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Abstract With the success of the Internet on-demand
video (VoD) streaming services, the bandwidth required
and the cost incurred on the video server become ex-
tremely large. Peer-to-peer (P2P) network and proxy
are two common ways for reducing the server’s work-
load. In this paper, we consider a peer-assisted Internet
VoD system with proxies deployed at the domain gate-
ways. We formally present the video caching problem
with the objectives of reducing the video server’s work-
load and avoiding the inter-domain traffic, and obtain
its optimal solution. Inspired by the theoretical analy-
sis, we develop a practical protocol named PopCap for
Internet VoD services. Comparing with previous works,
PopCap is does not require additional infrastructure sup-
port, works inexpensively and is able to cope well with
the workload characteristics of the Internet VoD ser-
vice. From simulation-based experiments driven by real-
world datasets from YouTube [1], we find that PopCap
can effectively reduce the video server’s workload, there-
fore provides a superior performance regarding the video
server’s traffic reduction.

Keywords Internet Video-on-Demand (VoD), Peer-
to-Peer(P2P), Caching, Algorithm/protocol design and
analysis

1 Introduction

With the help of the Web2.0 techniques, interactive in-
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formation sharing using audio and video instead of plain
text becomes more and more popular on today’s Internet.
Among the newly emerging Web2.0 applications, the In-
ternet on-demand video (VoD) streaming services, such
as YouTube [1], and the Chinese-based Tudou [2] and
Youku [3], have attracted many users. Unlike the tra-
ditional IP-layer VoD [4] and the recently popular P2P
VoD [5], in Internet VoD, videos are contributed by users,
and people can upload, view, mark, and comment the
videos. Because of its openness and interactivity, Inter-
net VoD rapidly becomes very popular after its birth, for
example, it was reported in 2006 that each day there were
more than 65,000 new videos uploaded on YouTube, and
the site was receiving 100 million video views per day [6].
It is also estimated that in 2007 YouTube consumed the
bandwidth of the entire Internet in 2000 [7]. With its
extraordinary large video collection and user views, In-
ternet VoD is far from an online cinema. For such a
large system, how to efficiently and inexpensively deliver
videos to users becomes a very challenging problem.

Currently nearly all the existing Internet VoD systemns
adopt a client-server architecture, where all the videos
are uploaded by the video server (server cluster or CDN)
to users, thus the bandwidth required and the cost in-
curred is very large. For example, in 2008 YouTube was
estimated to pay about one million US$ per day for the
bandwidth [8]. Obviously, it is economic and technical
beneficial if the traffic on the video server could be re-
duced. Recently, some researchers propose to use a P2P
network (e.g. [9]), where peers cache their downloaded
videos and help to distribute them, for Internet VoD ser-
vices. However, due to the special features of the In-
ternet VoD service, technologies that are widely used in
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P2P VoD streaming (e.g. PPLive [5]) may not work well
under the context of Internet VoD. On the other hand,
in traditional VoD services, proxies have been widely
used(e.g., [10] [11]). In this paper, we consider to com-
bine the two, and propose a protocol for the peer-assisted
Internet VoD system with proxies.

In this work, we first examine the characteristics
of Internet VoD’s workload by investigating real-world
datasets obtained from YouTube. We find that under
Internet VoD, there exists an extreme imbalance regard-
ing the videos’ popularity, and all the videos are very
short. We then formally present the video caching prob-
lem of the system combining proxy and P2P network,
with the objectives of reducing the video server’s work-
load and avoiding the inter-domain traffic. We show that
for such a problem, an optimal solution exist. With the
awareness of the Internet VoD service’s workload charac-
teristics and inspired by the theoretical analysis, we de-
sign PopCap, a practical protocol for the proxy and the
peers in the P2P network to independently and collab-
oratively cache videos. In the PopCap protocol, videos
are cached on the proxy in a proactive way, while for the
video caching on peers, we use blocking as well as evicting
to cope with the extremely imbalanced video popularity,
therefore enable the peers to avoid globally excessive or
inadequate caching of the videos. Unlike many P2P-
based caching systems such as PROP [11], PopCap does
not rely on a DHT-based overlay, therefore can cope with
the Internet VoD’s characteristics well, while unlike tra-
ditional Internet VoD systems, PopCap exploits the re-
source on individual peers, thus extensively reduces the
server’s workload. By comparing PopCap with existing
solutions. we find that PopCap is more practical and in-
expensive, which makes it suitable to be deployed under
the Internet VoD service. From simulation-based exper-
iments driven by real-world YouTube datasets, we find
that PopCap protocol could effectively reduce the video
server’s workload by making a better use of the caching
spaces on the proxy and the peers, moreover, its “smart
update” mechanism provides flexibility to further reduce
the video server’s overall bandwidth cost.

The remainder part of this paper is organized as the
follows: Section 2 introduces the related works; Section
3 describes the architecture of the peer-assisted Inter-
net VoD system under discussion; In Section 4, charac-
teristics of the Internet VoD service are analyzed using
real-world datasets; In Section 5, we formally present the
video caching problem, obtain its optimal solution, and
discuss its implications; We propose the PopCap protocol
in Section 6; In Section 7 we investigate the performance
of PopCap and compare it with other solutions; Finally,
we conclude this work in Section 8.

2 Related Work

With its great commercial success and influence on the
Internet, there are many works studying Internet VoD in
recent years. In [12], YouTube and another popular In-
ternet VoD service in Korea are studied, and the authors
analyze many aspects of the service including life-cycle of
the videos and its relationship with the video requests. It
is also shown that the server’s workload could be greatly
reduced if some P2P assistance is available. In [9], traces
from the MSN video service [13] are investigated, and
with a simple analytical model, it is shown that the traf-
fic on the video server could be dramatically reduced
if a P2P network helps to distribute the videos, even
if a strong locality rule is applied for the P2P network.
In [14], by exploring the data obtained from YouTube, so-
cial network patterns are observed among the videos, and
the authors propose a novel P2P-assisted video delivering
framework that explores the clustering of the video social
network for improving the playback quality and reducing
the server’s workload. In [15], the network traffic caused
by campus users downloading videos from YouTube is in-
vestigated, and the authors point out that by smartly ex-
ploiting metadata, better video caching strategies could
be developed.

On-demand video streaming using P2P techniques
also becomes very popular in recent years. Examples
include P2Cast [16], P2VoD [17] and DSL [18]. P2Cast
and P2VoD investigate a tree-based overlay structure to
organize the peers, and DSL presents a dynamic skip
list overlay to enable the VCR operation. Cui et al. [19]
propose oStream, which extends application multicast to
support VoD with buffers on peers. Tian et al. [20] con-
sider a probabilistic caching mechanism on the clients to
reduce the video server’s workload.

On the other hand, deploying dedicated proxies for re-
ducing the video server’s workload and providing a better
quality of streaming service has been studied for a long
time. In [10], the conflict between hit ratio and proxy
jitter in the proxy caching strategy is investigated, and
a new proxy system named Hyper Proxy is proposed.
In [21], a cooperative proxy-client caching system is pro-
posed, where low cost of P2P network and robustness of
dedicated proxy are combined. In a recent work [22], the
caching problem for peers in a P2P assisted VoD sys-
tem is investigated, and an algorithm with the feature
of proportional partial admission and eviction of video
segments is proposed. In [11], the authors consider a
VoD service combining both proxy and P2P network,
and propose a system named PROP to reliably and scal-
ably cache and distribute the videos.

Our work is different from previous works in that we
jointly consider the proxy and the peer caching under the
context of the Internet VoD service. By combining proxy
with P2P network, critical issues such as peer-proxy col-
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laboration must be addressed; while by considering the
problem under the context of Internet VoD, character-
istics of this application must be taken into considera-
tion and technologies that are widely applied in ordi-
nary P2P VoD systems must be carefully re-considered
and re-examined before get applied under Internet VoD.

3 The System Architecture

Proxyl
( Gateway

Video Server/
Web Server/
Index Server

Fig. 1 Demonstration of system architecture for peer-assisted
Internet VoD with proxy caching

In this paper, we consider a peer-assisted Internet VoD
system with proxies. Typically in such a system there are
three components: (a) the server, which contains at least
a web server, an index server, and a video server (server
cluster or CDN); (b) the end-system clients which re-
quest and download the videos; and (c) the proxy which
is deployed at the gateway of a domain and uploads the
cached video to the clients residing in the same domain.
In addition, clients form a self-organized P2P overlay
network, in which each of them is a peer and indepen-
dently maintains a video cache. Generally, the server is
maintained by the video service provider (VSP) such as
YouTube [1], the proxy can be runned by VSP or ISP,
and the peers are autonomous ordinary end-systems. A
demonstration of the system architecture is shown in Fig.
1.

In a peer-assisted Internet VoD system, a peer caches
the videos it has downloaded. Peers independently man-
age their locally cached videos. When a peer joins or
leaves the system, or a video replica is cached or gets
evicted, the peer reports to the index server. As demon-
strated in Fig. 1, when a peer requests a video, for exam-
ple, by clicking the video’s URL on the VSP’s website,
if a proxy is available for the domain of the peer, the
gateway redirects the request to the proxy (step 1), and
the proxy uploads to the peer if it has cached a replica
and has enough outgoing bandwidth (step 2). If there is
no proxy or the proxy is unable to upload the video, the
request is then sent to the index server (step 3), which
returns with a list containing some other peers on the
P2P network that currently have this video cached (step
4). The peer then requests and downloads the video from

some of these peers in a P2P manner (e.g. swarming [23])
(step 5). Finally, in case that there is no peer that have
cached this video, or none of the index server returned
peers can upload the video due to the reasons such as
poor network condition or stale information on the index
server, the requesting peer directly downloads the video
from the video server (step 6). From the procedure, we
can see that by deploying a proxy, some inter-domain
traffic can be avoided, as both P2P sharing and direct
downloading from the video server incur traffics out of
the domain. Moreover, the proxy and the P2P network
can reduce the workload on the video server. Clearly, to
effectively achieve these objectives, proxy and the P2P
network should cache the videos in a smart and cooper-
ative way. In the following sections, we will investigate
this problem from theoretical as well as practical proto-
col designing aspects.

4 Characterizing Internet VoD

Before analyzing the video caching problem, we first in-
vestigate some characteristics of the Internet VoD ser-
vice. Two datasets collected by crawling YouTube, i.e.
the one used in [12] and the one used in [14]), are used for
our investigation. For first one, we uses the “sci” dataset
which contains 252, 255 videos. For the data from [14],
we choose the dataset collected on Mar. 16th, 2007 con-
taining 42, 628 videos (referred to as the “0316” dataset).

We first examine the popularity of the videos in In-
ternet VoD. In Fig. 2, we plot the view times against
their ranks for all the videos in the “sci” and the “0316”
datasets . Note that in the figure, the curves are plot-
ted under log-log scale. In recent years, many works
consider the video access pattern to follow a Zipf distri-
bution (e.g. [11] and [24]) or some other Zipf-like dis-
tributions, such Zipf with exponential cutoff [12] and
Mandelbrot-Zipf [22]; on the other hand, a recent work
reveals that popularity of the videos is more likely to
follow a stretched exponential distribution [25]. In this
work, we do not try to fit the video access data from the
datasets with theoretical models, but focus on its funda-
mental feature. That is, we find from the figure that ex-
treme imbalance exits regarding videos’ popularity. For
example, in the “sci” dataset, the most popular video gets
viewed 2,537,904 times, while the mean and the median
view times in this dataset are 2, 140 and 186 respectively;
for the “0316” dataset, the values are 2,755,993, 5,405,
and 838 respectively.

Another feature of the Internet VoD service we are
interested is the video length. In [14], it is reported that
majority of the videos on YouTube are no longer than
700 seconds, while by examining the datasets, we find
that the mean video lengths are 143 and 205 seconds for
sci” and “0316” respectively.

In summary, by examining the datasets obtained from
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Fig. 2 Popularity for the videos in the (a) “sci” dataset and the (b) “0316” dataset

YouTube, we find that: 1) there exists an extreme im-
balance regarding the video popularity; 2) comparing
with traditional VoD, videos in Internet VoD are very
short. The two features of the Internet VoD service im-
pose a great challenge for applying P2P network-based
technologies on Internet VoD, for the following reasons:
First of all, with very short videos, peers will perform op-
erations such as video request, cache update and cache
announcement very frequently, this incurs a great work-
load on the P2P overlay; Second, with the extremely
imbalanced video popularity, the workload on a DHT-
based overlay very also be extremely imbalanced. For
example, the peer that manages the key of the most pop-
ularly video will have a much larger workload comparing
with other peers.

5 Analyzing Video Caching in Internet
VoD

In this section, we formally present the video caching
problem for a peer-assisted Internet VoD system and the-
oretically analyze it.

5.1 The Video caching problem

In our theoretical analysis, we consider a peer-assisted
Internet VoD system with a collection of M videos, which
are ranked in a descending order on their popularity, and
there are NV online peers. For simplicity, we assume that
all the videos are equal-sized. For each peer, it can cache
up to ¢ video replicas, while for the proxy, it can cache
C(C >> c¢) videos. For each video, say video i, it may
be cached by the proxy, and it could also be cached by
a number of the online peers. We use ¢;(¢; = 0,1) to

denote whether or not video ¢ is cached by the proxy, that
is, if cached, ¢; = 1, and ¢; = 0 if not cached. We also use
n;(N > n; > 0) to denote the number of the peers that
currently caches the video. For all the M videos, a vector
7 = {n1,na,...,np} is used to denote the caching status
of the P2P network and a vector ¢ = {c1,ca,...,car} is
used to denote the proxy’s caching decision.

In our analysis, we assume that the proxy has suf-
ficient out-going bandwidth and never fails, thus when
a video is cached by the proxy, the proxy can upload to
any requesting peer. On the other hand, peers in the P2P
network are different. A peer may fail, or it may evict
the video to make room for a new video replica, but the
index server that keeps the video’s caching status may
have stale information. Moreover, even for a peer that
does have the video cached, the network condition may
be very poor between the peer and the requesting peer.
To accommodate these concerns, in our analysis we sim-
ply use a probability of p to denote the chance that a
peer which is supposed to be able to serve a video by
the index server actually is unable to upload the video.
Obviously with these unreliable peers, the probability
that video 7 could not be served by the P2P network is

(1—=p)m.

Let A be the total video request rate from the N online
peers, then the rate of the requests that goes to the video
server could be expressed as Zi\il Api(1—¢;)(1—p)mi. If
we define p(7, ¢) = Ef\il pi(l—¢;)(1—p)™ as the ratio of
the workload on the video server, then the video caching
problem for the peer-assisted Internet VoD with proxy
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can be expressed as

Minimize p(1i, é) = Ef\il pi(l —¢;) (1 —p)™
s.t. ¢ =0,1i=1,2,... M
ng>0ii=1,2,.., M (1)

Ei]\ilcizc
Ei]\i1”i:N><C

5.2 The optimal solution and its implications

We first consider the case that no proxy is deployed. For
this case, the problem in Equation (1) can be rephrased
as
Minimize p(17) = Zf\il pi(l —p)m @)
s.t. Zf\il n, =N Xxc¢

For this problem, we have the following result.

Theorem 1. For the video caching problem in Equation
(2), the optimal solution 77* is

M
N log p; log [T, p;
nf=-—c— o8P + gH]fl el (3)
M~ log(l—p) Mlog(l—p)

Proof. First of all, for n} in Equation (3), it is easy to
see that Ei\il ny = Ne¢, suggesting that Equation (3) is
a feasible solution. Furthermore, for any 7 and j, i # 7,
we have

pi(l—p)" =pj(1—p)™

We then prove that the solution in Equation (3) is
local optimal. To show this, we consider another solution
7’ = {n},nh, ..., }, where for particular ¢ and j (i #
J), np =n;+1land n} =nj—1, and for any k (k # i, ),
nj, = ny. By taking 7’ and 77* into the objective function
p(7) in Equation (2) respectively, we have

*

+p;(L=p)" = pi(1 = p)™ —p;(1—p)"s

=pi(l—p)"
=pi(1=p)" (1 =p) = 1) +p;(1 - p)" (ﬁ B 1)
since p;(1 —p)™ =p;(1 —p)"i,

p(i') = p(i*)

=pi(l—p)™ ((1— )+1%—2> >0

for any p > 0. In other words, 77* is local optimal.
Finally, note that the objective function p(7) is convex
and the constraint is affine, thus the problem in Equa-
tion (2) is actually a convex optimization problem. It is
well-known that for such a problem, any local optima is
global optimal [26], therefore Equation (3) is the optimal
solution for the video caching problem without proxy in
Equation (2). O
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We then consider the video caching problem in Equa-
tion (1) when a proxy is deployed, for this problem, we
have the following result.

Theorem 2. For the video caching problem in Equation
(1), the optimal solution is

%7PJ<Z<C
nt = Ne  _ Y o1 (log pi—log p;)

i« M-C (M—C)log(1—p) ,O+1<i<M
=0

(4)

Proof. We first show that for any solution of ¢, i.e., the
proxy selects any C' videos from the the M videos to
cache, the optimal solution of 7 is

1f01:1

log p; 08 I1;.c;~0 P ife;=0

~ Toa(l-p) T GI—0)les(lp)’

To show this, note that for any video, say video ¢,
when it is cached by the proxy, ¢; = 1, Ap;(1 — ¢;)(1 —
p)™ = 0 regardless of the value of n;. So for this video,
proxy will serve all the requests, and it is not necessary
for the P2P network to cache any replicas, i.e., nj = 0.
Now with C' videos being cached by the proxy, M — C
videos with ¢; = 0 are for the P2P network to cache.
According to Theorem 1, for these videos, the optimal
solution is

7Nc
T M-C

log [T~ P;
(M — C)log(1 - p)

log p;
log(1 —p)

We next show that with 7%, the optimal solution for
cis

¢ =0,C+1<i<M

We prove this result as the following. By taking 7*
into the objective function p(7, ¢), we can see that

ii*, ¢) = szl_

0,Ci=

— (M —-C)(1—

To minimize p(7*,¢), we just need to minimize
[1;.c,—opi- Obviously, the best way is to set ¢; = 0 for
the M — C least popular videos. In other others, the
proxy caches the C' most popular videos. Therefore we
have proved the theorem. O

In our problem formulation in Equation (1), we only
consider the objective of minimizing the video server’s
workload (i.e., minimizing p), but do not consider the
objective of avoiding the inter-domain traffic. However,
we can see that the solution obtained in Equation (4) also
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achieves this objective. As both the direct downloading
from the video server and using the P2P network incurs
inter-domain traffic, clearly the most requested videos
should be cached by the proxy to avoid the inter-domain
traffic to the greatest extent, as shown in Equation (4).

In a practical peer-assisted Internet VoD system,
clearly it is infeasible obtain the values of the param-
eters pi, p, N, therefore we can not apply the solution
in Equation (4) directly. However, some insights could
be obtained from Equation (4). First of all, note that
in the optimal solution, proxy only caches the C' most
popular videos, while peers do not cache any replica of
them. This observation suggests that in a practical sys-
tem, proxy must be able to identify these popular videos
while peers must be able to avoid caching these videos.
Second, we note that for the videos that are not cached
by proxy, a proper number of replicas should be cached
by peers in the P2P network, in particular, the difference
of the replica numbers for video ¢ and video j is propor-
tional to logp; —logp;. This observation suggests that
if we know how to cache one video, say video k, then
for any specific video, in principle we will know how to
cache it by using video k as a benchmark.

5.3 Numerical evaluation

Finally, we numerically evaluate the effectiveness of our
solution for peer-assisted Internet VoD. For video pop-
ularity, we use the data of the first 20,000 videos ob-
tained from the YouTube “sci” dataset as shown in Fig.
2. We calculate the minimized workload ratios on the
video server by applying the optimal solution on the ob-
jective function in Equation (2). For other parameters,
we let N = 2,000, p=0.8, C = 1,000, and ¢ = 5 as the
default.

We first investigate the influence of the proxy cache
size. Under varying proxy cache size C' we plot the video
server ratio p against C' in Fig. 3(a). From the figure
one can see that by enlarging the cache size, more videos
could be served by the proxy. Moreover, we can see that
the curve is nearly linear, which means if the cost for
larger storage does not increase as much as the cost for
network traffic, it is economic beneficial for ISP or VSP
to pay for the proxy storage than for the bandwidth.

We also consider the influence of the peer cache size
by varying c and plot the video server ratio p against c in
Fig. 3(b). From the figure we can see that when c¢is small
and gets increased, p decreases dramatically, and when
c is large, p approaches zero. This observation indicates
that P2P networking is promising for the Internet VoD
service, thus it is very important to encourage the peers,
which are usually selfish, to contribute their local storage
in the P2P network.

We calculate the server’s workload ratio p under vary-
ing peer reliability values of p and plot p against p in
Fig. 3(c). From the figure we can see that even under

the moderate peer cache size, increasing p can dramati-
cally decrease p and reduce the server’s workload, there-
fore it is essential to timely update the index server and
eliminate the stale information.

6 The PopCap Protocol

Motivated by the theoretical analysis, in this section,
we consider under the real-world Internet VoD environ-
ment, how to design a practical protocol for the proxy
and the peers in the P2P network to independently and
cooperatively cache the videos.

6.1 Feasibility of P2P technologies

As shown in Section 4, we have observed two features of
Internet VoD by examining real-world datasets: 1) ex-
tremely imbalanced video popularity; 2) very short video
length. The former incurs a load balancing issue on P2P
networks, especially the DHT-based overlays, while the
latter causes a great increase of workload. Because of
these observations, before designing the protocol, it is
very necessary for us to examine the feasibility of the
P2P technologies that are successfully applied in ordi-
nary P2P VoD systems under the context of Internet
VoD. It is noted that nearly all the existing P2P VoD
systems rely on two essential technologies: the swarming
overlay technology and the DHT-based overlay technol-
ogy, where the former is used to distributed the video
data and the latter is applied for resource lookup and
management.

In previous efforts of applying P2P networks on the In-
ternet VoD service, P2P swarming technology has been
proved to be able to work well. For example, Net-
Tube [14] applies the swarming protocol similar to the
one used in CoolStreaming [27] to enable a peer-assisted
Internet VoD streaming. Meanwhile, there are very lit-
tle efforts of applying DHT-based overlays upon Internet
VoD. On the other hand, recently a P2P assisted VoD
system named PROP is proposed [11], where a DHT-
based overlay is used for assisting peers and the proxy to
make the video caching decisions. Therefore, it is very
necessary to examine the applicability of the DHT-based
overlay technology under the context of Internet VoD.

We consider a peer-assisted Internet VoD system simi-
larly to PROP [11], equipped with a DHT-based overlay.
In such a system, when a user finished viewing a video,
which has a typical length of 3 minutes, then it may keep
the video in its local cache and evict some cached videos
to make room, in this case, it must look up the peers that
manage the keys of the new cached video and the evicted
cached videos on the DHT overlay to make the updates.

Originally, PROP is not proposed for Internet VoD, but for
ordinary VoD services. Here we discuss a hypothetic Internet VoD
system that applies PROP.
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Fig. 3 Video server’s workload ratio p under optimal proxy and peer caching with (a) varying proxy cache size C, (b) varying peer

cache size ¢, and (c) varying peer reliability p

After that, if the peer requests another video to view, it
also must look up the peer that manages the video’s key
on the DHT overlay to locate the peers that have this
video cached. Note that for each DHT lookup, O(log N)
message deliveries are introduced on the overlay, so on
average a peer will send or forward 3 x log, N DHT
lookup messages every 3 minutes. Suppose that each
lookup message is 20 bytes, then for a moderate system
containing 5000 peers, on average the bandwidth used for
DHT lookup on a peer is 33bps, which is no longer negli-
gible. Moreover, recall that the popularity of the videos
in Internet VoD is extremely imbalanced, which causes
an extreme imbalance of the workload on the DHT-based
overlay. Suppose that the workload scales with the same
rule as the popularity, then by applying the data in “sci”,
the bandwidth used for DHT lookup on the peer with
the heaviest workload will be 39Kbps, which is totally
unacceptable. In addition, unlike the transportation of
video data, DHT lookups have much more stringent re-
quirement on the delay, while the heavy and imbalanced
DHT lookup workload on peers further reduces the effi-
ciency of the DHT-based overlay.

In summary, we find that under the context of the In-
ternet VoD service, DHT-based overlay is not feasible,
this makes the systems that rely on DHT (e.g., PROP)
no longer suitable for Internet VoD, and forces us to seek
approaches which could cope with the features of Inter-
net VoD to practically solve the video caching problem.
Following we present PopCap, a practical protocol for
the proxy and the peers in the P2P network to indepen-
dently and cooperatively cache videos under a Internet
VoD service.

6.2 Metadata collecting and estimation

In PopCap, we use the video server, the proxy, and the
peers to collect metadata, the metadata collected will be
used for assisting the proxy and individual peer to make
their caching decisions. Specifically, for each video, say
video i, the video server measures the following metrics:

e n/: total number of the times video ¢ has been re-

quested, (e.g., through a click on the VSP’s website);

e t7: the last time video ¢ was requested;

e nj: total number of the times that video 7 is up-
loaded by the video server;

e t7: the last time that video ¢ was uploaded by the
video server;

e q;: the time that video i was added to Internet VoD
service;

e s;: video 7’s size in bytes.

While on the proxy, following metrics are collected:

e n?: total number of the times that video ¢ is up-
loaded by the proxy;

e t”: the last time that video i was uploaded by the
proxy;

e d;: total bytes of video i that are uploaded by the
Proxy.

Each peer, say peer j, also keeps the following infor-
mation for each video replica it currently keeps in its
local cache:

e t¥: the time that this video replica is added into the
peer’s local cache.

Note that under current Internet VoD system archi-
tecture, the video server, the proxy and the peers only
need to use a few counters and time stamps to obtain
these metadata. It is not necessary to built a DHT over-
lay to collect these information.

In addition to the metrics measured directly in the
Internet VoD system, two other metrics are estimated.
Specifically, for each video, we use the method proposed
in [11] to estimate its popularity, that is, for video 1, its
popularity is estimated as

Pi_mm{”—f ! } (5)

tr—a; t—t!

DT
the long-term request rate of this video since the video
was added, ¢ — ¢} is the time since the last request, and

where t is the current time. In the expression is
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The proxy also calculates the wusefulness of prozy

caching for each video as the following

P t — tr
UlProzy — max { Zz T tp} (6)

is an approximation of the video’s recent request

P
Here % is the long-term ratio of the video uploaded by

the proxy, and i:z;: is the likeliness that this video will

be uploaded by the proxy on the next request.

6.3 Proxy cache strategy

The optimal solution in Equation (4) shows that for a
peer-assisted Internet VoD system, proxy should cache
the most popular videos. However, in our analysis it is
assumed that all the videos are equal-sized. Clearly this
assumption is impractical. For equally popular videos,
clearly smaller one is preferred to be cached as caching
space is limited. While to reduce the server’s workload,
for equally popular videos, caching a large one is pre-
ferred. Moreover, in Internet VoD, it is possible that a
user does not download the entire video, but only down-
load a part of it. Obviously, the videos that are down-
loaded with a larger portion should also be preferred. In
the PopCap protocol, we will consider the three factors
in making the caching decisions, that is: 1) the video’s
popularity; 2) the video’s size; and 3) portion of the video
that is actually downloaded, in making the caching de-
cisions.

For updating video caches on the proxy, periodically
the proxy calculates P; and U; for all the videos and
solves the following problem

. M .

Minimize Y, P;(1 cz)f(s—ll)g(sz)h(%)

s.t. ¢ =0,1;i=1,2,..,M (7)
Zi]\il sici < C

In the problem, M is the total number of the videos
under consideration, C' is the proxy’s cache size. ¢;(¢; =
0,1) is the label on whether or not video @ should be
cached by the proxy. For f(i), g(si), and h(—%— e ),
they represent the proxy’s favors to cache small and pop-
ular videos for saving the cache space, to cache large
and popular videos for reducing the server’s workload,
and to cache the videos that are more likely to be actu-
ally downloaded respectlvely For sunphmty, in PopCap
we let f(L) = L, g(si) = i, and h(%-) = %

p><s — nPxs;

Clearly for the problem in Equation (7), the videos with
the largest weights for (1 — ¢;) in the objective function
should be cached. Therefore, in PopCap’s proxy cache
strategy, for each video the proxy calculates a weight as

W, =Pt (8)

n X 8;

and selects the videos with the largest weights to cache,
until the cache is full. In PopCap, the proxy period-
ically determines which videos should be cached, then
it requests the missing videos from the video server and
discards the videos that should not be cached any longer.

6.4 Peer cache strategy

For PopCap’s peer cache strategy, usually there are two
approaches for a peer to set up an order in caching videos:
blocking and ewviction. For blocking, when a video is
downloaded to play, the peer does not necessary to put
the video into its local cache, but only caches it with a
certain probability; while in eviction, every video is as-
sociated with a priority, when a new video needs to be
cached, the peer evicts its cached videos based on their
priorities. The benefit of blocking is that peers need not
to cache the unpreferred videos, but it takes a longer
time for a peer to update its cache as not all the chances
are exploited. For eviction, the benefit is that all the
downloaded videos are cached, however, for very popu-
lar videos that have been downloaded very frequently, it
is very difficult to reduce the numbers of their replicas
even low priorities are assigned. In our peer caching al-
gorithm, we combine the two approaches: we block the
popular videos that are likely to be cached by the proxy
with a high blocking probability, while the cached videos
are evicted according to their priorities. Specifically, for
each video, say video 7, we use the usefulness of the proxy
as its blocking probability, i.e.,

Pb; = U (9)

In PopCap, the number of the replicas cached by peers
should follow the optimal distribution as shown in Equa-
tion (4).To achieve this objective, we carefully control
the lifetime of peer cached video replicas. Specifically,
for the evicting priority, periodically the proxy calculate
a “time to cache” (TT'C;) for each video as

logH - ].Og szn

P;

TTC; = (10)
where P; is video i’s estimated popularity as in Equa-
tion (5), and Py, is the minimum popularity for all the
videos under consideration. When a peer needs to cache
a new video, it calculate the priorities for all the videos
it has cached as

P’I‘i = TTC'Z — (t — t?) (11)
where t is the current time.

The “time to cache” metric indicates how long a video
replica should be cached by the P2P network. As from
Theorem 2 we known that the number of the video repli-
cas on their popularity is in logarithm, then if the number
of the cached replicas for the least popular video is zero,

there should be (log P; — log Puin) replicas for video i.
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Since P; is also the request rate for the video, according
to Little’s law [28], the time that a replica is cached is
%, which is the replica’s “time to cache”.

The PopCap’s peer cache strategy works as follows:
when a peer has downloaded a video, it queries the proxy
for the video’s blocking probability Pb;, and caches the
video with a probability of (1 — Pb;). When there is no
room for the new video, the peer queries the proxy for
TTCs of all its cached videos, and calculates their pri-
orities. Then the peer chooses the one with the smallest
priority and evicts, until the newly downloaded video can
be cached.

Finally, we compare PopCap’s peer cache update
strategy with the one used in PROP [11], where a
eviction-based mechanism proposed. In PROP, an utility
function is calculated by peer on each video, and for very
popular videos and for unpopular videos, their utility
function values are small while the values for the videos
of moderate popularity are relatively large. Peers use
the videos’ utility function values as the priorities dur-
ing eviction. However, in PROP, information of exact
number of video replicas cached by the P2P network is
required, which is collected by a DHT-based overlay. In
PopCap, such information is not available as the pro-
tocol does not rely on a DHT overlay. In addition, the
continuous-valued utility function can not effectively pre-
vent peers to cache the videos that are already being
cached by the proxy. For example, suppose that proxy
can cache up to C videos, then for the Cth video and the
C + 1 video regarding the popularity, the utility func-
tion will assign values without large difference, there-
fore peers can not differentiate them while making their
caching decisions. But according to our optimal solu-
tion in Equation (4), peer’s caching decisions on the two
videos should be very different. On the other hand, by
blocking video with the blocking probability Pb;, which
is not necessarily continuous on the video index, peers
can directly use the proxy’s caching decisions to make
their own decisions. In our experimental study in Sec-
tion 7, we will see that PopCap can better prevent peers
to cache very popular videos than PROP.

6.5 Smart update mechanism

Finally, the timing of the protocol execution is arranged
as the following: after every interval of T' (T could be
a period of time long enough, for example, a week or
a month), the proxy calculates P;, UiP "% and TTC;
for each video. The proxy updates the values of Pb; and
TTC; for each video at the times of T, 3T, 5T, ..., and the
proxy calculates P; and W, and updates its cache at the
times of 27,4T,6T,.... In this way, the proxy and the
peers update their caches asynchronously: the proxy up-
dates its cache after the peers apply new blocking prob-
abilities and priorities for an interval of 7', while the new
blocking probabilities and priorities are calculated after

the proxy has updated its cached videos and has run for
a time of T'. In other words, the proxy and the peers let
each other to have time to learn and update their caches
based on each other’s least recent caching decisions. Fur-
thermore, to reduce the traffic on the video server caused
by the proxy’s cache updating, it is not necessary for the
proxy to update at every scheduled time, but the proxy
can skip some of them. Specifically, after each update
the proxy calculates a significance of the changes as

M
SIG:TXZ(si x Wi x b;)
i=1

where
b — 1, ¢i(now) — ¢;(prev) =1
"7 10, otherwise

Here b; the label on whether or not video ¢ is newly
cached by the proxy, and SIG is an estimation of the
traffic saving on the video server by caching these newly
cached videos.

The proxy compare the SIG with the total traffic
uploaded by the video server during the recent inter-
val of T" as TRAF. Specifically, given a threshold, if
SIG < threshold x TRAF, the proxy doubles the up-
date interval (e.g., from 27" to 47, or from 47 to 8T, ...,
etc); and if SIG > threshold x TRAF, the proxy halves
the interval, until the interval becomes 27". We refer to
this mechanism as “smart update” of the proxy in the
PopCap protocol.

7 Performance Evaluation

In this section, we examine the effectiveness of the pro-
posed PopCap protocol and compare it with existing so-
lutions. An event-driven simulator is developed using
C+-+ for this purpose, and we use the YouTube “sci”
dataset [12] and the YouTube “0316” dataset [14] as the
video collection of the simulated Internet VoD system in
our experiments. But for the “sci” dataset, only the most
popular 20,000 videos are used. In our simulation, time
is divided into rounds. During a round, peers request
videos according to their popularity, and download them
from the proxy, the P2P network or the video server ac-
cording to the Internet VoD protocol. For simplicity, we
use the video length as the size of the video. For the
videos on YouTube, the average video length is 185 sec-
onds and we let the default proxy cache size as 2,000
times of the average video length, and set the default
peer cache size as 5 times of the average video length.
We also set the default total number of the online peers
as 2,000.

We compare PopCap with PROP [11], which is a pro-
tocol for P2P-assisted proxy for large scaled VoD ser-
vices. In PROP, proxy caches the most popular videos
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Fig. 4 Evolvement of (a)video server’s uploading traffic and (b) proxy’s downloading traffic

according to the estimated popularity, and clients up-
date their cached video replicas based on a popularity
oriented utility. In PROP, a DHT network is organized
by the clients, and for each video, there is a correspond-
ing peer on the DHT network that keeps the information
on clients that currently caches this video, as well as the
number of replicas currently cached by the P2P network.
Although using the DHT technique to find a list of peers
that is “good enough” for locating a specific resource is
commonly used in many P2P VoD systems, providing
accurate number of the peers that currently cache the
video is not easy, especially for Internet VoD. For exam-
ple, when a client has finished playing a video, there will
be an event of video caching and a number of evicting
events, and the peer must report these events to the cor-
responding peers on the DHT network. As the average
video length on YouTube is only about 3 minutes and
usually there are a large amount of online users, there
should be a large amount of reports frequently issued
by the users. Moreover, as the routing hops for a sin-
gle report is O(log N), when N is large, the delay of the
peer reports is non-trivial. In other words, for Internet
VoD using the DHT technique to obtain the accurate
numbers of video replicas is impractical, and expensive.
But in PopCap, we do not require the information of
the accurate number of the video replicas cached by the
P2P network, but only rely on information that could be
easily collected as discussed in Section 5. In our simu-
lation, we assume that accurate video replica number is
available for PROP.

7.1 Reduction on server’s workload

In our first experiment, we compare PopCap with PROP,
and another protocol where the proxy caches the popu-
lar videos and peers update their caches using the LRU
strategy. We start with a proxy randomly caches a num-
ber of videos, and the system evolves as the proxy and the
peers update their caches. Periodically, we measure the
traffic on the video server in uploading the videos to the

clients in the cases that the proxy and the P2P network
fail to upload, and we also measure the traffic caused by
the proxy in updating its cache as well. Fig. 4(a) and
(b) shows the how the two traffics evolve with the time
under different protocols respectively. We can see from
the Fig. 4(a) that among the three protocols, the traffic
on the video server under PopCap is the smallest, while
PROP outperforms the protocol using the LRU strategy,
which conforms to [11]. From Fig. 4(b), PopCap also has
the smallest traffic regarding the proxy’s updating, but
the difference is not significant. From Fig. 4 one can see
that both PopCap and PROP has a better performance
than the naive protocol of “popularity + LRU”, in the
remainder part of this section, we only focus on PopCap
and PROP.

To have an insight, we investigate how videos are
cached by the proxy and the peers under different pro-
tocol. During the simulation, at each time of proxy up-
dating, for each video we record: 1) whether or not it
is cached by the proxy, if it is cached, we record “1” for
this video, otherwise “0”; and 2) by how many peers this
video is cached. We refer to the record at a proxy up-
dating time as a “snapshot”. We record 50 consecutive
snapshots, and by averaging these snapshots we can ob-
tain the video’s caching status. Fig. 5 and Fig. 6 show
the caching status of the 20,000 videos under PopCap
and PROP. For proxy caching, from Fig. 5 we can see
that both PopCap and PROP can identify and cache the
popular videos, however, in PopCap, we consider pop-
ularity as well as the likeliness of actual downloading.
In Fig. 6, one can see that peers under PopCap is able
to avoid caching very popular videos, as these videos
are more likely to be cached by the proxy, while under
PROP, although low utilities are assigned to very pop-
ular videos, peers still cache them, as these videos are
requested very frequently by peers, evicting alone can
not effectively reduce their replicas on the P2P network.

To examine the effectiveness of the PopCap protocol
in exploiting the proxy cache, we vary the proxy cache
size and investigate the system’s performance, and com-
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pare it with the performance of PROP. We use both the
YouTube “sci” dataset and the YouTube “0316” dataset
in this experiment, and for the latter one, all the 42,628
videos are used. The experimental results using the “sci”
dataset are shown in Fig. 7(a) and the results using the
“0316” dataset are in Fig. 7(b). From the two figures, one
can see that when the proxy’s cache size is small, PROP
is better than PopCap. This because when the benefit of
proxy caching is not significant, by using the accurate in-
formation on the number of video replicas cached by the
P2P network, PROP can make a better use of the peers’
cache space than PopCap. However, with the increase of
the proxy’s cache size, PopCap outperforms PROP. This
is because PopCap makes better use of the proxy cache
than PROP, and more importantly, peers under PopCap
can cooperate better with the proxy by avoiding caching
the videos that are likely to be cached by the proxy.

We next consider the influence of peer’s cache size. In

this experiment we also use the YouTube “sci” dataset
and the YouTube “0316” dataset for simulation. Fig. 8
shows the traffic of the video server’s uploading to the
clients under varying peer cache size. Note that for let-
ting the peer cache size as zero we mean the case that
no peer-assistance is used for Internet VoD, and for the
peer size as 185 seconds we mean the case that users
only share their currently played videos. From Fig. 8,
we can see that PopCap has a better performance than
PROP, but when the peer size gets increased, the bene-
fit is getting smaller. Comparing with the PROP’s peer
cache algorithm, peers under PopCap is benefit from the
blocking by avoiding caching very popular videos, but
PROP exploits the accurate information of the video
replica number, which is assume to be available in our ex-
periment, therefore the advantage of PopCap over PROP
is diminished when the peer cache size is large enough.
To validate this point we also compare PopCap with a
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protocol whether proxy updates its cache using the Pop-
Cap’s algorithm while peers apply the PROP’s algorithm
while managing their caches. From Fig. 8 we can see
that first of all the difference between PopCap and the
new protocol is not significant, indicating that without
using the costly information of the video replica num-
ber, the performance of the PopCap’s peer algorithm is
very close to the one of PROP. By carefully examining
the figures, we can see that when the peer cache size is
not very large, the PopCap’s algorithm is better than
the PROP’s as peers under PopCap is able to avoiding
caching the videos that are likely to be cached by the
proxy, but when the cache is large enough, PROP’s al-
gorithm is better as the costy information of the accurate
video replica number is exploited.

For a large scale information service such as Inter-
net VoD, scalability is a very important property. To
investigate how scalable the Internet VoD service is un-
der different protocols, we vary the number of the online
peers and study the system’s performance. In Fig. 9, we
plot the traffics on the video server and the proxy un-
der different protocols when there are a varying number
of online peers. We use the 20,000 videos in the “sci”
dataset in this experiment. From Fig. 9(a) one can see

that with more and more users in the VoD service, the
workload on the video server gets increased, but thanks
to the P2P network, the increase is not linear. Fig. 9(a)
also shows that PopCap has a smaller workload on the
video server than that of PROP all the time. And from
Fig. 9(b) we can see that PROP also has a smaller traffic
caused by proxy updates.

7.2 Effectiveness of “smart update”

In all our previous experiments we do not enable the Pop-
Cap’s “smart update” mechanism for the proxy. In our
last experiment we investigate the benefit of this mech-
anism. We use the “sci” dataset in this experiment, and
to emulate the dynamic scenario of the Internet VoD ser-
vice, we only have 10, 000 randomly selected videos in the
system at the beginning of the experiment, and during
each interval, 50 randomly selected videos from the re-
maining ones in the dataset are added until all the videos
are added. We change the threshold for doubling the
proxy update interval, i.e., the parameter of “threshold’
in Section 5, and perform the simulation. We plot the
total uploading traffic of the video server to the clients
as well as the traffic on the video server caused by the
proxy’s updating in Fig. 10. From the figure, one can
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see that when the threshold is increased, the video server
needs to upload more to the clients as the proxy is less
sensitive to the changes of the video set and its popu-
larity, but the traffic caused by the proxy’s updating is
getting lighter, as the proxy updates “lazily”.

Although for the requests of the ordinary clients and
for the updating of the proxy, videos are downloaded
from the video server, the cost for unit bandwidth may
be different. For example, some ISPs apply different
rates for the traffics at the peak hours and the non-peak
hours. The traffic caused by the users’ video requests
is more likely to be at the peak hours while the proxy
could update during the non-peak hours. An other ex-
ample is that VSP may rent a CDN to update the proxies
but users download directly from the server. When the
unit bandwidth cost for the server/clients traffic and the
server/proxy traffic is different, we examine the effects
of the “smart update” mechanism from the economic as-
pect. We calculate the total bandwidth cost of the video
server using the following expression

cost = server/clients + ratio x server/proxy
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where “ratio” is the ratio of the cost for the
unit “server/clients” bandwidth and the one of the
“server/proxy” bandwidth. We plot the overall cost un-
der different thresholds applying varying ratios in Fig.
11. From the figure we can see that when the traffic cost
ratio is getting larger, or proxy updating is not cheap, it
is more economic beneficial to apply a larger threshold,
that is, the proxy should updates more “lazily”. How-
ever, note that the threshold should not be too large, as
suggested by the 6th curve in the figure, where the curve
is above the 4th and 5th curves under all the cost ratios.
This is because for a too large threshold, the proxy some-
what fails to capture the videos’ popularity dynamics.

8 Conclusion

In this paper, we consider the newly emerging Internet
on-demand video streaming service and the problem of
how to collaboratively use the proxy and the P2P net-
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work to cache and distribute the videos and reduce the
workload on the video server.

Frontiers of Computer Science in China

We first used two real-

world datasets from YouTube to study the characteristics
of the Internet VoD service. The we formally presented
the video caching problem and obtained it optimal so-

lution. Inspired by the modeling analysis, we designed

a practical and inexpensive protocol named “PopCap”
for the proxy and the peers in the P2P network to in-

dependently cache videos and cooperatively reduce the

video server’s workload. Comparing with existing solu-
tions, PopCap requires less infrastructure support, in-
curs a smaller overhead, and is more easy and practi-

cal to be deployed under the Internet VoD service. Fi-

nally, through experiments based on simulation using
real-world datasets, we showed that PopCap has a bet-

ter performance regarding the reduction on the traffics

of the video server and the proxy.
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