore has difficulties in determining the right values

for the tuples and instruction parameters when composing the forwarding rules. In the following, we discuss

the reasons that cause the programming challenges.

3.3.1. Variable-length header

The first challenge is that some headers have variable formats and lengths. For example, both IPv4 and

TCP headers may contain options. To parse a packet with a variable-length header, a specialized frontend

parser needs to extract the “header length” field, such as IPv4’s ihl or TCP’s offset field, and decides the

actual packet length.

However, in POF programming, a programmer will have difficulties when assigning values to the {r-offset,

length} tuples, as packets may have various-length headers at run time. For example, consider a single-table

scenario, where a programmer wishes to match the TCP destination port. If the TCP segment is carried within

an IPv4 datagram without options in the header, the tuple is {36B, 2B} (assuming p-offset = 0), but if the IP

header has a 4-byte option, the tuple for the TCP destination port field should be {40B, 2B}, and the tuple
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Figure 3: Comparison between an OpenFlow/P4 table and a POF pipeline implementing an L3+L4 rule for forwarding packets

with variable-length IPv4 headers.

becomes {44B, 2B} when the IP header contains an 8-byte option, · · ·. The problem is, since a programmer at

the control plane can not anticipate whether an IP header contains an option, and if contained, how long the

option field is, he can not decide the tuple value when composing a match key for the TCP destination port.

3.3.2. Variable header sequence

The second challenge is that packets may have variable header sequences. For example, an Ethernet header

may be followed by either an IPv4 or an IPv6 header, or there would be up to two VLAN headers or up to

eight MPLS headers between Ethernet and IP. For handling such a variable header sequence, a specialized

frontend parser needs to extract current header’s “next-layer protocol” field, such as Ethernet’s ethertype or

IPv4’s proto field, to determine the next-layer header. However, with such a variable header sequence, it is a

tedious job for a programmer to assign values to the {r-offset, length} tuples from the control plane, as they

vary with packets of different header sequences at run time. For example, to match the TCP destination port,

the programmer must enumerate all the possible cases that the packet carries VLAN or MPLS headers, and

has IPv4 or IPv6 as its L3 protocol.

3.3.3. Multi-table pipeline

In the previous discussion, we assume a single-table scenario, nevertheless, the challenges introduced by

variable-length headers and variable header sequences also exist in multi-table pipelines.

Consider an example as in Figure 3, which presents an OpenFlow/P4 table and a POF pipeline for imple-

menting an L3+L4 combined forwarding policy respectively. Figure 3(a) demonstrates the OpenFlow/P4 table1,

which simply matches the destination IP address and TCP port, as values of these fields have already been

extracted by switch’s frontend parser, and executes the output action with one single rule. However, in the POF

pipeline as in Figure 3(b), the first table examines IPv4’s ihl field at {0B, 1B} to decide if there is an option,

and before the first table moves the packet to the second table, it needs to execute the MOVE_PACKET_OFFSET

instruction with the right parameter values to move the p-offset cursor to the starting position of the next-layer

protocol (i.e., TCP) header, according to the match results at {0B, 1B}. As a consequence, a programmer

must install multiple rules in the pipeline’s first table, for the cases when the packet encountered at run time

contains no IP option, a 4-byte option, an 8-byte option, · · ·.

1We assume that the P4 switch has already been configured to recognize OpenFlow-supported protocols.
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Variable header sequences also introduce complexity. Consider implementing an L2+L3 forwarding policy

with a POF pipeline. The L2 table needs to examine Ethernet’s ethertype field, and employs multiple rules

to move the packets to different tables for next-state processing, under the cases that the packet contains

various numbers of VLAN or MPLS headers after Ethernet. Note that all the complexities arise because when

programming at the control plane, the programmer can not anticipate the lengths and sequences of the headers

in packets that the switches are going to handle on the data plane, therefore cannot decide the right tuple or

parameter values in the forwarding rules.

From the above discussion we can see that POF has its own merits regarding the data plane generality and

flexibility, but it also introduces considerable complexities to the control plane, making programming tedious

and error-prone. It is desirable for a POF programming framework to manage these complexities in an efficient

and automated way, so that a programmer can focus on network policies rather than on the protocol-specific

parsing details.

4. Programming Model

In this section, we describe PNPL’s programming model, and demonstrate how a user defines packet headers

and composes a network policy over the self-defined protocols.

4.1. Header Specification

PNPL presents a header specification language, which provides a high-level abstraction other than {offset,

length} tuples for specifying complicated packet header formats. In the following, we demonstrate an example.

A formal description of the language syntax can be found in our technical report [27].

header Ethernet

fields

_mac_dst : 48;

mac_src : 48;

_ethertype : 16;

next select (ethertype)

case 0x0800 : IPv4;

case 0x9100 : VLAN;

header VLAN

...

header IPv4

fields

_ver_ihl : 8;

...

_proto : 8;

...

option : *;
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length: (ver_ihl & 0x0F) << 2;

next select (proto)

case 0x06 : TCP;

case 0x11 : UDP; ...

start Ethernet; // packet starts with Ethernet

As demonstrated in the example, a header specification consists of a sequence of header definitions. Each

header has a fields statement, which declares an ordered list of fields with their names and lengths (in bits)

in the header. Note that when a header contains a variable-length field, such as the option in IPv4, we use a

“∗” to indicate that the field’s actual length should be inferred at run time. If a field is supposed to be matched

in a flow table, we add “ ” in front of it, and refer to the field as a matching field of the header.

Optionally, a header contains a length statement. When defining a header of variable length, the length

statement specifies which field contains the actual length of the header, and how it is derived from the field

value. For example, in IPv4, the header length should be derived using (ver ihl & 0x0F) ≪ 2. The next

statement indicates the next-layer header, and if there are multiple choices, the select statement specifies the

current header’s “next-layer protocol” field, such as Ethernet’s ethertype, and the field’s possible values are

enumerated in a case statement to indicate different next-layer headers. Finally, the start statement is used

to specify with which header the parsing starts.

Note that PNPL does not require a header defined in the specification to exactly correspond to a protocol

header. In essence, a header only specifies a sequence of fields that the programmer wishes to match in one

flow table, and for each header declared, PNPL creates a flow table in the switch pipeline. For example, in

l2-learning [28], if a programmer wishes to match the destination MAC address in one table for forwarding,

and match the source MAC address in another table for address learning, then two headers, one containing

mac dst, and the other containing mac src and ethertype, should be defined.

Finally, although the header specification language looks similar to the header definition part of the P4

language, they have different roles. PNPL’s header specification is not used to configure a switch’s frontend

parser in an offline way, and as we will see in subsequent sections, it is a part of the controller program which

is used to help produce forwarding pipelines for switches at run time.

4.2. APIs and Network Policy

PNPL provides a set of protocol-agnostic programming APIs for users to compose network policies. PNPL

defines over 20 APIs. The APIs such as read_packet and test_equal read and make assertions on a packet

field respectively. For supporting metadata, PNPL provides the declare_metadata API for declaring a data

piece in metadata, the write_metadata API for writing value to metadata, and similar to the packet access

APIs, the APIs such as read_metadata and test_equal_metadata read and make assertions on a metadata

data piece. For packet parsing, PNPL defines the apply_PG API that applies an unparsed PacketIn packet to

the parse graph (PG), and derives a parse graph instance (PGI); and the search_header API is provided to

search the PGI and locate the specified header. A completed description of the APIs can be found in [27].
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0  Path * f (Packet *pkt, struct map * env) { 

1    pgi = apply_PG(pkt); 

2    declare_metadata(pgi, "DstMAC", 48); 

3    write_metadata(pgi, "DstMAC", "mac_dst"); 

4    if (search_header(pgi , "IPv4", {})) { 

5      ipSrc = read_packet(pgi , "ip_src"); 

6      if (Lookup(LegitimateIPs , ipSrc )) { 

7        if (search_header(pgi, "TCP", {"DstMAC"})) { 

8          if (test_equal(pgi , "tcp_dport", 80)) { 

9            macDst = read_metadata(pgi , "DstMAC"); 

10           return CalcPath(env, macDst); } } } } 

11   return EmptyPath(env); } 

Figure 4: Example network policy composed with the APIs.

A PNPL programmer composes a network policy in an f function. The function is invoked on a “policy

miss” PacketIn event. When a non-empty path is returned from the f function, PNPL establishes a network

flow for allowing the matched packets along the path, but when an empty path is returned, it means that the

matched packets should be dropped. In Figure 4, we use an example firewall policy to illustrate how to compose

a network policy with PNPL. The example policy is to allow the HTTP traffics originated from legitimate source

IP addresses, while prevent all the other traffics. Note that the f function takes two arguments: pkt is the

PackeIn packet, and env is a pointer for pointing to the environmental variables such as network topology,

parse graph, etc. The program first calls apply_PG to parse the unparsed pkt with the PG and obtains a PGI

(line 1); it then allocates a 6-byte data piece in metadata, and names it as “DstMAC” (line 2). The data piece

will be used for storing the destination MAC address.

After packet parsing and metadata allocation, the program writes the destination MAC address to metadata

at “DstMAC” (line 3), it then calls search_header to skip one or more headers until an IPv4 header is

encountered, and examines whether the source IP is legitimate (line 4-6). Note that the variable LegitimateIPs

in line 6 is a pre-configured dictionary for tracking all the legitimate IP addresses on the network, and Lookup()

is a user-define function to lookup ipSrc in the LegitimateIPs dictionary. If the packet’s source IP address is

legitimate, the program skips to the TCP header (line 7), examines whether the destination port is 80, extracts

the destination MAC from metadata, and calculates a path to it using the user-defined CalcPath() function

(line 8-10). Otherwise, the user-defined function EmptyPath() is called to return an empty path (line 11).

When a path is returned, PNPL generates pipelines that implement the network policy as described in the f

function, and installs them on each switch along the path to establish the network flow.

We explain search_header in more details. Note that the API has three arguments, and the third argument

is a list of {offset, length} tuples that describes data pieces in metadata. The metadata data pieces should

be matched together with the matching fields of the specified header in the flow table that corresponds to the

header. For example, in line 7, when search_header returns TRUE, a flow table corresponding to TCP will be

created and appended to the pipeline, which matches the TCP destination port and the “DstMAC” tuple in

metadata.
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Figure 5: (a) PG derived from header specification in Section 4.1 and (b-d) three PGIs obtained by parsing three PacketIn packets.

From the above example we can see that comparing with existing SDN languages, programming network

policies with the PNPL APIs has several advantages. First, the APIs are protocol-agnostic, while all the

protocol-specific information, such as header and field names, are passed as API arguments. Second, in addition

to packet data access, PNPL also provides APIs for programmer to manipulate the metadata resource, which

significantly improves capability of the SDN program [28]. Finally, a programmer doesn’t need to compose any

code with low-level {offset, length} tuples, but use the two high-level APIs, apply_PG and search_header, to

handle the packet parsing issues efficiently.

5. Runtime System

After a programmer specifies the network protocol with the header specification and describes his network

policy in the f function, PNPL’s runtime system takes them as input, produces and deploys pipelines that

enable the user-defined protocols and network policy on the POF data plane. In this section, we describe the

key components and methodologies in PNPL’s runtime system.

The general idea of PNPL’s runtime system is inspired by Maple [1], a programming framework over

OpenFlow v1.0 networks. However, in addition to trace policy execution flows as in Maple, PNPL introduces

PG and PGI for handling arbitrarily defined protocols, and extends Maple for tracing packet parsing steps and

metadata manipulations. Unlike Maple that only generates rules for a single OpenFlow v1.0 table, PNPL’s

runtime system produces and maintains pipelines that consist of multiple stages of flow tables, and populates

them with forwarding rules derived from the f function.

5.1. Parse Graph and Parse Graph Instance

Unlike OpenFlow, a packet reported by a POF switch in the PacketIn message to the control plane is

unparsed. PNPL parses PacketIn packet with the user-defined header specification, and uses the parsing

result to assist POF switches to parse the subsequent packets on the data plane.

After loading a header specification, PNPL derives a parse graph (PG) from it. A PG is a directed acyclic

graph G = (V,E), where each node v ∈ V represents a declared header, and each directed edge e ∈ E from

11



Algorithm 1: ParsePGI(G, pkt)

Input : PG G = (V,E) and PacketIn packet pkt

Output : PGI Gi = (Vi, Ei)

1 Gi ← null ;

2 v ← G’s source node;

3 while v ̸= null do

4 Create vi from v and add vi to Gi;

5 foreach field f in vi do

6 vi.[f ] = (tuple, value) in pkt;

7 if v ̸= G’s sink node then

8 Select next-layer header node v′ ∈ G according to pkt;

9 Find e from v to v′ in G;

10 Create ei from e and add ei to Gi;

11 ei.length← vi’s actual header length in pkt;

12 if vi’s “header length” field f ′ exists in pkt then

13 ei.[f
′]← vi.[f

′];

14 if vi’s “next-layer protocol” field f ′′ exists in pkt then

15 ei.[f
′′]← vi.[f

′′];

16 v ← v′;

17 return Gi

one node to another indicates a “next-layer protocol” relation between the two corresponding headers. For

example, the PG derived from the specification in Section 4.1 can be found in Figure 5(a).

PG is a static data structure. To cope with the dynamic nature of network packets in the wild, PNPL creates

a data object named parse graph instance (PGI ) for each “policy miss” PacketIn packet. More specifically,

when a PacketIn packet is reported, it is firstly applied to the xTT to see if the policy decision on such a packet

has already been traced (Section 5.3). On “policy miss”, the unparsed packet is handled by the f function,

and is applied to the PG in the apply_PG API to obtain a PGI, which is a subgraph of the PG and presents

the packet parsing result, and the f function accesses the PGI in the subsequent API calls to reach a policy

decision.

In Algorithm 1, we present the ParsePGI algorithm employed by apply_PG for parsing a PacketIn packet

to a PGI. Basically, the algorithm traverses the PG from the source node according to the packet content, and

returns the traversal path as a PGI, denoted as Gi = (Vi, Ei). Inherited from the PG, each node vi ∈ Vi on

a PGI corresponds to a header appeared in the packet, and the node keeps a dictionary of {r-offset, length}

tuples and values for all the matching fields appeared in the header. For each directed edge ei ∈ Ei originating

from a header, it records the header’s actual length, and if the header has a “header length” or a “next-layer

protocol” field, it also keeps the fields’ tuples and values as its attributes.
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In Figure 5(b-d), we demonstrate three PGIs parsed from three different PacketIn packets with the PG in

Figure 5(a). The first PGI is the result of parsing an ARP packet. The second and third packets both have

IPv4 and TCP headers, but the third packet contains a VLAN header, and has a 4-byte option in IPv4.

After a PGI is obtained, PNPL maintains a cursor to point to its current header node. Initially, the cursor

points to the source node. When a search_header API is called in the f function, the cursor is moved along

the edges until a node corresponding to the specified header is encountered, or the program reaches to the end

of the graph. The API returns a BOOL value to indicate whether the specified header is located or not. For

example, the API call search header(pgi, "IPv4", {}) in line 4 of the example f function in Section 4.2

returns FALSE with the PGI in Figure 5(b), but returns TRUE with the PGIs in Figure 5(c) and (d).

5.2. Trace

Each time an f function is invoked, PNPL records its execution details as a trace. In PNPL, a trace

generated from an f invocation depends on two factors: the API execution sequence that represents the policy

execution flow, and the PGI accessed by the APIs that indicates how the packet should be parsed.

To illustrate trace generating, we consider invoking the example f function in Section 4.2 to handle two

PacketIn packets, which are parsed by apply_PG to the PGIs as in Figure 5(c) and (d) respectively. Table 1

lists the f function’s API execution sequences on the two PacketIn events and the corresponding traces. Note

that the two invocations have a same API execution sequence, but generate different traces labeled as “trace1”

and “trace2” respectively, as each f function execution accesses a different PGI.

Table 1: Traces generated from the example f function executions with different PGIs.

API calls trace1 trace2

write metadata write metadata: {0B, 6B}@m← {0B, 6B}@p write metadata: {0B, 6B}@m← {0B, 6B}@p

search header read packet: {12B, 2B}@p = 0x0800 read packet: {12B, 2B}@p = 0x8100

next table: p-offset+14B, goto IPv4 next table: p-offset+14B, goto VLAN

read packet: {2B, 2B}@p = 0x0800

next table: p-offset+4B, goto IPv4

read packet read packet: {12B, 4B}@p = ipsrc read packet: {12B, 4B}@p = ipsrc

search header read packet: {0B, 1B}@p = 0x45 read packet: {0B, 1B}@p = 0x46

read packet: {9B, 1B}@p = 0x06 read packet: {9B, 1B}@p = 0x06

next table: p-offset+20B, goto (TCP+{0B, 6B}@m) next table: p-offset+24B, goto (TCP+{0B, 6B}@m)

test equal test equal: ({2B, 2B}@p == 80) = true test equal: ({2B, 2B}@p == 80) = true

read metadata read metadata: {0B, 6B}@m = macdst read metadata: {0B, 6B}@m = macdst

A trace in PNPL contains execution details of three categories of APIs. The first category is the packet

field manipulation and assertion APIs, such as read_packet and test_equal. For such an API, PNPL records

the tuple of the relevant packet field, as well as the value or the assertion result. For example, the trace line

read packet: {12B, 4B}@p = ipsrc
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generated from the API execution read packet(pgi, "ip src") in Table 1 indicates that the tuple of the

source IP address field is {12B, 4B}@p, where ‘@p’ means that it is a packet field rather than a data piece in

metadata (which ends with ‘@m’), and the field value is ipsrc.

The second category is the metadata manipulation and assertion APIs, such as read_metadata and write_metadata.

Similar to the first category, the runtime system traces the metadata tuple and execution result, and for

read_metadata, it also logs source of the data that is written to metadata. For example, the line

write metadata: {0B, 6B}@m← {0B, 6B}@p

generated from the API call write metadata(pgi, "DstMAC", "mac dst") in Table 1 indicates that the

packet’s destination MAC address at {0B, 6B}@p, is copied to {0B, 6B}@m in metadata. Note that declare_metadata

sequentially allocates space in metadata, and {0B, 6B}@m is the first available data piece allocated.

The last category contains only one API, search_header. Recall that when the API is called, it searches the

PGI and skips one or more headers. For each skipped header, PNPL’s runtime system calls an internal function

named next_table, which suggests that the packet should be directed to the flow table in the pipeline that

corresponds to the skipped header. Moreover, if the current header has a “header length” field or a “next-layer

protocol” field, PNPL inserts a read_packet trace to log the tuple and value of the corresponding field before

next_table. For example, for the API execution search header(pgi, "IPv4", {}) on the PGI in Figure

5(c), a read_packet line is inserted to read the ethertype field before the next_table line as

read packet: {12B, 2B}@p = 0x0800

next table: p-offset +14B, goto IPv4

in trace1, while for the PGI in Figure 5(d), the generated trace2 becomes

read packet: {12B, 2B}@p = 0x8100

next table: p-offset +14B, goto VLAN

read packet: {2B, 2B}@p = 0x0800

next table: p-offset +4B, goto IPv4

since two headers, Ethernet and VLAN, are skipped by search header in this case.

5.3. Extended Trace Tree (xTT)

PNPL uses the traces from the f function executions to incrementally construct a data structure named

extended trace tree (xTT), and generates forwarding pipelines from it on POF switches. Here, we first give a

formal definition of xTT.

Definition 1 (xTT). An extended trace tree (xTT) is a rooted tree where each node t has an attribute typet,

whose value is one of L (leaf), V (value), T (testify), N (next table), WM (write metadata), or E (empty),

such that:
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1. If typet = L, then t has an opt attribute, which ranges over possible operations that can be done on the

packet, such as forwarding/dropping the packet, adding/removing a header or a field of the packet, or

modifying a packet field. This node represents the behavior of the f function that returns opt without

further processing the packet.

2. If typet = V, then t has a tuplet attribute and a subtreet attribute, where tuplet can be either a packet

or a metadata tuple, and subtreet is an associative array such that subtreet[val] is a trace tree for value

val ∈ keys(subtreet). This node represents the behavior of the f function that, if a given PGI i has a

value val for tuplet, i.e., i.[tuplet] == val, then it continues with subtreet[val].

3. If typet = T, then t has a tuplet attribute and a valuet attribute, where tuplet can be either a packet or a

metadata tuple, and two subtree attributes subtree+ and subtree−. This node reflects the behavior that

tests the assertion i.[tuplet] == valuet of a given PGI i, then branches to subtree+ if true, and subtree−

otherwise.

4. If typet = N, then t has an offsett attribute, a headert attribute, a tuple listt attribute, and a subtree

attribute subtreet. This node represents the behavior that moves the p-offset cursor with offsett, for-

wards the packet to the next-stage flow table corresponding to headert, and continues with subtreet. In

case that the table does not exist, it is created on demand, with all the matching fields of headert, as

well as the metadata tuples in tuple listt, as the table’s matching fields.

5. If typet = WM, then t has a dstt attribute for a metadata tuple, a srct attribute, which can be either

a packet tuple, or a data value, and a subtree attribute subtreet. This node reflects the behavior that

writes the value at tuple srct in the packet to a data piece at dstt in the metadata, or directly write value

srct to dstt, and continues with subtreet.

6. If typet = E, then t has no attribute. This node represents an unknown behavior.

Note that in the above definition, the notion of L, T, V, and E nodes is inherited from Maple, but we have

extended the T and V nodes to cope with the self-defined protocols and metadata accesses. We introduce the

WM node for tracing metadata write operations, and the N node for producing POF’s multi-table forwarding

pipeline, with each table matching a header specified in the header specification. Our extension greatly enhanced

the trace tree model in Maple, as the latter works on the protocol-dependent OpenFlow v1.0 data plane that

have only one single flow table.

An xTT is constructed from traces in an incremental way. For building an xTT, we can directly apply

Maple’s approach, i.e., the AugmentTT algorithm in [1], as a new branch is only introduced at the T or V

node. A network policy starts with an empty trace tree containing only an E node. After collecting a new

trace, PNPL’s runtime system finds the appropriate T or V node on the xTT, and augments it with the new

branch from the trace.

In Figure 6, we present an xTT example. The xTT is formed by applying five PacketIn packets to the

example f function in Section 4.2. Among the packets, three are parsed into the PGIs as in Figure 5(b)-(d),

and the other two have same header structures as in Figure 5(c) and (d), but have non-80 TCP destination

ports. In the figure, we label each node on the xTT with a unique ID, such as L1, N1, ..., and group the nodes
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V1: {12B, 2B}@p

0x0806

L1: Drop

0x0800

N1: +14B, IPv4 N3: +14B, VLAN

0x8100

V6: {2B, 2B}@p

0x0800

N4: +4B, IPv4

V2: {12B, 4B}@p

V7: {12B, 4B}@p

ipsrc

V3: {0B, 1B}@p

V4: {9B, 1B}@p

0x06

V8: {0B, 1B}@p

V9: {9B, 1B}@p

0x06

T1: {2B, 2B}@p = 80

true

L2: Path to macdst

N2: +20B, TCP+{0B, 6B}@m

Ethernet

VLAN

IPv4

IPv4

TCP

TCP

0x45

0x46

ipsrc

L3: Drop

false

true

L5: Drop

false

macdst

V5: {0B, 6B}@m

macdst

V10: {0B, 6B}@m

N5: +24B, TCP+{0B, 6B}@m

WM1: {0B, 6B}@m  {0B, 6B}@p

T2: {2B, 2B}@p = 80

L4: Path to macdst

Figure 6: xTT formed by applying a number of PacketIn packets to the example f function in Section 4.2.
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Algorithm 2: SearchxTT(t, pkt)

Input : xTT root node t and PacketIn packet pkt

Output : opt attribute of the L node returned from or null

1 i=ParsePGI(G, pkt);

2 while true do

3 if typet = E then

4 return null;

5 else if typet = L then

6 return opt;

7 else if typet = V ∧ i.tuplet ∈ keys(subtreet) then

8 t← subtreet[i.tuplet];

9 else if typet = V ∧ i.tuplet /∈ keys(subtreet) then

10 return null;

11 else if typet = T ∧ i.tuplet = valuet then

12 t← subtree+;

13 else if typet = T ∧ i.tuplet ̸= valuet then

14 t← subtree−;

15 else if typet = N ∨ typet = WM then

16 t← subtreet;
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that handle a same header in a dashed box, which we refer to as a partial tree (PT ). For example, in Figure 6

we have one PT for Ethernet and VLAN, and two PTs for IPv4 and TCP, respectively.

From the figure we can see that, an xTT contains the nodes corresponding to the API calls in the f function,

such as V2 and V5 for reading source IP address and metadata. The xTT also contains the nodes that match

the “header length” and “next-layer protocol” fields for packet parsing, such as V1 for reading the ethernet

field in the Ethernet PT, and V3 and V4 for reading ver ihl and proto in the IPv4 PTs, as accesses to these

fields have been recorded in the trace (see Table 1).

When a PacketIn packet is reported to the control plane, PNPL searches it in the constructed xTT, using

the SearchxTT algorithm as presented in Algorithm 2, which simply traverses the tree from the root node

with a deep-first manner. If the xTT has already traced all the steps of applying user’s network policy upon

the packet, searching the xTT returns from an L node that contains the policy decision on the packet in its opt

attribute; otherwise, the algorithm returns null, and invokes the f function to handle the untraced PacketIn

packet. For example, when searching the xTT in Figure 6 with packets corresponding to the PGIs as in Figure

5(b)-(d), the xTT reads the value at {12B, 2B}@p, which is ethertype, on node V1, and reaches to L1, L2, or

L4 eventually; however, when a packet with a new ethertype value is encountered, searching the xTT returns

null, and PNPL invokes the f function, which augments the xTT for including the policy decision on the

packets with the new ethertype.

Overall, we conclude that an xTT represents all the packet parsing steps, execution flows, and corresponding

policy decisions that have been made by the f function. Formally, for the xTT constructed, we have:

Theorem 1 (xTT correctness). Let t be the result of augmenting an empty tree with the traces formed by ap-

plying the f function to PacketIn packets pkt1, · · ·, pktn, then for ∀pkt ∈{pkt1, · · ·, pktn}, SearchxTT(t, pkt)

should return from an L node tl, such that tl.opt =f (pkt).

Proof. We prove the theorem by contradiction. Assume that there exists a PacketIn packet pkti ∈{pkt1, · · ·,

pktn}, and SearchxTT(t, pkti) either returns null or returns from an L node tl such that tl.optt ̸=f (pkti).

For the former case, if we invoke the f function on pkti, and augment t from the generated trace, we can obtain

a new xTT t′, such that SearchxTT(t′, pkti) returns from an L node t′l that traces the policy decision on

pkti, i.e., t
′
l.opt′ =f (pkti). However, since t is the result of augmenting an empty tree with the traces formed

by applying the f function to {pkt1, · · ·, pktn}, which includes pkti, then we have t = t′, which contradicts our

initial assumption that SearchxTT(t, pkt) = null.

For the latter case that SearchxTT(t, pkti) reaches an L node tl with tl.opt ̸=f (pkti),. Suppose that tl

is augmented by packet pktj , i.e., tl.opt =f (pktj). Since SearchxTT takes different branches only at the T

and V nodes based on the tuple values examined at these nodes, we can see that pkti and pktj should have

the same tuple values accessed and testified by the f function, thus reach to a same policy decision. In other

words, f (pkti) =f (pktj), which contradicts our initial assumption that tl.opt ̸=f (pkti).
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Algorithm 3: BuildFP(t)

Input : xTT t, PG G

Output : FP

1 Algorithm BuildFP(t)

2 h← G’s source node header;

3 FTtables[h] =TABLE MOD(h.match fields);

4 FTtables[h].p← 0; /* priority */

5 Build(t, h, any, null);

6 return;

7 Procedure EmitRule(h, m, op)

8 FLOW MOD(FTtables[h], FTtables[h].p, m, op);

9 FTtables[h].p← FTtables[h].p+ 1;

10 Procedure Build(t, h, m, op)

11 if typet = L then

12 EmitRule(h, m, op ⋄ opt);

13 else if typet = WM then

14 opt = op ⋄ SET FIELD(dstt, srct);

15 Build(subtreet, h, m, opt);

16 else if typet = V then

17 for val ∈ keys(subtreet) do

18 mt = m ∧ (data@tuplet == val);

19 Build(subtreet[val], h, mt, op) ;

20 else if typet = T then

21 Build(subtree−, h, m, op);

22 mt = m ∧ (data@tuplet == valuet);

23 EmitRule(h, mt, OUTPUT(Controller));

24 Build(subtree+, h, mt, op);

25 else if typet = N then

26 if FTtables[headert] doesn’t exist then

27 FTtables[headert] =TABLE MOD(tuple listt ∪ headert.match fields);

28 FTtables[headert].p← 0;

29 opt = op ⋄ MOVE PACKET OFFSET(offsett) ⋄ GOTO TABLE(FTtables[headert]);

30 EmitRule(h, m, opt);

31 Build(subtreet, headert, any, null);
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5.4. Forwarding Pipeline Generating

In each POF switch along the forwarding path, PNPL produces and maintains a forwarding pipeline (FP)

generated from the xTT. In general, an FP consists of multiple flow tables (FTs), each can be viewed as a

collection of (priority, match, operation) rules, where priority is a numerical priority, match is a combination

of one or more {tuple, value} pairs, and operation is a concatenation of one or more instructions executed by

the POF switch on the matched packets.

Unlike P4, which determines a fixed pipeline structure during the configuration phase, PNPL dynamically

creates FTs and appends them to the FP at run time. As previously introduced, for enabling a dynamic

pipeline, the POF introduces the TABLE_MOD command for the control plane to create a logical FT on a specific

POF switch, and provides the GOTO_TABLE instruction to direct a packet to a specific FT for the next-stage

processing.

We present the BuildFP algorithm for generating the FP from the xTT in Algorithm 3. BuildFP traverses

the xTT from the root and, during the traversal, the algorithm outputs two types of controller-to-switch

commands: The first is the TABLE_MOD command that instructs the switch to create a new FT, using the

matching fields of the specified header and the supplied metadata tuples as the table’s matching fields. The

second is the FLOW_MOD command for deploying a {priority, match, operation} rule to a given FT.

The algorithm maintains an associative array FTtables to map a protocol header to an FT in the pipeline.

The main part of the algorithm is a recursive Build procedure. Build takes four parameters, namely t, h,

m, and op, in which t is the xTT node that the algorithm is currently visiting, h is the header such that

FTtables[h] is the FT that the algorithm currently writes rules to, m and op are the match conditions and the

operations on the packet respectively.

Initially, the algorithm creates the first FT for the header corresponding to the source node of the PG (line

2-3), and Build starts to traverse the xTT from the root node, with m = any and op = null, indicating to

match any packets and have no operations on the matched packets (line 5).

Build processes a node t according to its type. For an L node, Build concatenates the passed op with the

node’s opt attribute, and emits a rule with the passed match m and the concatenated operation op ⋄ opt (line

12). Note that by letting op = op1 ⋄ op2, a POF switch executes the instructions in op1 and op2 sequentially.

For a WM node, Build concatenates the passed op with a SET_FIELD instruction, which writes data at srct

to dstt in metadata, and proceeds with subtreet (line 14-15).

For a node of typeV,Build combines the passedm with the node’s match condition, i.e. m∧(data@tuplet ==

val), and proceeds with subtreet[val] (line 18-19). Note that by m = m1 ∧m2, we mean the intersection of the

two match conditions. For a T node, the algorithm emits a barrier rule to separate the rules generated from

the positive branch and the negative one as in Maple (line 23).

Finally, for an N node, which is responsible for constructing the FP, one naive way is to create a new FT

on each N node. However, such an approach will create many FTs for the same header, leading to a flow table

explosion. In our approach, a TABLE_MOD command is issued to create FTtables[headert] for the next header

headert only when such a table does not exist (line 26-28), thus ensures one FT for each header in the FP. For the
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Figure 7: FP generated from the xTT in Figure 6 by BuildFP.

current table FTtables[h], Build concatenates op with the MOVE_PACKET_OFFSET and GOTO_TABLE instructions

to move the p − offset cursor, and direct packets to FTtables[headert] (line 29-30). Build proceeds with

subtreet on the next table FTtables[headert], and initializes with m = any and op = null (line 31). Note that

inherited from Maple, in each FT, the rule priority is incremented by one each time a new rule is installed, as

by doing so, each FT rule has a priority identical to the order in which the rule is added to the FT, so that a

newly installed rule can overturn an old one if there is a conflict [1].

Figure 7 presents the FP generated by applying BuildFP on the xTT in Figure 6. Note that when created,

each FT contains a default rule of the lowest priority to report any packet to the control plane. From the figure

we can see that BuildFP constructs an FP containing multiple FTs, with each corresponding to a header, and

directing packets to appropriate next-stage FTs according to their header sequences.

From the algorithm, we can see that a rule emitted by a node on an xTT only accumulates the match

conditions and concatenates the instructions passed from the ancestor nodes in the same PT. In other words,

modifying a PT only influences its associated FT without changing other FTs. Another observation is that the

FP generated by BuildFP parses the packets incrementally, with each FT matching only the useful fields of

its corresponding header on demand, thus reducing the parsing overhead comparing with the comprehensive

parsing performed by the frontend parser.

Finally, for the FP generated, we have:

Theorem 2 (FP correctness). The generated FP encodes the same packet parsing and network policy func-

tionality as in the xTT.

Proof. For any packet, say pkt, suppose it is handled by a sequence of rules R in the FP. Now if we search

the xTT with pkt using the SearchxTT algorithm, the packet will traverse a path P on the xTT and return

from an L node tl. By comparing the BuildFP algorithm with the SearchxTT algorithm, we can see that

they have the same deep-first node traversal structure, therefore the rules in sequence R for processing pkt

is sequentially generated exactly by the nodes on path P . Since the BuildFP algorithm emits rules with
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value2

(c) PT3

Figure 8: Redundant PTs.

forwarding operations on pkt only on L node, and the other nodes either accumulate match conditions and

operations, pass them to the downstream nodes, or emit rules for going to another table within the FP, and

from Theorem 1, we know that f (pkt) = tl.opt, therefore the rule sequence R correctly handles pkt as the f

function.

5.5. Optimization

Rule optimization is critical for SDN, as the resources for storing and executing rules in a commodity SDN

switch are limited. In this subsection, we seek to optimize the rules produced by Algorithm 3.

Since PNPL traces packet parsing steps in xTT, it is possible that a same policy decision may be traced

by multiple branches on the xTT, with only the difference on how the packets should be parsed. Moreover,

the branches tracing a same policy decision may have identical structures in the partial trees (PTs), thus

produce same rules to the corresponding FTs, resulting in rule redundancy. Formally, suppose an f function

makes policy decisions based on packet fields f1, f2, · · ·, fn that belongs to headers h1, h2, · · ·, hk. If two

PacketIn packets pkt1 and pkt2 have identical values on f1, f2, · · ·, fn, then the f function should have a same

policy decision on them. Now suppose pkt1 has at least one header, say ha, that pkt2 doesn’t have, that is,

ha /∈ {h1, h2, · · · , hk}, then the trace generated from the f function on pkt1 will contain the lines for parsing

and skipping ha, while the trace generated on pkt2 will not have such lines. As a consequence, the two traces

augment the xTT with two branches that separate at the “next-layer protocol” field of the header preceding to

ha, but they may have identical structures in the PTs corresponding to the headers subsequent to ha in their

branches. For example, in Figure 6, the two branches ending at L2 and L4 encode a same policy decision (that

is, planning a path for a TCP flow to port 80 from a legitimate source), they have identical TCP PTs, but

separate at the V1 node, as one path is augmented by a PacketIn packet that contains a VLAN header, while

the other doesn’t. From Figure 7, we can see that Algorithm 3 produces rules that have identical contents in

the TCP table (i.e., rule 1 and 4, rule 2 and 5, rule 3 and 6) from the two branches, and obviously, half of the

rules are redundant.

We propose the following methodology for eliminating such redundancy. Each time the xTT is augmented,

we compare each pair of the PTs, say PT1 and PT2, that correspond to a same header, and decide whether

they produce redundant rules. More specifically, if all the branches to the L and N nodes within PT2 can be

found in PT1, we say that PT2 is redundant with PT1. When generating a FP, if a rule-emitting node t belongs
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Figure 9: Performance comparison of PNPL prototype, Floodlight, and POX.

to a redundant PT, it is skipped without emitting any rule.

We use an example to show the effectiveness of our proposed methodology. Consider three PTs on a same

xTT as in Figure 8. After executing Algorithm 3, we have a set of rules generated from the three PTs as

follows:

5; (tuple1 : value1) & (tuple2 : value3); a

4; (tuple1 : value1) & (tuple2 : value4); b

3; (tuple1 : value2); c

2; (tuple1 : value1) & (tuple2 : value4); b

1; (tuple1 : value2); c

However, by examining the PTs, we can see that PT2 and PT3 are redundant with PT1, thus they can

be skipped without emitting any rules. After the optimization, we have only three rules emitted from PT1 as

follows:

3; (tuple1 : value1) & (tuple2 : value3); a

2; (tuple1 : value1) & (tuple2 : value4); b

1; (tuple1 : value2); c

As for the xTT in Figure 6, after identifying the redundant PT for TCP, we shall have only three rules

written to the TCP table.

6. Evaluation

6.1. Prototype and Performance

We have implemented a PNPL prototype with 15,000 C/C++ LOC [19], and run on a server with Intel Xeon

E5 2.2 GHz CPU and 64G RAM. We evaluate performance of the PNPL prototype in handling PacketIn pack-

ets. In the first experiment, we employ a variant of Cbench [29], which is a switch emulator for benchmarking

SDN controllers, to emulate PacketIn packets from 8 switches. We use l2-learning as the policy program.

We measure the throughput and latency of handling PacketIn packets by the prototype with Cbench, and
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compare with the mainstream OpenFlow controllers of Floodlight [30] and POX [31]. Figure 9 presents the

results. From the figure, we can see that our prototype has a decent performance, which is slightly better than

POX and FloodLight. There are two reasons for PNPL’s better performance: First, PNPL maintains an xTT

that traces all the previous policy decisions in memory, so when a PacketIn packet is reported from a switch,

PNPL handles it with the xTT without invoking the user program; on POX and FloodLight, however, the

policy programs are explicitly invoked to handle the PacketIn packets, and they are executed slower compared

to directly searching the xTT in memory. Second, our PNPL prototype is implemented with C/C++, which is

generally faster than Python and Java, with which POX and FloodLight are implemented respectively.

Since PNPL maintains xTT in memory to trace all the previous policy decisions, and an xTT is augmented

each time a new decision is made, in the next experiment, we investigate how much memory PNPL consumes

for maintaining the xTT. We use l2-learning as the policy program, and employ Cbench to emulate up to

100 switches, with each switch reporting up to 10 PacketIn packets. On receiving each PacketIn packet,

PNPL invokes the policy program, reaches a decision, and augments the xTT with a new branch. In Figure

10, we present the memory consumptions of the PNPL process observed using the pmap command, under the

conditions that various number of policy decisions have been traced in xTT. From the figure we can see that,

even tracing 1, 000 policy decisions (i.e., the xTT has 1, 000 branches ending at different L nodes), the PNPL

process doesn’t impose a heavy overhead by consuming less than 2MB memory.
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In addition to memory consumption, another concern is how fast an xTT can be searched by Algorithm

2 and traversed by Algorithm 3 when handling a large number of PacketIn packets. To investigate the xTT

searching performance, we first augment an xTT to trace 1, 000 policy decisions as in the previous experiment,

then we emulate 10 ∼ 100 POF switches, with each switch reporting 1/5/10 PacketIn packets per second.

Note that the policy decision for each PacketIn packet has already been traced by the xTT, therefore PNPL

doesn’t invoke the l2-learning policy program. We embedded codes in the PNPL prototype to record how

long it takes to handle a PacketIn packet under various workloads. Figure 11 presents the results. From the

figure we can see that even under the workload of 1, 000 PacketIn/second, the prototype handles a PacketIn

packet in dozens of microseconds; however, the processing time obviously increases with the workload.

In summary, our observations in this subsection suggest that the PNPL prototype has a decent performance

compared to the mainstream OpenFlow controllers. Searching xTT is efficient, and maintaining it doesn’t

imposed a large overhead regarding the memory consumption. PNPL can be further improved in two ways

in future: In case that an xTT becomes very large, we can introduce tree invalidation API to remove part

of an xTT as in Maple. For example, the programmer can remove all the branches on the xTT that contain

instructions on a certain switch that no longer exists. For handling extremely large PacketIn overhead, parallel

computing techniques on many-core platforms can be exploited.

6.2. Use Cases and Pipeline Quality

In this subsection, we implement a number of use case network policies with PNPL, and examine the FPs

that are installed by PNPL to POF switches. We seek to answer three questions: 1) Will PNPL produce

many additional rules for packet parsing? 2) Will PNPL efficiently support novel network mechanisms with

self-defined protocols? 3) Will PNPL fully exploit the multi-table pipeline and metadata resources for avoiding

flow explosion? Codes of the PNPL use case policy programs can be found in our technical report [27].

6.2.1. Firewall policies

In our first experiment, we select eight representative ebtables [32] and iptables [33] firewall policies, which

cover all the protocol layers from L2 to L5, and implement them with PNPL. For each policy, we examine

how the PNPL-produced FPs are organized, and how many tables and flow entries are installed. We also

implement the firewall polices on an OpenFlow network, and compare the PNPL-produced FPs with the flow

tables in the OpenFlow switch. We use the Huawei NE40E router [34] to serve as the POF data plane. The

OpenFlow experiment is carried out in Mininet [35], and we use POX to compose the OpenFlow firewall rules

for comparison.

For each firewall policy implemented, we employ the Ostinato traffic generator [36] to send 100 packets to

the switch. The packets invoke the policy program to make 100 different policy decisions, and moreover, the

packets have variable-length headers and variable header sequences, thus demand the POF switch to parse them

differently. More specifically, we randomly select 30% packets to have one VLAN header, and 10% packets to

have two VLAN headers; we also let 20% of the IPv4 headers to have a 4-byte option, 15% headers to have an

8-byte option, and 5% to have a 12-byte option. Note that with such a setting, even for the packets sharing a
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Table 2: Comparison of PNPL generated FPs and OpenFlow rules for enforcing firewall policies.

Firewall policy Policy FP generated by PNPL OpenFlow

decisions FT1 FT2 FT3 FT4 FT5 FT6 rules

MAC NAT 100 100 - - - - - 100

Blocking specific IP addresses 100 2 2 1 100 - - 100

Forwarding IP traffics from specific MAC addresses 100 2 2 1 100 - - 100

Associating IP addresses to MAC addresses 100 2 2 1 100 - - 100

Allowing Pings from outside 100 2 2 1 4 125 - 125

Allowing outbound DNS queries 100 2 2 1 4 1 125 125

Disallowing outgoing mails 100 2 2 1 4 100 - 100

Allowing SSH from specific IP addresses 100 2 2 1 4 125 - 125

same policy decision, they may have 3× 4 = 12 different appearances with 0, 1, or 2 VLAN headers and a 0-,

4-, 8-, or 12-byte option field in the IPv4 header, and are required to be handled differently.

Table 2 presents a summary of the FPs generated by PNPL for enforcing the firewall policies, and we also

list the OpenFlow rules for implementing the same policies for comparison. In the following, we describe the

PNPL-produced FPs for each of the firewall policies in details:

1. NAT MAC: This policy re-writes the source MAC address, and forwards packets based on the destination

MAC address. The pipeline has only one FT: FT1 contains 100 rules for modifying the Ethernet header’s

mac src field, and forwarding 100 packets according to their destination MAC addresses.

2. Blocking specific IP addresses: In this policy, packets with specific source IP addresses shall be

dropped. The pipeline contains 4 stages of FTs: FT1 matches the Ethernet header’s ethertype field, and

directs packets to either FT2 or FT4 under the cases that the next header is VLAN or IPv4 respectively;

similarly, FT2 matches the first VLAN header’s ethertype field, and directs packets to FT3 or FT4 under

the cases that the next header is VLAN or IPv4 respectively; FT3 matches the inner VLAN header’s

ethertype field, and directs packets to FT4; finally, FT4 matches the IPv4 header’s ip src field, and

makes the policy decisions on blocking or not for 100 packets with 100 different source IP addresses.

3. Forwarding IP traffics from specific MAC addresses: In this policy, only the packets from specific

source MAC addresses will be forwarded. The pipeline contains 4 stages of FTs: FT1 writes the mac src

field to metadata, matches the Ethernet’s ethertype field, and directs packets to either FT2 or FT4

under the cases that the next header is VLAN or IPv4 respectively; FT2 and FT3 handle the outer and

inner VLAN headers as in the previous example; finally, FT4 matches the metadata data piece that keeps

the source MAC address as well as the IPv4 header’s ip dst field, and makes the policy decisions on

forwarding or not for 100 packets with 100 different source MAC address and destination IP address

combinations.

4. Associating IP addresses to MAC addresses: this policy checks whether a packet’s source IP address

is associated with a right source MAC address. The pipeline contains 4 stages of FTs: FT1, FT2, and

FT3 are same as in the previous example for writing the source MAC address to metadata and handling
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the outer and inner VLAN headers; FT4 matches the metadata data piece that keeps the source MAC

address as well as the IPv4 header’s ip src field, and makes the policy decisions on forwarding or not for

100 packets with 100 different source MAC and source IP address combinations.

5. Allowing Pings from outside: this policy allows Ping from outside IP addresses. The pipeline con-

tains 5 stages of FTs: FT1, FT2, and FT3 are same as in the “blocking specific IP addresses” example for

handling the Ethernet, outer and inner VLAN headers; FT4 writes the IPv4 header’s ip src field to meta-

data, matches the proto field, move the p-offset cursor to the next header using the MOVE_PACKET_OFFSET

instruction with 4 different offset values, under the cases that the IPv4 header contains a 0-, 4-, 8- or

12-byte option field, and directs packets to FT5; finally, FT5 matches the metadata data piece that keeps

the source IP address as well as the ICMP header’s icmptype field, and makes the policy decisions on

allowing Ping or not for 100 Ping probe packets from 100 different source IP addresses. Note that for

allowing Ping from a source, two flow entries need to be installed for allowing the Ping probe and response

in both directions2.

6. Allowing outbound DNS queries: This policy allows DNS queries to outside IP addresses. The

pipeline contains 6 stages of FTs: FT1, FT2, FT3, and FT4 are same as in the previous example, except

that FT4 writes the IPv4 header’s ip dst field to metadata; FT5 matches the UDP header’s udp dport

field and directs packets to FT6; finally, FT6 matches the metadata data piece that keeps the destination

IP address as well as the DNS header’s dns flag field, and makes the policy decisions on allowing the

DNS query or not for 100 DNS query packets to 100 different destination IP addresses. Note that for

allowing a DNS service, two flow entries need to be installed for allowing the DNS query and reply in

both directions3.

7. Disallowing outgoing mails: This policy drops SMTP packets sent to outside IP addresses. The

pipeline contains 5 stages of FTs: FT1, FT2, FT3, and FT4 are same as in the previous example for

handling the Ethernet, outer and inner VLAN, and IPv4 headers, and writing the destination IP address

to metadata; FT5 matches the metadata data piece that keeps the destination IP address as well as the

TCP header’s tcp dport field, and makes the policy decisions on dropping the packet or not for 100

SMTP packets to 100 different destination IP addresses.

8. Allowing SSH from specific IP addresses: This policy allows SSH connections from specific source

IP addresses. The pipeline contains 5 stages of FTs: FT1, FT2, FT3, and FT4 are same as in the previous

example for handling the Ethernet, outer and inner VLAN, and IPv4 headers, and writing the destination

IP address to metadata; FT5 matches the metadata data piece that keeps the destination IP address as

well as the TCP header’s tcp dport field, and makes the policy decisions on allowing the SSH TCP

connection or not for 100 SSH TCP SYN segments to 100 different destination IP addresses. Note that

2In our experiment, 75 rules are installed for dropping the Ping probes, and 25 pairs of rules are installed for allowing the Ping

probes and responses in FT5.
3In our experiment, 75 rules are installed for dropping the DNS queries, and 25 pairs of rules are installed for allowing the DNS

queries and replies in FT6.

27



Table 3: Summaries of PNPL-produced FPs for source routing and OpenFlow rules produced by l2-learning policy.

FP produced by PNPL for source routing on POF OpenFlow rules

FT1 (Ethernet) FT2 (SRP) by l2-learning

Core 1 4 84

Aggregation 4 2 48

Edge 32 2 58

for allowing an SSH connection, two flow entries need to be installed for allowing the SSH TCP segments

in both directions4.

From Table 2 and the above description, we can see that PNPL automatically produces multi-table pipelines.

We note that within an FP, only the last FT makes policy decisions, and the other preceding FTs contain the

rules for parsing the packet headers of different protocol layers. For example, the “allowing outbound DNS

queries” policy program produces an FP consisting of up to six FTs, as the switches need to match the dns flag

field in the L5 DNS protocol to make the policy decision. Compared to the OpenFlow rules, PNPL produces a

little more forwarding rules on POF switches, as the additional rules are used for packet parsing. However, as

we can see in the table, the numbers of the additional packet parsing rules are limited, as PNPL only parses

the necessary packet fields on demand. For example, for the “allowing outbound DNS queries” policy, only 10

rules are installed in FT1-FT4 for parsing the necessary fields in the Ethernet, outer and inner VLAN, IPv4

and UDP headers. In other words, as a protocol agnostic programming framework, PNPL doesn’t produce

many packet parsing rules and impose a significant additional overhead regarding the rule space on the POF

data plane.

6.2.2. Source routing

One benefit of programming over self-defined protocols is to enable novel network mechanisms. For example,

it is well-known that the conventional L2 forwarding and L3 routing mechanisms do not scale for a datacenter

network, while source routing is considered as a promising solution [37][38]. For enabling source routing,

people either modify the semantics of the exiting protocol’s header field (e.g., Portland [37]) or introduce brand

new architecture and protocol stack (e.g., Sourcey [38]). Inspired by Portland, in its position paper [12], P4

demonstrates an example named mTag, in which a 5-field mTag header is added after Ethernet for encoding

the location information for enabling a Portland-like source routing service.

In this experiment, we use PNPL to introduce a self-defined protocol named SRP, and implement a Portland-

like souring routing mechanism on a datacenter network. We organize the datacenter network as a FatTree [39]

with k = 4 pods, and emulate it using an extended Mininet with the POF software switch module.

SRP serves as a 2.5-layer protocol after Ethernet, and it contains four fields. The first three fields are

identical to the three parts of Portland’s pseudo MAC address that encodes the destination host’s location

4In our experiment, 75 rules are installed for blocking the connections, and 25 pairs of rules are installed for allowing the

connections in FT5.
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information. More specifically, the header contains an 8-bit srp pod field that specifies the pod in which the

destination host resides, an 8-bit srp pos field that indicates the position of the edge switch that the destination

host connects to, and a 16-bit srp port field that shows the switch port connecting to the destination host.

The last ethertype field is for indicating the next layer protocol. The SRP header specification is displayed as

the following.

header SRP

fields

_srp_pod : 8;

_srp_pos : 8;

_srp_port : 16;

_ethertype : 16;

select (ethertype);

....

We compose the source routing mechanism as in Portland with PNPL, and examine the FPs that are installed

by PNPL to the edge, aggregate, and core switches in the FatTree datacenter network. PNPL produces FPs

containing two FTs on all the POF switches, however, different types of switches have different behaviors. In

edge switch, FT1 adds the SRP header to the upward packets according to their destination MAC addresses,

forwards them based on InPort, and directs the downward packets to FT2; FT2 matches the SRP header’s

srp port field to forward the downward packets to their destination hosts, and removes the SRP header before

forwarding them out. In aggregate switch, FT1 forwards the upward packets according to InPort, and directs

the downward packets to FT2, while FT2 matches the SRP header’s srp pos field to forward the packets to

the right edge switches. In core switch, FT1 forwards the packets to FT2, and FT2 matches the SRP header’s

srp pod field to forward the packets to the aggregate switches in their destination pods. Table 3 lists a summary

of the FPs produced by PNPL, from which we can see that, with the self-defined SRP protocol allowed by

PNPL and POF, source routing can be efficiently enabled on the datacenter network, and each switch contains

only limited number of rules.

We also simulate a FatTree datacenter network with OpenFlow switches in Mininet, and apply l2-learning

on POX as its policy program. We use the pingall command to trigger POX to install rules on OpenFlow

switches for allowing any pair of hosts to communicate. Since FatTree contains loops, we run the spanning-tree

component on POX with l2-learning. In the last column of Table 3, we show the OpenFlow flow entries

installed on different types of switches in the FatTree network. We can see that compared to l2-learning, the

source routing mechanism enabled by SRP can greatly reduce the number of the forwarding rules deployed to

the data plane, thanks to the programmability provided by POF and PNPL.
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Table 4: Comparison of PNPL generated FPs and OpenFlow rules for implementing VRF.

VRF by PNPL VRF with

Ethernet FT IPv4 FT OpenFlow

Rules installed 100 500 5,000

Entries evicted 0 0 3,976

6.2.3. Virtual routing and forwarding

We use the virtual routing and forwarding (VRF) example as in [28] to demonstrate the benefits of metadata

programming enabled by PNPL.

In the experiment we consider a layer-2 network with N mobile hosts, which are internally grouped into M

virtual LANs based on their MAC addresses (however, packets from the hosts do not carry VLAN tags). The

network connects to the Internet through a gateway VRF router. The router maintains M IPv4 routing table

instances, one for each VLAN, and each routing table has K entries. With a simple analysis, we can see that

if the VRF router is implemented with a single-table OpenFlow switch, a total number of (N ×K) rules are

required, as each flow entry matches the host’s source MAC address and the destination IP prefix, and there

are (N ×K) combinations. Since the number of the IP prefixes K in a routing table is large, if the number of

the hosts N is big, flow explosion occurs. But with a POF switch, the VRF router can be implemented as a FP

consisting of two FTs: the first Ethernet FT matches the source MAC address and writes the assigned VLAN

ID to metadata, which contains only N flow entries; the second IPv4 FT matches the VLAN ID in metadata

and the destination IP address to forward the packet, and since there are M different VLANs and K different

IP prefixes, the FT contains (M×K) rules. Overall, the pipeline requires (N+M×K) rules. Since the number

of the VLANs M are much smaller than the number of the hosts N , i.e., M ≪ N , so (N +M ×K) ≪ (N ×K),

in other words, the FP requires much fewer rules than the single-table for implementing VRF.

We compose VRF with PNPL, and compare the produced FP with an OpenFlow flow table that enforces

the same functionality. In our experiment we let N = 100, M = 10, and K = 50, and for both switches, the

maximum number of flow entries is limited to 1, 024. Table 4 lists the rules installed on both switches and the

rules that are evicted because of flow space limitations. We can see that the OpenFlow switch suffers a flow

explosion problem by evicting as many as 3, 976 rules, while the POF switch can accommodate all the rules as

much fewer rules are required. From the experiment we can see that PNPL enables users to fully exploit the

benefits from the multi-table pipeline and the inter-table metadata resource.

6.3. Comparing with P4

One big difference between a PNPL-programmed POF network and a P4 network is how packets are parsed.

In P4, each switch contains a frontend parser that is configured by the P4 language to provide a comprehensive

parsing for all the incoming packets. One the other hand, when a POF switch encounters a packet that it

doesn’t know how to handle, the packet is reported to PNPL with a PacketIn message. PNPL parses the

PacketIn packet, augments the xTT with a new branch, and installs rules that contain the tuples and values

as match keys for parsing the packet on all the POF switches along the forwarding path, and all the subsequent
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Figure 12: Comparison of packet parsing overheads of P4 and PNPL-programmed POF networks, under various flow size P and

forwarding path length N .

packets will be parsed without the control plane involvement. Moreover, instead of comprehensive parsing, the

PNPL-produced FPs parse packets in an on-demand way by only matching the fields that are of interest, thus

should be more efficient.

In this subsection, we seek to compare the packet parsing overheads of a PNPL-programmed POF network

and a P4 network. For implementing a P4 network, we use the bmv2 P4 software switch and the simple

router P4 code from the P4 project [40]. The code simply programs a P4 switch to recognize Ethernet and

IPv4 headers and perform the LPM IP forwarding. Our experiment network topology is a chain of N P4

switches, where each switch forwards IP packets to the next hop. We create the same topology using POF

switches, and compose a PNPL program to implement the same network protocol and forwarding policy as in

the P4 network.

Before presenting the experiment results, we first analyze the components of the packet processing time in

both networks. First for the P4 network, as each packet is comprehensively parsed by the frontend parser of

each P4 switch, the total time for packet parsing can be expressed as

T parse
P4 = tparseP4 ×N × P (1)

where tparseP4 is the time for a P4 switch’s frontend parser to parse a packet, P is number of the packets in a

flow (i.e., the flow size), and N is the number of the switches along the forwarding path (i.e., the path length).

Besides packet parsing, each P4 switch also matches every packet’s IP destination address in an LPM way and

forwards them, therefore the total node processing time for transmitting P packets along an N -hop path is

TP4 = T parse
P4 + tLPM

P4 ×N × P (2)

where tLPM
P4 is the time of the LPM matching for one packet in a P4 switch. Obviously, the ratio of the packet

parsing time in the entire node processing time can be expressed as

RP4 =
T parse
P4

TP4
=

tparseP4

tparseP4 + tLPM
P4

(3)

On the PNPL-programmed POF network, the first packet is sent to the control plane and handled by PNPL,

and we denote the control plane parsing time as tparsectl . For the subsequent packets, as PNPL has produced

31



and deployed FPs to the POF switches, they are only parsed by the POF switches in an on-demand way, and

in our case, a POF switch only matches the EtherType field and directs the packet to the next table for LPM

matching. We use tparsePOF to denote such parsing overhead per switch per packet. Combining the two overheads,

for the PNPL-programmed POF network, the total parsing time is

T parse
PNPL = tparsectl + tparsePOF ×N × P (4)

Similar to the analysis for the P4 network, each POF switch also matches every packet’s destination IP address

in an LPM way, thus the ratio of the packet parsing time in the entire node processing time can be expressed

as

RPNPL =
T parse
PNPL

T parse
PNPL + tLPM

POF ×N × P
(5)

where tLPM
POF is the time of the LPM matching for one packet in a POF switch.

We insert codes in the PNPL prototype as well as the P4 and POF software switches to measure tparsectl ,

tparseP4 , and tparsePOF respectively. For obtaining the packet parsing overhead ratios of RP4 and RPNPL, we measure

the end-to-end delay for transmitting P packets along the N -hop path, and approximate it as the overall node

processing time. We vary the path length N and the flow size P in each experiment, and present the results

in Figure 12. From the figures, we can see that the packet parsing overhead ratio of the P4 network is nearly

constant, but for the PNPL-programmed POF network, the ratio decreases as the path length and flow size

increases. The observation is easy to understand, as from Equation (3), each packet must be comprehensively

parsed by the frontend parser in each switch along the path on the P4 network, thus the ratio of the packet

parsing overhead is constant as the flow size and path length vary. However, on the PNPL-programmed POF

network, only the first packet of a flow is parsed by PNPL on the control plane, and each POF switch only parses

the subsequent packets in an on-demand way, incurring much lower overhead compared to P4’s comprehensive

parsing. From Equation (5) we can see that, as the path length and flow size increases, parsing the first packet

by PNPL can benefit more switches on the forwarding path by assisting them to parse more subsequent packets

in the flow, therefore the parsing overhead ratio decreases as the path length and flow size increase. Note that

here we compare the ratios rather than the absolute values of the packet parsing overheads. In fact in our

experiment, tP4 is orders of magnitude longer than tPOF , and the PNPL-programmed POF network achieves

a much lower end-to-end delay compared to the P4 network. Our observation shows that when compared to

P4, PNPL enables an on-demand parsing scheme that can significantly reduce the network’s parsing overhead

and improve its performance.

In summary, our evaluation in this section show that our PNPL prototype has decent performance; a wide

range of network applications can be implemented with PNPL, and the produced FPs are of high quality; finally,

comparing with P4, PNPL can significantly reduce the packet parsing overhead and improve the forwarding

performance.
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7. Conclusion

In this paper, we presented PNPL, a framework that simplifies SDN programming over POF networks.

PNPL supports a P4-like header specification language, and provides high-level protocol-agnostic abstractions

for composing network policies over POF networks. We developed novel methodologies for automatically

producing and maintaining forwarding pipelines that incrementally parse network packets with variable-length

headers and variable header sequences, and enforce users’ network policies. We prototyped and evaluated

PNPL with a wide range of protocol headers and network applications, and find that PNPL fully realizes POF

benefits, the forwarding pipelines generated by PNPL are correct and of high quality, and the on-demand

parsing enabled by PNPL significantly reduces the parsing overhead.
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