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Sketch-based method is promising for traffic monitoring in data center networks.
Existing data plane programming model (e.g., P4) assumes target switch as one
single pipeline, while state-of-the-art programmable switches actually contain
multiple independent pipelines. The status quo approach for deploying a sketch-
based measurement application on a multi-pipeline switch is to deploy a sketch
instance in each pipeline individually. However, under multi-path routing, such
a naive approach leads to poor accuracy. To overcome this problem, in this
paper, we present Confluence, a sketch-based network measurement system for
multi-pipeline switches. For monitoring network flows that have packets arrived
in bursts and spread over multiple pipelines, Confluence introduces novel data
structures to collect short-term traffic statistics in ingress pipelines, and converge
the measurement data to egress pipelines. Confluence is carefully designed
under the switch hardware constraints, and in particular, to resolve the circular
dependency in querying and updating a flow’s measurement data from sketch
buckets, we propose a novel algorithm and theoretically prove its effectiveness.
Both theoretical analysis and experiments driven by real-world traffic traces show
that Confluence delivers higher measurement accuracies than existing solutions,
especially in the critical task of detecting heavy hitters. Assessment on hardware

switch suggests that Confluence is practical for real-world deployment.
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1. INTRODUCTION

Per-flow network measurement, which aims to estimate
the size of each flow in the network, plays a critical
role in managing high-speed data center networks. To
overcome the limitations of the conventional sample-
based measurement method (e.g., NetFlow [1], sFlow
[2]), sketch-based method emerges and becomes a
promising direction in recent years. In such a
measurement system, a probabilistic data structure,
namely sketch, is placed within a switch for collecting
per-flow statistics. Sketch-based methods can fulfill a
wide range of traffic monitoring tasks including flow
size estimation [3], flow size distribution estimation
[4], heavy hitters detection [5], etc., and a number
of sketch-based measurement systems were proposed
and successfully deployed on programmable switches in
recent years [6, 7, 8, 9, 3, 10].
Existing sketch-based network monitoring applica-

tions are developed with domain-specific data plane
programming models like P4 [11]. In such a model, tar-
get switch is generally assumed as one single pipeline.
On the other hand, for sustaining higher packet rates,
state-of-the-art programmable switches already contain
multiple pipelines, where each pipeline has dedicated re-
sources and processes packets independently. For exam-

ple, Intel Tofino 2 contains 4 pipelines [12], and Broad-
com Tomahawk has up to 8 pipelines [13]. When a
sketch-based application programmed for a single log-
ical pipeline is deployed on a multi-pipeline switch,
the status quo approach is to deploy multiple identi-
cal sketch instances in all the pipelines in parallel, and
each instance independently counts the packets passing
its residing pipeline [14, 15].

Although the status quo approach provides a logical
equivalence of a single pipeline on a multi-pipeline
switch, however, our analysis shows that under the
multi-path routing (e.g., ECMP [16]), which is widely
applied in production networks, the parallel sketch
instances will have a higher hash collision rate, when
comparing with a logically equivalent sketch in a single
pipeline, under the condition that the two solutions
consume same overall memory. The root cause is that
when network flows’ packets are spread over K (K ≥ 2)
pipelines, each sketch instance must maintain a hash
space that is identical to the one maintained by the
single-pipeline sketch for accommodating all the flow
IDs, but it has only 1

K memory resource. Clearly,
comparing with a same-sized single-pipeline sketch, the
parallel sketch instances will have a lower measurement
accuracy due to the higher hash collision rate.

To solve the problem within the data plane, one
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feasible solution, with PipeCache [17, 18] as the only
example, is to decouple a packet’s egress pipeline from
the pipeline that counts this packet, and allow only
one pipeline to count all packets of a network flow
assigned to it. In PipeCache, packets store their
summaries in a number of caches maintained by ingress
pipelines, and the cached summaries are piggybacked
on subsequent packets to their corresponding egress
pipelines, where they are counted by dedicated sketch
instances. Although PipeCache reduces hash collisions,
however, the cache-based solution is susceptible to cache
overflow, due to the bursty nature of the network traffic
in data centers [19, 20], as when a burst size exceeds the
cache size, the cache overflows.
In this paper, we present Confluence, a sketch-based

network measurement system for multi-pipeline data
plane. In a Confluence system on a switch containing
K (K ≥ 2) pipelines, we divide the entire flow ID
hash space into K equal-sized sub-spaces. Each egress
pipeline hosts a sketch (namely the main sketch) that
covers a sub-space, and monitors the network flows
with their flow IDs falling in this sub-space. Since
each main sketch maintains only 1

K of the entire hash
space with 1

K memory resource, Confluence avoids the
high hash collision rate as in the status quo approach.
For overcoming the problem that a network flow is
routed to an egress pipeline different from the one that
monitors the flow, we place an auxiliary sketch (referred
to as the delta sketch) in the ingress pipeline. The
delta sketch accumulates short-term traffic statistics
of the flow received by the ingress pipeline, and
piggybacks the statistics on packets routed to the
corresponding egress pipeline that monitors the flow to
update the main sketch. Note that unlike PipeCache,
Confluence does not clone and recirculate any packet,
thus avoids the significant overhead incurred by packet
recirculation. In the design, implementation, and
evaluation of Confluence in this paper, we make the
following contributions.

� We present Confluence for monitoring network
flows on multi-pipeline data plane. By introducing
two data structures, namely pipeline table and delta
sketch, in each ingress pipeline, we design a novel
mechanism for a switch to accumulate short-term
flow statistics in ingress pipelines, and piggyback
the statistics to update the main sketches in egress
pipelines. We show that Confluence is accurate
under bursty traffic, and theoretically prove that
it has a lower error bound than the status quo
approach.

� We extend the basic design of Confluence to
cope with the packet processing constraints of
commodity hardware programmable switches. In
particular, we interleave two instances of the data
structures in ingress pipeline to make sure that
all the packets access the pipeline stages in a
fixed sequential order, and propose an algorithm
to ensure that when querying and updating the

delta sketch, a packet accesses at most one address
of a stage-local register in its pipeline pass, as
constrained by the hardware switch.

� We evaluate Confluence and compare it with
PipeCache and other benchmarks. We find that
Confluence delivers higher measurement accuracy
under bursty traffic than its counterparts, and es-
tablishes its advantages under many circumstances,
including the ones when there are limited in-
switch memories, when the switch contains many
pipelines, and when the workloads imposed on dif-
ferent pipelines are imbalanced. By implement-
ing and assessing with a hardware programmable
switch, we show that Confluence is practical for
real-world deployment.

For the remainder part of this paper, Sec. 2
introduces background and motivation; We present and
analyze Confluence in Sec. 3; Experiment results are
discussed in Sec. 4; Sec. 5 surveys the related works
and we conclude this paper in Sec. 6.

2. BACKGROUND AND MOTIVATION

In this section, we first introduce the architectural
model of multi-pipeline switches, then we describe
the challenges in applying sketch-based measurement
applications on multi-pipeline switches. We analytically
show that the status quo approach leads to low
measurement accuracy, and the existing solution has
its limitation.

2.1. Multi-pipeline Switch

In programmable switches based on Protocol Indepen-
dent Switch Architecture (PISA) [21, 22, 23], packets
are processed in programmable pipelines. Typically, a
programmable pipeline contains an ingress pipeline and
an egress pipeline, which are separated by components
like packet buffer and traffic manager. A pipeline is
composed of multiple match+action unit (MAU) stages,
where each stage applies the specified actions on the
packets filtered out by the match conditions. Moreover,
each MAU stage has a stage-local memory, and stateful
elements such as counters and sketch bucket arrays are
realized as registers in the memory.
Similar to multi-core CPUs, state-of-the-art pro-

grammable switches currently employ multiple pipelines
for sustaining higher packet rates. For example, Intel
Tofino switch contains 4 pipelines [12] and Broadcom
Tomahawk switch has up to 8 pipelines [13]. As illus-
trated in Fig. 1, in a typical multi-pipeline switch, ports
are statically assigned to pipelines without overlaps,
pipelines are parallel without sharing any resources and
process packets independently, and multiple ingress and
egress pipelines are inter-connected with a crossbar.
Unfortunately, although a physical switch may contain
multiple pipelines, the domain-specific data plane pro-
gramming model like P4 [11] still abstracts the tar-
get switch as one single logical pipeline, regardless how
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FIGURE 1. Illustration of multi-pipeline switch
architectural model.

many physical pipelines the switch actually has. For
deploying an application written for a single logical
pipeline on a multi-pipeline target switch, the appli-
cation is indeed deployed to each pipeline individually
[14, 15].
To enable the sharing of packet processing states

(e.g., counters) across multiple pipelines, new switch
architectures such as MP5 [24] and OptimusPrime
[25] are proposed in recent years. However, the new
generation architectures have yet been supported by
commodity hardware switches, and how to ensure the
correctness and performance of the applications written
for a logical single pipeline on the multi-pipeline switch
is a critical issue [14, 15].

2.2. Challenge and Motivation

Sketch-based method is a promising direction for fast
and accurate per-flow measurement in data center
networks [26, 27, 28, 6, 29, 30, 31, 7, 8, 10, 3]. In
a sketch-based measurement system, a probabilistic
data structure, namely sketch, is usually placed within
a switch for aggregating per-flow statistics. More
specifically, when receiving a packet, a switch computes
hash values from the packet’s flow ID (e.g., the 5-
tuple), locates a bucket from each array, and updates
the bucket value.

2.2.1. Limitation of status quo approach
As above introduced, existing sketch-based network
measurement applications are written for a single logical
pipeline. In particular, when an application constructs
a sketch data structure for single logical pipeline, after
deploying on a multi-pipeline switch, multiple sketch
instances will be deployed in all the pipelines and count
packets in parallel [14, 15]. We refer to such a status
quo approach as ParallelSketch in this paper.
Although ParallelSketch provides logically equivalent

functionalities on a multi-pipeline switch, however, its
performance is poor due to the wide usage of multi-
path routing techniques. Taking Google’s B4 SDWAN
network [32, 33] as an example, in B4, each packet has
two IP headers, where the destination address of the
outer IP header is indeed a tunnel ID, which decides
the egress port (and consequently, the egress pipeline)
that the packet should be directed to in an ECMP
manner, while the packet’s 5-tuple flow ID is defined
by the inner IP and the transport layer header. In
B4, a flow’s packets may carry different tunnel IDs and
could be received by and routed to different ingress and
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(a) Flow size estimation
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(b) Heavy hitter detection

FIGURE 2. Flow size estimations made by (a) a single-
pipeline CM sketch and (b) ParallelSketch using 8 CM
instances.

egress pipelines. If we place parallel sketch instances
in egress pipelines, then for monitoring a network flow,
measurement data from all the instances in different
egress pipelines must be aggregated.
When a network flow has its packets spread over

multiple egress pipelines due to the multi-path routing,
each sketch instance in an egress pipeline may encounter
packets from all the flows, thus it needs to maintain
a hash space for accommodating all the flow IDs.
Comparing with a single-pipeline switch, given the
same overall memory usage, sketch instances in multiple
parallel pipelines would have higher collision rates and
be less accurate. For a particular instance, consider that
a count-min (CM) sketch [26], which has d rows and w
columns of buckets, is placed in a single-pipeline switch
to measure a set of network flows with a total number
of N packets. According to [26], for a flow f of size nf ,
with a probability of 1 − e−d, its estimation n′

f by the
CM sketch is bounded by

n′
f ≤ nf +

e

w
×N (1)

where e is Euler’s number.
Now suppose that we apply ParallelSketch on a

switch containing K parallel pipelines to measure the
same set of network flows, and with the same overall in-
switch memory usage, we resize the CM sketch instance
in each egress pipeline as d rows and w

K columns of
buckets. If each sketch instance randomly encounters
1
K of the total N packets, then similar to the single-
pipeline case, with a probability of 1 − e−d, the size of
the flow f estimated by the sketch instance in the ith

egress pipeline, denoted as n′
f,i, is bounded by

n′
f,i ≤ nf,i +

Ke

w
× N

K
(2)

where nf,i is the ground-truth size of the flow f in the
ith pipeline. By aggregating the estimations from all the
parallel sketch instances, it is easy to see that with a
probability of (1−e−d)K ≈ 1−K×e−d, the aggregated
estimation of the flow f is bounded by

n′
f =

K∑
i=1

n′
f,i ≤ nf +

Ke

w
×N (3)
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By comparing (3) with (1), one can see that given the
same in-switch memory budget, ParallelSketch is much
less accurate than a single-pipeline switch. To show
this, Fig. 2 compares the sizes of 8, 000 flows estimated
by the two approaches. In Fig. 2(a), we employ a 2×215
CM sketch in a single-pipeline switch, and in Fig. 2(b),
eight 2 × 212 CM sketch instances are deployed in 8
pipelines. We also plot the upper bounds in (1) and
(3) in the figures for comparison. From the figures, we
can see that ParallelSketch has higher upper bound and
over-estimates more severely than single-pipeline, and
its estimations exceed the upper bound more often.

Note that although we focus on sketch-based network
monitoring applications in this paper, however, the
lack of inter-pipeline state-sharing likewise affects non-
sketch applications. For example, to detect heavy
hitter flows (i.e., the top-k largest flows), if we
deploy a detector such as HashPipe [34] in each
individual pipeline, then different pipelines will make
different decisions based on their pipeline-local views
independently, and lead to errors in the final detection
result. Given that multi-path routing is widely adopted
by many network designs besides B4, such as VL2 [35],
Presto[36], Hermes [37], RotorNet [38], etc, the problem
widely exists.

2.2.2. Limitation of existing solution
PipeCache [17, 18] is, to our best knowledge, the
only work that addresses the above-described problem
within the switch data plane. In PipeCache, a sketch
instance is deployed at each egress pipeline, and a flow
is deterministically mapped to one fixed egress pipeline,
which is referred to as the flow’s monitor pipeline, for
counting all its packets. Since a flow’s packets could be
spread over all the pipelines, in each ingress pipeline,
PipeCache places multiple caches, one for each egress
pipeline, to store summaries of the packets that should
be counted by that pipeline.
More specifically, when an ingress pipeline receives

a packet that should be routed to the jth egress
pipeline and be monitored by the sketch instance in
the kth egress pipeline, besides caching the packet’s
summary to the cache corresponding to the kth pipeline,
PipeCache piggybacks the summaries stored in the
cache corresponding to the jth pipeline to this packet,
and the packet carries the summaries to update the
sketch instance in the jth egress pipeline. By counting
all the packets of a flow with one single sketch instance,
PipeCache reduces the collisions in ParallelSketch.

In PipeCache, a cache is built up by the packets
whose flows are mapped to the corresponding monitor
pipeline, and is drained by the packets that are routed
to that pipeline. If we use λ and µ to denote the arrival
rates of the two types of the packets, then to avoid cache
overflow, a packet must carry more than λ

µ summaries
in its metadata.
However, the bursty nature of the network traffic,

which is widely observed in data center networks [19,

20], leads to very large instantaneous λ values and
causes caches to over-flow. For example, Kapoor et
al. [19] reports that end-host tends to send bursts of
packets to the same destination back-to-back. There are
many sources for bursts, for example, the mechanisms
of Generalized Receive Offload (GRO) and Generalized
Segmentation Offload (GSO) in the Linux kernel,
and the TCP Segmentation Offload (TSO) and Large
Receive Offload (LRO) features supported by the NIC
hardware, enable end-hosts to send and receive a large
virtual packet, whose size is up to 64 kB, by breaking
the virtual packet into many MTU-sized packets back-
to-back in the network. Furthermore, study shows that
packet bursts can be further enlarged with Interrupt
Coalescing (IC), TCP congestion controls, and Linux
queueing disciplines [20]. Clearly, when traffic under
the monitoring contains bursts whose sizes exceed the
size of a cache in PipeCache, the cache overflows.

On the other hand, the number of packet summaries
a packet can carry in its metadata, is constrained
by two factors. The first constraint is that today’s
programmable switch only allows a packet to carry
limited user-defined metadata when being routed from
an ingress pipeline to an egress one. For example,
our experience on the Intel Tofino switch shows that
the egress parser can parse at most 160 Bytes, which
include all the layer-2 to layer-4 headers as well as
the intrinsic metadata such as in port and timestamp,
which means that only a few dozens of Bytes are left
for the piggybacked packet summaries. The second and
most critical factor is that in hardware programmable
switch, a packet can access a register only once in its
pipeline pass [8, 9, 18], which means that for enabling
a packet to carry multiple summaries, the switch needs
to divide a cache into multiple registers and place in
different MAU stages. In fact in PipeCache, caches and
other data structures are divided into four slices and
realized as separated registers, and a packet can carry
up to four summaries in its metadata.

We use an example in Fig. 3 to show the limitation
of PipeCache under bursty traffic. In the figure we
consider a switch containing two pipelines, and handles
packets of two network flows f and g, which have
their packets counted by the sketch instances in egress
pipeline #1 and #2 respectively. Packets of flow f are
routed to egress pipeline #2, and each packet can carry
at most one packet summary in its metadata due to
the register access constraint. As shown in the figure,
at time t0, a burst of four packets of flow g arrives
to ingress pipeline #1, followed by one packet of flow
f , and at time t1, the four packets of flow g have
passed through ingress pipeline #1, but only the first
two packets have their summaries cached due to the
limited cache space. At time t2, the packet of flow f ,
which is routed to egress pipeline #2, carries one packet
summary of flow g to update the sketch instance in the
pipeline. From the example we can see that although 4
packets of flow g arrives, the sketch instance in egress
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FIGURE 3. Demonstration of PipeCache’s limitation. PipeCache counts only one packet of flow g at time t2 eventually,
despite that four packets of the flow arrive at time t0.
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FIGURE 4. Steps of ingress pipeline packet processing in
the basic design of Confluence.

pipeline #2 counts only one packet, due to the reasons
of packet burst, limited cache size, and register access
constraint.
To combat cache overflow, PipeCache proposes a

method based on packet clone and recirculation. In such
a method, when a packet finds that the cache is full,
PipeCache clones a copy of the packet, and recirculates
the copy to enter the ingress pipeline again, but this
time the packet is routed to its monitor pipeline.
Nevertheless, packet cloning and recirculating incur
non-trivial overhead, as the cloned packets consume
additional processing capacity and queueing space
within the switch. Moreover, cloning and recirculating a
large amount of packets may cause congestions, increase
the chance of packet dropping, and reduce the switch’s
forwarding performance. For this reason, in this work,
we aim to avoid packet clone and recirculation.

3. THE CONFLUENCE SYSTEM

In this section, we present Confluence, a network
measurement system for multi-pipeline switches. We
first present the basic design of Confluence that is
agnostic of the hardware constraints, then we develop
a more practical system ready to be deployed on
commodity programmable switches.

3.1. Basic Design and Analysis

3.1.1. Measurement data structures
In Confluence, a packet pkt of a network flow f is
associated with three pipelines: ingress pipeline, egress
pipeline, and monitor pipeline. The ingress pipeline
pkt.ingress is the pipeline that receives the packet,
the switch routes the packet to the egress pipeline

pkt.egress, and the monitor pipeline f.monitor is the
egress pipeline responsible for counting all the packets
of flow f . Note that a flow’s packets do not necessarily
have the same ingress and egress pipelines, but they
share the same monitor pipeline, which is decided by
hashing the flow ID.
Considering a multi-pipeline switch containing K

parallel pipelines, Confluence introduces two data
structures in each ingress pipeline: a pipeline table and
a delta sketch. For the ith ingress pipeline, we denote
its pipeline table as Ti and its delta sketch as ∆i. The
pipeline table Ti has K entries, one for each egress
pipeline, and each pipeline table entry is logically a
FIFO queue that can store up to c flow IDs. When
Ti[k].tail = f , it means that flow f ’s monitor pipeline
is the kth egress pipeline, i.e., f.monitor = k, and one
or more packets of f have recently been received by the
ith ingress pipeline.
The delta sketch ∆i counts the packets that have

recently been received by the ith ingress pipeline but
their flow statistics have yet been updated to the
corresponding monitor pipelines. As a standard count-
min (CM) sketch, ∆i has d1 counter arrays, and each
array contains w1 buckets. ∆i employs d1 pair-wise
independent hash functions, denoted as hr(·), 0 ≤ r <
d1, to map network flows to different buckets in each
array.
Each monitor pipeline, say the jth egress pipeline,

maintains a sketch for monitoring any network flow f
with the flow’s monitor pipeline assigned to it, i.e.,
f.monitor = j. We refer to such a sketch as main
sketch, which keeps the final measurement results. Main
sketch is updated by the data piggybacked on the
packets from different ingress pipelines. Any sketch-
based data structure can be used for realizing the main
sketch, and in this work, we choose Elastic Sketch [6],
because of its high accuracy and hardware deployability.

3.1.2. Packet processing
In Confluence, measurement data structures are
updated by packets. Suppose that the ith ingress
pipeline receives a packet pkt of flow f , i.e.,
pkt.ingress = i, and the packet pkt will be routed to
the jth egress pipeline and should be counted by the kth

egress pipeline, i.e., pkt.egress = j and f.monitor = k.
As demonstrated in Fig. 4, pkt is processed by the ith

ingress pipeline with the following steps:
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� Step 1: Insert the flow ID f to the tail position of
the pipeline table entry Ti[k], if the queue is full,
evict the element at the head position.

� Step 2: Look up the delta sketch ∆i with f , and
increase the value of each bucket ∆i[r][hr(f)], for
r = 0, · · · , d1 − 1.

� Step 3: Read and remove the flow ID g from the
head position of the pipeline table entry Ti[j] and
copy g to pkt’s metadata. Note that g is a flow
whose monitor pipeline is the jth egress pipeline,
i.e., g.monitor = j.

� Step 4: Look up the delta sketch ∆i with g,
copy g.δ = min{∆i[r][hr(g)]|r = 0, · · · , d1 − 1} to
pkt’s metadata, and remove flow g’s measurement
data from the delta sketch by deducting each delta
sketch bucket value by g.δ, i.e., ∆i[r][hr(g)] =
∆i[r][hr(g)]− g.δ, for r = 0, · · · , d1 − 1.

� Step 5: Route pkt with the metadata ⟨g, g.δ⟩ to
the jth egress pipeline.

When the packet pkt with the metadata ⟨g, g.δ⟩ is
routed to the jth egress pipeline, Confluence increases
the counters corresponding to flow g in its main sketch
by an amount of g.δ.

To demonstrate how packets are handled by
Confluence, we revisit the example in Fig. 3, and show
it in Fig. 5, in which we simply replace PipeCache’s
packet summary cache with a pipeline table and a delta
sketch in each ingress pipeline, and assume that each
pipeline table entry can store only one flow ID (i.e.,
c = 1). As shown in the figure, at time t0, a burst of
four packets of flow g and one packet of flow f arrive
to ingress pipeline #1. After the four packets of flow g
have passed through the ingress pipeline at time t1, they
write their flow ID, i.e., g, to the pipeline table entry
corresponding to egress pipeline #2, and the burst size,
i.e., 4 packets, is counted by the delta sketch in ingress
pipeline #1. At time t2, after the packet of flow f writes
its flow ID to the pipeline table, it reads flow ID g from
the table entry corresponding to its egress pipeline (i.e.,
egress pipeline #2), retrieves and deducts the counter
value of g from the delta sketch, and updates the main
sketch in its egress pipeline. Note that different from
the case in Fig. 3, all the 4 packets of flow g are counted
by Confluence as shown in Fig. 5.
By comparing the examples in Fig. 3 and Fig. 5,

we can see that unlike PipeCache, Confluence does

not cache raw per-packet summaries, but accumulates
short-term flow statistics temporarily in the delta
sketches before updating the main sketches. Since
counters are much less likely to overflow than caches,
Confluence can better preserve the measurement
accuracy under the bursty network traffic.

3.1.3. Analysis
We formally analyze Confluence’s measurement accu-
racy. Without loss of generality, we consider a switch
containing K pipelines, and besides the pipeline table
and the CM delta sketch containing d1 ×w1 buckets in
the ingress pipeline, we suppose that the main sketch in
each egress pipeline is realized as an Elastic Sketch [6].
In particular, the Elastic Sketch contains a hash table
heavy part and its light part is a standard CM sketch
composed of d2 × w2 buckets.

We have the following result regarding Confluence’s
measurement accuracy.

Theorem 3.1. For a network flow f of size nf , with
a probability of (1−e−d1)×(1−e−d2) ≈ 1−e−d1−e−d2 ,
its size n′

f estimated by Confluence is bounded by

n′
f ≤ nf + (

e

w1
+

1

K
× e

w2
)×N (4)

where N is the total number of the packets.

Proof. Since the heavy part of the Elastic Sketch does
not introduce errors [6], there are only two sources of
measurement errors in n′

f : 1) errors introduced by the
delta sketches in the ingress pipelines, and 2) errors
introduced by the CM sketches as the Elastic Sketch
light parts in the egress pipelines. For the first error
source, if we view the combination of the delta sketch
instances in all the ingress pipelines as one w1 × d1
CM sketch, where each bucket is K times larger, then
according to [26], with a probability of 1 − e−d1 , the
estimation n′′

f of f accumulated by the combined CM
sketch is bounded by

n′′
f ≤ nf + (

e

w1
)×N (5)

Since in Confluence, n′′
f is used to update the main

sketch, and each main sketch averagely covers 1
K of

the total network traffic, therefore for the second
error source, with a probability of 1 − e−d2 , the final
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FIGURE 6. Placement of pipeline table and delta sketch
instances and operations executed by odd/even packets.

estimation n′
f from the main sketch is bounded by

n′
f ≤ n′′

f + (
e

w2
)× N

K
(6)

Summing up the two errors, it is easy to see that with a
probability of (1− e−d1)× (1− e−d2) ≈ 1− e−d1 − e−d2 ,
we have

n′
f ≤ nf + (

e

w1
+

1

K
× e

w2
)×N (7)

3.2. Tackling Hardware Constraints

3.2.1. Constraints from hardware programmable
switches

We aim to deploy Confluence on commodity hardware
programmable switches (e.g., the Tofino-based switch),
which have the following constraints in processing
network packets. First, a packet always moves forward
within a pipeline, so if a number of measurement data
structures are placed at different stages in a pipeline, all
the packets access the structures in a fixed sequential
order [22]. Second, as reported by many studies (e.g.,
[8, 9, 18]), a packet can access at most one address of a
stage-local register in its pipeline pass.
Unfortunately, the basic design of Confluence that

we have described in Sec. 3.1 violates the above
constraints, and is infeasible to be implemented on
commodity hardware programmable switches. First,
as shown in Fig. 4, the pipeline table and each array
of the delta sketch, which are realized as registers, are
accessed twice per packet: each packet needs to write
the flow ID f and read the flow ID g from/to different
entries of the pipeline table, and it needs to increase the
bucket value of f , retrieve and decrease the bucket value
of g at different positions of each delta sketch bucket
array. However, as we have mentioned, a register can
be accessed by a packet at most once.
Second, as illustrated by Fig. 4, when retrieving

g.δ and removing it from flow g’s measurement data
in the delta sketch as in step 4, there exists a circular
dependency, that is, each bucket of flow g ∆i[r][hr(g)],
r = 0, · · · , d1 − 1, needs to be decreased by an amount
of g.δ when being accessed by the packet of f , but
g.δ = min{∆i[r][hr(g)]|r = 0, · · · , d1 − 1} is available
only after all the buckets have been accessed by this
packet.
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FIGURE 7. Examples of Algorithm 1 executions, where
buckets being overly decreased are highlighted.

3.2.2. Tackling register access constraints
To overcome the first problem, we propose to place two
instances of pipeline table and delta sketch, which are
indexed as 0 and 1, in each ingress pipeline. As shown
in Fig. 6, conceptually1, the 0-indexed pipeline table is
placed at stage 1, the 0-indexed delta sketch is placed at
stage 2, the 1-indexed pipeline table is placed at stage
3, and the 1-indexed delta sketch is placed at stage 4 of
the ingress pipeline.
We label each packet received by a pipeline as either

odd or even alternatively. All the packets access the
pipeline table and delta sketch instances with a fixed
sequence order from stage 1 to 4, but as illustrated
in Fig. 6, the odd/even packets perform different
operations on the measurement data structures in
different stages as the following.

� An odd packet executes step 1 as in Fig. 6 by
writing f ’s flow ID to the 0-indexed pipeline table,
increases f ’s sketch buckets as in step 2 in the 0-
indexed delta sketch, executes step 3 by reading g’s
flow ID from the 1-indexed pipeline table, removes
g’s measurement data and retrieves g.δ from the
1-indexed delta sketch as in step 4.

� On the other hand, an even packet executes step
3 on the 0-indexed pipeline table, performs the
operations in step 4 on the 0-indexed delta sketch,
executes step 1 on the 1-indexed pipeline table, and
performs the operations in step 2 on the 1-indexed
delta sketch.

As a result, odd/even packets have their traffic statistics
traced by the 0/1-indexed pipeline table and delta
sketch, and their measurement data is removed and
carried by the even/odd packets to their monitor
pipelines. It is easy to see that in Fig. 6, each
packet accesses the data structures in same fixed order,
and a packet accesses each measurement data structure
exactly once, thus avoids violating the register access
constraint.

3.2.3. Resolving circular dependency
To resolve the circular dependency in retrieving g.δ and
deducting it from the delta sketch buckets of flow g as
in step 4, we propose Algorithm 1 as follows.
In Algorithm 1, a packet of flow g accesses the

hashed bucket ∆i[r][hr(g)] in each delta sketch array
sequentially, thus eliminates the circular dependency.

1In practice, realizing a delta sketch instance may require d1
consecutive stages, one stage for realizing a sketch bucket array.
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Algorithm 1 Algorithm for step 4

INPUT: Flow ID g

1: Initially, g.δ ← null;
2: for r ← 0, · · · , d1 − 1 do
3: if g.δ == null then
4: g.δ ←∆i[r][hr(g)], ∆i[r][hr(g)]← 0;
5: else
6: g.δ ← min(∆i[r][hr(g)], g.δ);
7: ∆i[r][hr(g)]←∆i[r][hr(g)]− g.δ;
8: end if
9: end for

10: return g.δ;

When accessing a bucket, the algorithm first checks
whether g.δ has a valid value (line 3), if not, it sets g.δ as
value of the currently accessed bucket ∆i[r][hr(g)], and
clears the bucket as 0 (line 4). Otherwise, it compares
the bucket value ∆i[r][hr(g)] with g.δ: if the former is
greater, it deducts g.δ from ∆i[r][hr(g)]; otherwise, the
algorithm sets g.δ as ∆i[r][hr(g)], and clears the bucket
as 0 (line 6-7).
Fig. 7 presents 4 cases of the algorithm execution.

In each case, the algorithm accesses r = 3 buckets of
flow g in different bucket arrays sequentially from top
to bottom, and after accessing all the three buckets,
g.δ is always set as min{∆i[r][hr(g)]|r = 0, 1, 2} = 3
correctly. Meanwhile, in the cases in Fig. 7(b)-(d),
some buckets are overly decreased, that is, the bucket
value is deducted by an amount greater than g.δ.

Note that unlike CU [27, 39], which also updates
bucket value conservatively, Algorithm 1 does not
need to traceback the smallest bucket value, thus is
hardware-friendly. Algorithm 1 shares some similarity
with LightGuardian [8] and Count-Less [40], but
LightGuardian and Count-Less apply conservative
strategies to increase bucket values, while Algorithm
1 decreases the values of the sketch buckets and obtains
the minimum value simultaneously. For Algorithm 1,
we have the following result.

Theorem 3.2. Algorithm 1 retrieves g.δ correctly,
i.e., g.δ = min{∆i[r][hr(g)]|r = 0, · · · , d1 − 1}, and the
algorithm only overly decreases a bucket whose value is
over-estimated.

Proof. From Algorithm 1, one can see that the only
way to change the value of g.δ is to assign it with
the value of the currently accessed bucket, under the
condition that g.δ == null (line 3-4) or g.δ is greater
than the currently accessed bucket value (line 5-7). So
after accessing all the buckets, g.δ will be assigned
with the minimum value of the buckets, i.e., g.δ =
min{∆i[r][hr(g)]|r = 0, · · · , d1 − 1}.
In Algorithm 1, a bucket has its value overly

decreased under the only condition that when this
bucket is accessed, g.δ is greater than its final value,
which means that the bucket corresponding to the

minimum value min{∆i[r][hr(g)]|r = 0, · · · , d1−1} has
not been accessed by the packet yet. Since the currently
accessed bucket is not the one that has the minimum
value, its value is over-estimated.

Since both the delta sketch and the main sketch
tend to over-estimate [26], Theorem 3.2 suggests that
by overly decreasing a bucket whose value is over-
estimated, Confluence can partially offset the over-
estimation errors.

4. EVALUATION

4.1. Experiment Setup

We conduct extensive experiments to evaluate Conflu-
ence, and in particular, we examine and compare the
following network measurement systems.

� SinglePipe: This is the case that the switch
has only one single pipeline, and hosts an Elastic
Sketch for monitoring all the network flows.

� ParallelSketch: This is the status quo approach
as we have described in Sec. 2.2.1, in which an
Elastic Sketch instance is placed in each egress
pipeline and works independently.

� PipeCache: PipeCache is proposed in [17, 18]. As
in [18], we recirculate as many packets as needed
so that all the packets are counted in the correct
monitoring pipeline. A packet summary is its 5-
tuple flow ID, which is the minimum information
required for the egress pipeline to count this packet.
We divide each data structure in PipeCache into 4
slices as suggested in [18].

� PipeCache*: PipeCache* has the same configu-
ration of PipeCache except that it disallows packet
clone and recirculation for the reason as explained
in Sec. 2.2.2.

� Confluence: This is the system presented in Sec.
3, and the system complies with all the hardware
constraints.

We have implemented the above systems with
Python for simulation. We have also implemented
Confluence on the bmv2 software switch that supports
P4 programming [41], and the Edgecore Wedge
100BF-32X Tofino-based hardware switch2. For
enabling fair comparison, we stick to the following
principles in our evaluation. First, all the systems
should have approximately same overall memory
usages for hosting their measurement data structures.
Second, for the systems of PipeCache/PipeCache* and
Confluence, which place measurement data structures
in both ingress and egress pipelines, they should have
approximately same memory usages in each pipeline.
We employ the measurement systems to perform

three representative measurement tasks, which are:

2The P4 code of Confluence is available at https://

github.com/wyw0530/Confluence
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TABLE 1. Parameters of different measurement systems on a switch composed of K = 8 pipelines
Ingress pipeline Egress pipeline Memory usage

SinglePipe N/A Entries in Elastic Sketch heavy part: 2240 90,688 Bytes
Buckets in Elastic Sketch light part: 2 × 22664

ParallelSketch N/A Entries in Elastic Sketch heavy part: 280 11,336 Bytes per pipeline
Buckets in Elastic Sketch light part: 2 × 2833 Total: 90,688 Bytes

PipeCache/PipeCache* Number of sliced caches: 4 Number of sliced Elastic Sketch: 4 3, 104 Bytes per ingress pipe
Summaries in a sliced cache: K × 8 Entries in sliced Elastic Sketch heavy part: 51 8, 227 Bytes per egress pipe

Buckets in sliced Elastic Sketch light part: 2 × 29 Total: 90,648 Bytes

Confluence Entries in a pipeline table: K Entries in Elastic Sketch heavy part: 204 2, 950 Bytes per ingress pipe
Buckets in a delta sketch: 2 × 210 Buckets in Elastic Sketch light part: 2 × 211 8, 227 Bytes per egress pipe

Total: 89, 416 Bytes
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FIGURE 8. Measurement accuracies for (a) flow size estimation, (b) flow size distribution estimation, and (b) heavy hitter
detection tasks accomplished by SinglePipe, ParallelSketch, and Confluence when measuring various numbers of network
flows.

� Flow size estimation: In this task, we estimate
the size of each network flow, and assess the
estimating accuracy with Averaged Relative Error
(ARE ), which is defined as

ARE =
1

|F|
∑
f∈F

|nf − n′
f |

nf
(8)

where nf and n′
f are the ground-truth and

estimated sizes of a flow f , and F is the set of the
flows being monitored.

� Flow size distribution estimation: We use
the Weighted Mean Relative Error (WMRE ) to
measure the difference between an estimated flow
size distribution and the ground truth as

WMRE =

∑
i |mi −m′

i|∑
i(

|mi+m′
i|

2 )
(9)

where mi and m′
i are the ground-truth and

estimated numbers of the flows of size i.
� Heavy hitter detection: This task seeks to

identify the heavy hitter flows, which are defined
as the top 10% largest flows in F. We use the F1
score to assess the detecting accuracy.

Note that the three measurement tasks have different
significance. The task of flow size estimation only
considers the overall averaged error, but does not
evaluate how the estimation of each individual flow
deviates from the ground truth. The task of flow size
distribution estimation requires that the distribution of
the estimations should be close to the ground truth,
which is more difficult. The heavy hitter detection task

is the most difficult and important one, as it demands to
identify all the heavy hitter flows individually, and the
task provides valuable information for network traffic
engineering [42], QoS optimization [43], anomaly and
intrusion detections [44]. In addition to measurement
accuracy, we also examine the ratios of the packets that
cause cache overflows in PipeCache/PipeCache* and
counter overflows in Confluence respectively.

Packet bursts are largely caused by TSO [19], which
is a feature supported by new NICs after 2014 [45].
For early data center traces (e.g., [46, 47]) that were
collected on old NICs, we find that they contain much
fewer and much smaller packet bursts comparing with
the ones observed in the recent studies [19, 20]. As data
center traffic traces collected from TSO-enabled NICs
are currently not publicly available, in this work, we use
the MAWI packet trace [48] captured from the WIDE
backbone network to drive the simulation. Usually,
packets arrive to the simulated switch following their
original sequences in the trace. However, traffics on
ISP backbone links are highly statistically multiplexed
and less bursty than the ones in data centers. For
this reason, in our experiments, for all the network
flows whose packet rates exceed 300 packets per second,
we assume that they send packets in bursts. More
specifically, for a network flow that has its packet rate
exceeding 300, we group its packets into bursts, where
each burst has a size following the distribution in [19]
with a mean burst size of 30 packets. The traffic trace
is transformed to contain bursts as the following: Each
burst starts when its first packet appears in the original
trace, but in the transformed trace, all the subsequent
packets in the burst follow the first packet and arrive
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FIGURE 9. Measurement accuracies for (a) flow size estimation, (b) flow size distribution estimation, and (c) heavy hitter
detection tasks accomplished by PipCache, PipCache*, and Confluence when measuring various numbers of network flows.
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FIGURE 10. Comparison of ratios of packets encountering
cache overflows in PipeCache/PipeCache* and counter
overflows in Confluence when measuring various numbers
of network flows. Note that Y-axis applies log scale.

to the switch back-to-back, while for the packet that
does not belong to the burst but immediately follows
the first packet in the original trace, it arrives after the
burst in the transformed trace.

4.2. Measurement Accuracy

We evaluate the measurement systems by monitoring
8, 000-30, 000 network flows. If not otherwise specified,
for a simulated multi-pipeline switch, we configure it to
have K = 8 parallel pipelines. For a network flow, the
switch routes its packets to each egress pipeline with
an equal chance of 1

K . We stick to the fair memory
usage principles as described in Sec. 4.1. In particular,
for Confluence, the size of the pipeline table entry is
set as c = 2, and the delta sketch contains 2 × 210 5-
bit buckets; in addition, each ingress pipeline hosts two
instances of pipeline tables and delta sketches to avoid
violating the constraints of the hardware switch. For
PipeCache/PipeCache*, each sliced cache can store up
to 8 packet summaries, so that its ingress memory usage
is no smaller than Confluence. Table 1 lists parameters
of the different systems under the evaluation3.

3Both packet summary and flow ID are 5-tuple, whose size is
97 bits. An entry of the Elastic Sketch heavy part has 162 bits,
which contain two 32-bit counters, 1-bit flag, and 97 bits for the
5-tuple flow ID. A pipeline table entry has 195 bits, which stores
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FIGURE 11. Measurement accuracies for (a) flow
size estimation and (b) heavy hitter detection tasks
accomplished by Confluence with and without conservative
update algorithm.

We first compare Confluence with the benchmarks of
SinglePipe and ParallelSketch, and present the results
in Fig. 8. From the figure one can see that Confluence
significantly outperforms ParallelSketch in all the three
tasks, because of the reason as we have analyzed in Sec.
2.2.1. SinglePipe is more accurate than Confluence, as
it has a lower hash collision rate with one single large
sketch than the 8 small sketch instances in Confluence,
and it avoids the errors in moving flow statistics from
the ingress pipelines to the egress ones. Note that
SinglePipe is for a switch with only one pipeline, which
can not sustain a packet rate as high as a multi-pipeline
switch.
In Fig. 9, we compare Confluence with PipeCache

and PipeCache*, as the three solutions place mea-
surement data structures in both ingress and egress
pipelines of a multi-pipeline switch. Fig. 9(a) shows
that in the flow size estimation task that is least
significant, Confluence is slightly less accurate than
PipeCache and slightly more accurate than PipeCache*,
as the metric of ARE only considers the overall aver-
aged errors. In the task of the flow size distribution es-
timation with the metric of WMRE by averaging errors
weighted with flow sizes, when measuring over 14, 000
flows, Confluence starts to outperform PipeCache* and
approach to PipeCache. In the heavy hitter detection
task that is most difficult and important, Confluence
substantially outperforms PipeCahce* and has the F1
scores only slightly lower than PipeCache. This is be-

c = 2 flow IDs and one bit to indicate the head position of the
queue. A bucket in the Elastic Sketch has 8 bits.
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FIGURE 12. Measurement accuracies for (a) flow size estimation, (b) flow size distribution estimation, and (c) heavy hitter
detection tasks accomplished by PipeCache* and Confluence when increasing the size of the sliced cache for PipeCache* and
the pipeline table entry size for Confluence.

cause when the heavy hitter flows have their packets ar-
rived in bursts, PipeCache counts all the packets, at a
cost of cloning and recirculating a large number of pack-
ets; Confluence manages to count most of the packets,
as the 5-bit counters in the delta sketch can count up
to 25−1 = 31 packets and is unlikely to overflow; while
PipeCache* miss-counts many packets due to overflows
of the packet summary caches. From the experiment re-
sult, we can see that Confluence has a performance close
to PipeCache without the cost of packet clone and re-
circulation, and it outperforms PipeCache*, especially
in the heavy hitter detection task that is most valuable
for network management and optimization.
The only difference between PipeCache and

PipeCache* is that PipeCache clones and recircu-
lates a packet on cache overflow, while PipeCache*
does not allow packet recirculation and miss-counts the
packet. Fig. 10 presents the ratio of the packets that
encounter cache overflows in PipeCache/PipeCache*,
and for comparison, we also present the ratio of the
packets that encounter counter overflows in Conflu-
ence. From the figure, we can see that over 40%
packets encounter cache overflows, which means that
in PipeCache, these packets double their processing
capacity and queueing space consumptions within
the switch, while in PipeCache*, these packets are
miss-counted. On the other hand, only fewer than
0.4% packets in Confluence are miss-counted due to
counter overflows.

In Confluence, we propose Algorithm 1 to conser-
vatively update the delta sketch buckets for resolving
circular dependency. In the following experiment, we
assume that a hypothetical Confluence system can vi-
olate the circular dependence constraint and directly
deduct min{∆i[r][hr(g)]} from each bucket, and com-
pare it with the Confluence system applying Algorithm
1. Fig. 11 presents the AREs and F1 scores of the
two systems in the tasks of flow size estimation and
heavy hitter detection, from which we can see that by
applying Algorithm 1, the system has slightly higher
measurement accuracies. Our observation can be ex-
plained with Theorem 3.2, which states that Algorithm
1 only overly decreases a bucket whose value is overly
estimated, thus can partially offset the overestimation

errors.

4.3. Impact of Memory Usage

In this subsection, we study the impact of memory
usages. Since in this work, we aim to avoid the
resource-consuming packet clone and recirculation,
in this and subsequent simulation experiments, we
compare Confluence with PipeCache*, as both systems
do not allow packet recirculation. As Confluence
places two data structures in an ingress pipeline: the
pipeline table and delta sketch, we increase the size
of the two instances of each data structure separately.
Intuitively, when the pipeline table has its entry size
increased, it can “memorize” a network flow for a
longer time, as the flow ID of a received packet is
less likely to be “flushed out” by subsequently arrived
packets. Likewise, when the delta sketch contains
more bucket columns, hash collisions could be less
likely to happen. Note that when increasing sizes of
the Confluence data structures, we also enlarge the
sliced caches in PipeCache* proportionally, so that
PipeCache* consumes no less memory in each ingress
pipeline than Confluence.
In the first experiment, we increase the size of the

pipeline table entry in Confluence from c = 1 to 8
flow IDs, and proportionally enlarge the sliced cache
in PipeCache* from 8 to 11 packet summaries. Fig. 12
presents the measurement accuracies achieved by the
two systems. We can see that for Confluence, when
increasing the pipeline table entry size from 1 to 2, the
flow size estimation accuracy is substantially improved,
but further increasing the entry size does not lead to
significant improvement. For PipeCache*, increasing
the sliced cache size obviously increase the F1 score,
as for heavy hitter flows, a larger cache will miss fewer
packets in bursts; but in the flow size estimation and
flow size distribution estimation tasks, whose metrics
are decided by all the network flows, increasing the
cache size (from 8 to 11) does not make much difference.
Fig. 13 presents the measurement accuracies when

we increase the size of the delta sketch in Confluence
from 776 bucket columns to 1, 862 columns, and increase
the size of the sliced cache in PipeCache* from 6 to 13
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FIGURE 13. Measurement accuracies for (a) flow size estimation, (b) flow size distribution estimation, and (c) heavy hitter
detection tasks accomplished by PipeCache* and Confluence when increasing the size of the sliced cache for PipeCache* and
the delta sketch columns for Confluence.

packet summaries proportionally. One can see that for
PipeCache*, when enlarging the sliced cache, the F1
score in heavy hitter detection is improved considerably,
for the same reason as above explained. To our
surprise, increasing the size of the delta sketch does
not lead to significant improvement on measurement
accuracies for Confluence. We explain the observation
with the fact that unlike conventional sketch-based
systems, measurement data in a delta sketch instance
is constantly removed and carried to the main sketches,
so in most of the time, the sketch is close to empty with
few hash collisions, despite that its size is small.
The experiment results in Fig. 12 and Fig. 13 suggest

that with various-sized pipeline table and delta sketch
instances, Confluence delivers higher measurement
accuracies and substantially outperform PipeCache*,
and its advantage over PipeCache* is more pronounced
under small ingress memory usages. Note that such
a property is highly desired, as fast-speed SRAM is a
scarce resource in hardware programmable switches.

4.4. Impact of Number of Pipelines

In the next experiment, we examine the impact of
number of the pipelines within a switch on PipeCache*
and Confluence. Note that for PipeCache*, each
ingress pipeline maintains K caches, one for each egress
pipeline, and each cache is divided into 4 slices. For
Confluence, each ingress pipeline maintains two pipeline
table instances each containing K entries, however, the
sizes of the two delta sketch instances are irrelevant to
the number of the pipelines. In other words, Confluence
is more scalable than PipeCache* by design.
We perform the three measurement tasks under

the cases when the switches contain K = 4, 8, 16,
32, and 64 parallel pipelines, and feed 7000 × K
network flows to drive the experiments. To enforce
the memory usage fairness principle, we fix the size
of the pipeline table entry as c = 2 for Confluence,
and with the same memory usages, we decrease the
size of the sliced packet summary cache in PipeCache*
from 15 to 2 when the number of the pipelines is
increased from 4 to 644. Fig. 14 presents the

4When there are K = 4 pipelines, for Confluence, a pipeline

experiment results, from which we can see that for
both PipeCache* and Confluence, in the tasks of flow
size estimation and flow size distribution estimation,
measurement accuracies are slightly reduced when a
switch contains more pipelines. However, for the
heavy hitter detection task, the F1 score remains
relatively stable for Confluence, but is substantially
decreased for PipeCache*, as PipeCache* has more
cache overflows due to its relatively poor scalability.
Our observation indicates that when the switch contains
more pipelines, Confluence is more scalable than
PipeCache* by keeping its measurement accuracies
stable and outperforming PipeCache*, especially in the
critical task of detecting heavy hitter flows.

4.5. Impact of Imbalanced Workload

Our previous experiments assume balanced workloads
among the pipelines, that is, a packet is routed to each
pipeline with an equal chance of 1

K . In this section, we
examine the case that the workloads are imbalanced,
in particular, we consider that a packet is routed to
the kth pipeline at a probability of pk following a Zipf
distribution as

pk =
1
ks∑K
i=1

1
is

(10)

where s ≥ 0 is the distribution’s skewness factor.
We compare PipeCache* and Confluence under

imbalanced workloads with s = 0, 1, 2, and 3
respectively. Note that when s = 0, the workload
is indeed balanced. Fig. 15 presents the experiment
results in monitoring 18, 000 and 24, 000 network flows,
from which one can see under the imbalanced workload,
Confluence has its measurement accuracies less reduced

table instance consumes K × 195 = 780 bits, and a delta sketch
instance consumes 2 × 210 × 5 = 10, 240 bits, so the ingress
pipeline memory usage is 2 × (780 + 10, 240) = 22, 040 bits. For
PipeCache*, as there are 4×K = 16 sliced caches in each ingress
pipeline, a cache should have a size of 22,040

(16×97)
= 14.2, so we set

the cache size as 15. With K = 64 pipelines, for Confluence, a
pipeline table instance consumes K × 195 = 12, 480 bits, so the
memory usage of the ingress pipeline is 2 × (12, 480 + 10, 240) =
45, 440 bits. For PipeCache*, as there are 4 × K = 256 sliced
caches in each ingress pipeline, a cache should have a size of
45,440

(256×97)
= 1.8, so we set the cache size as 2.
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FIGURE 14. Measurement accuracies for (a) flow size estimation, (b) flow size distribution estimation, and (c) heavy hitter
detection tasks accomplished by PipeCache* and Confluence under various number of pipelines within a switch.

than PipeCache*. For example, in the heavy hitter
detection task, when increasing s from 0 to 3, the F1
scores of PipeCache* are reduced 41.4% and 41.8%
when measuring 16,000 and 24,000 network flows
respectively, but the reductions on Confluence’s F1
scores are 19.1% and 19.3% under the same conditions.
We have experimented by monitoring other numbers of
network flows and have similar observations. The poor
performance of PipeCache* is easy to understand, as
when the workloads are imbalanced, for some pipeline,
there would be much more packets injecting their
summaries to the cache than the packets carrying
the cached summaries to egress pipelines, making the
caches easier to over-flow.

4.6. Impact on Switch Performance

Confluence requires each packet to make 2 + 2 × d1
register accesses when passing an ingress pipeline and
access 1 or 1+d2 registers in its egress pipeline pass. In
this subsection, we evaluate the impact of the register
accesses on a hardware switch’s packet forwarding
performance. To this end, we implement Confluence on
an Edgecore Wedge 100BF Tofino-based programmable
switch.

We set up a simple testbed composed of eight servers
inter-connected by the Tofino switch. All the servers
are equipped with the Intel i7-8700 CPU and Intel
X710-DA2 10GbE NIC. We set up 500 UDP flows
from one server to another via the switch, and measure
the switch’s data forwarding rate with and without
Confluence. Note that without Confluence, a packet
does not make any register accesses in its pipeline pass.

We find that in both cases, the Tofino switch
can achieve its line rate close to 10Gbit/s, despite
that Confluence demands more register accesses when
processing a packet. We also examine the time required
for the switch to process a packet. For the switch with
Confluence, it takes 150 cycles and averagely 258.3 ns
to process a packet, and for the switch that simply
forwards packets, the per-packet processing time is
58 cycles and averagely 187.0 ns. The result suggests
that Confluence does not impact a switch’s forwarding
performance, and is practical to be deployed in real-
world data center networks.

5. RELATED WORK

5.1. Programmable Data Plane

As network control plane requires more precise control
on data plane resources and behaviors, the architecture
of hardware programmable switch evolves rapidly in the
last decade. Bosshart et al. [21] propose the RMT
pipelined architecture for providing reconfigurable
match-action tables in switching chips. Based on RMT,
Sivaraman et al. [22] present the Banzai programmable
packet processing pipeline architecture that supports
stateful data plane algorithms. To overcome the
limitation of no state sharing across pipelines, new
generation of programmable switch architectures are
proposed. Shrivastav [24] presents MP5, a switch
architecture, compiler, and runtime for multi-pipeline
programmable switches that is functionally equivalent
to a single-pipeline switch. Chen et al. [25]
propose OptimusPrime to enable an architecture that
transforms between pipeline stages and multi-core
RTC processors. Unfortunately, the new generation
architectures have yet been supported by commodity
hardware switches.

5.2. Sketch-based Network Traffic Monitoring

Sketch-based method is a promising direction for pro-
viding full-coverage and fine-grained network measure-
ment in data center networks. To overcome the low
memory utilizations of the classical sketches of CM [26],
CU [27], and Count [28], a number of advanced sketches
are proposed in recent years. For per-flow measure-
ment, Yang et al. [6] present Elastic Sketch, which
is composed of a heavy part hash table and a light
part CM sketch to perform per-flow traffic monitoring;
Zhang et al. [7] propose CocoSketch for supporting par-
tial key query; Zhao et al. [8] develop a novel sketch
namely SuMax to support various per-flow measure-
ment tasks; Gu et al. [3] propose Distributed Sketch
to perform sketch-based per-flow measurement with a
network-wide cooperative method. For detecting per-
sistent items in network data streams, Zhang et al. [49]
present On-Off sketch for estimating number of epochs
that an item persistently appears; Li et al. [10] propose
P-Sketch to estimate item persistence by exploiting con-
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FIGURE 15. Measurement accuracies for (a) flow size estimation, (b) flow size distribution estimation, and (c) heavy hitter
detection tasks accomplished by PipeCache* and Confluence under imbalanced workloads with s = 0, 1, and 2.

tinuity of item appearance. For detecting spreaders in
network traffic, Tang et al. [50] develop SpreaderSketch
to estimate spreads of network flows with multiresolu-
tion bitmap. However, most of sketch-based measure-
ment applications are developed for one single logical
pipeline, and when being naively deployed on a multi-
pipeline switch, they face correctness and performance
issues [14, 15].

5.3. Traffic Monitoring on Multi-Pipeline
Switches

Gebara et al. [14] point out that PISA-based pro-
grammable switch provides no state-sharing across
pipelines, which is an obstacle for in-network appli-
cations. Khooi et al. [15] analyze the impact of
multiple pipelines on stateful network applications.
Chiesa et al. [17, 18] describe and address the prob-
lem of network measurement on multi-pipeline switches
caused by multi-path routing, and present a solution
named PipeCache. Rodrigues et al. [51] propose a
recirculation-based method similar to PipeCache and a
controller-assisted method to detect heavy hitter flows
on multi-pipeline switches. Huang et al. [52] present
MpScope, a multi-pipeline monitoring framework that
employs controller to aggregate measurement results
from multiple pipelines and tunes the monitoring mod-
ule in the different pipelines dynamically. Comparing
with the controller-assisted solutions [51, 52], Conflu-
ence accurately monitors traffic within a multi-pipeline
data plane without the assistance from controller; and
unlike the recirculation-based approaches [17, 18], Con-
fluence does not employ the expensive packet clone and
recirculation, and preserves accuracy under various cir-
cumstances.

6. CONCLUSION

Similar to multi-core CPUs, state-of-the-art pro-
grammable switches employ multiple pipelines to sus-
tain higher packet rates, but on the other hand, the ex-
isting domain-specific data plane programming model
(e.g., P4) still assumes the target switch as one sin-
gle logical pipeline. Such a discrepancy causes existing
sketch-based network measurement applications, which
are programmed for single-pipeline switches, have poor

measurement accuracy when being deployed naively on
multi-pipeline switches under multi-path routing sce-
narios.
In this paper, we presented Confluence, a sketch-

based network measurement system for multi-pipeline
switches. By introducing novel data structures and
methodologies, Confluence is capable to collect and
converge measurement data of network flows, which
have their packets spread over multiple pipelines, in
an efficient and inexpensive way. Theoretical analysis
and experimental evaluation show that Confluence
substantially outperforms the existing solutions by
delivering high measurement accuracy, and the system
is practical for real-world deployment.
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