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Abstract—High-level programming abstraction and large-scale
deployment have become two important trends of software-
defined networking (SDN) in the past decade. Using high-
level program to manage the large-scale network faces more
serious control plane extensibility problem due to its complex
intermediate representation and protocol-independent feature.
To address this problem, we propose SPARC, a programmable
and scalable controller architecture, which employs a hybrid
hierarchical structure to maximize flexibility with regard to
control plane distribution. Our architecture also allows for
pushing down control decision making closer to the data plane
and localize network event processing to lower the latency of
control plane operations while exploiting SDN’s global visibility
to build optimal policy decisions. Furthermore, we investigate the
feasibility of SPARC by exemplifying the case of delivering ICN
mobility services and then conduct evaluations to demonstrate
the efficacy of our design.

Keywords—SDN, high-level programming, large-scale, pushing
down control decision.

I. INTRODUCTION

As an new network paradigm, Software-Defined Network-
ing (SDN) helped decouple the control plane that describes
network functionalities with high-level languages, and the data
plane that forwards packets based on low-level rules. Over the
fast few years, many programming models have been proposed
to raise the abstraction level of network devices [1], [2], [3],
[4], [5]. On the other hand, emerging programmable hardwares
(e.g., RMT and Flexpipe) allow both fine-grained control
and high-speed packet processing, and are being increasingly
deployed in different platforms [6]. A compiler is required to
bridge the given program and target hardwares. Typically, the
compiler first transforms the network policies into intermediate
representations, and then maps the latter into forwarding rules
installed in SDN switches from top-down [7], [8], [9].

However, with the addition of reconfigurable switches, the
intermediate representations maintained in the control plane
increase dramatically, and accordingly the controller may
suffer from scalability issues and become overloaded. In fact,
the scalability problem of SDN networks attracts considerable
attention from academic researchers, and various controller
structures have been put forward to upgrade the control plane
processing capacity [10], [11], [12], [13], [14]. Unfortunately,
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these existing solutions can not be directly portable to the con-
troller with adequate abstractions. We argue that the following
two challenges should be considered from the perspective of
managing a large-scale programmable network via high-level
control programs:

1) High-level network policies usually treat the entire net-
work as a whole and ignore substrate details. Such
abstract representations need to be translated into spe-
cific flow rules installed on distinct switches [15]. This
compiling process is expensive and time consuming,
especially when programmers adopt event-driven style
to handle packet misses. Hence, high-level programming
may face more serious scalability problem compared
with traditional multi-controller environments.

2) The reconfigurable switches should be programmed to
recognize new protocols and to support customized con-
trol logic. But, former extensible controller technologies
are mainly designed for OpenFlow, verify only specific
packet header fields, and can not interoperate with the
programmable data plane [13], [14]. PNPL [16] and
P5 [17], which are implemented based on POF and
P4 respectively, provide two frameworks for managing
protocol-independent data plane, but neither of them are
suitable for dealing with scalability issues.

In order to address the above two challenges, we pro-
pose SPARC, a Scalable and Programmable control plane
ARChitecture for protocol-oblivious SDN network. Inspired
by previous extensible control plane attempts, SPARC adopts
two-layers deployment of SDN controllers that handle fre-
quent, localized events close to data plane by pushing down
decision making, in the form of an intermediate representation
named extended tracing tree (xTT), to the regional controllers.
Global events, which require a broad picture of network-wide
state, are handled by upper layer global controllers. Following
the idea of PNPL [16], SPARC provides a set of programmatic
APIs that allows a programmer to describe algorithmic net-
work policies upon self-defined network protocols. This high
level user program is data plane agnostic and will be compiled
into separated xTTs in the global controller layer. On the other
side, the near-sighted regional controller maintains a runtime
system that will timely produce forwarding rules by searching
the constructed partial tree in memory. To sum up, the main
contributions of this article are as following:

• We have designed and implemented an initial prototype



of SPARC that provides protocol oblivious programming
environment and effectively solves the control plane
scalability problem at the same time.

• Unlike previous works attempt to distribute the network
policy to several controllers, we present a novel technol-
ogy for timely reacting local network events by pushing
down decision making (i.e., the compiled intermediate
representation) closer to the data plane. Our approach can
significantly reduce the control plane response time and
balance the total workload.

• We validate the feasibility of SPARC by deploying
Information-Centric Networking (ICN) with inherent mo-
bility support, and demonstrate how mobility-as-a-service
(MaaS) can be realized over a converged ICN/SDN net-
work. Moreover, we carry out performance and scalability
evaluation of ICN use case by scaling up/down the
number of managed switches.

The remainder of this paper is organized as follows. We
first offer a brief introduction to PNPL and summarize related
works in Section II. Then, we detail the design of proposed
architecture in Section III. In Section IV, we showcase the
use of SPARC for delivering ICN services and discuss the
evaluation results. Finally, we draw conclusions in Section V.

II. BACKGROUND AND RELATED WORK

A. PNPL Primer

SPARC is built upon our previous PNPL framework [16],
which provides an easy-to-use paradigm for controlling the
protocol-independent data plane. Specifically, PNPL provides
a header specification language and a set of protocol-agnostic
programming APIs. The header specification allows a user to
define complicated packet header structures through a high-
level abstraction language. PNPL’s APIs offer an implicit
call of POF instructions, simplify programming since users
do not have to appoint instruction parameters. With PNPL,
a programmer can define arbitrary network protocols, and
describe algorithmic sequential program in an f function.

On receiving a Packet-In message, PNPL invokes user
programs, monitors its execution process and further generates
an execution trace that records both packet parsing steps
and API call sequences made by f function. PNPL’s runtime
system then constructs a data structure named extended tracing
tree (xTT) by incrementally merging historical execution traces
into a rooted tree. The runtime system is also responsible
for producing forwarding pipelines from the constructed xTT
and deploying them on POF switches. More details about
xTT construction and pipeline generation can be found in
[16]. We use basic switch learning function to illustrate key
features of PNPL programming model. As shown in Fig.
1, PNPL takes an Ethernet protocol specification and an f
function (including two arguments, new arriving packet and
the network environment) as inputs. For learning switches in
Fig. 1, f maintains a mac2port table that maps a switch,
MAC address pair to corresponding output port. Specifically,
f first reads necessary packet fields (inport, srcMAC,

Fig. 1: PNPL Architecture.

dstMAC), and then records the mapping relationship between
the srcMAC and inport. Next, it lookups the dstMAC in
mac2port, returns a forwarding path by using CalcPath()
function. The xTT formed after applying f to given packets
is clearly containing all policy execution flows and relevant
policy decisions made by user function. Accordingly, the
generated pipeline matches srcMAC in one table for learning,
and matches dstMAC in another table for forwarding.

B. Related Work

1) Deep programmable SDN data plane: Recent progress
on programmable switch allows custom protocol stacks as
well as flexible packet processing by means of reconfigurable
match+action pipeline. To describe this pipeline, P4 [18]
provides an abstract model with five parts including headers,
parser, actions, tables and control flow. POF [19] strengthens
the flexibility of pipeline structure by supplying a set of
general-purpose instructions that allow a programmer to dy-
namically adjust deployed network protocols and applications
on the fly. OpenDataPlane [20] is a bottom-up open-source
project that pursues a set of unified APIs covering common
features across various networking platforms.

2) High-level SDN programming languages: Multiple sys-
tems have been proposed for offering programming languages
with different levels of abstractions. The Frenetic family (e.g.,
Frenetic [1], Pyretic [2]) is one of the most influential studies
in this field and has derived many effective SDN programming
languages. Frenetic and its extension provide an SQL-like
query language for declaratively expressing network policy.
Pyretic introduces modular compositors and permits parallel
and sequential composition of user policies. NetCore [3] is
designed to replace Frenetic with new formal semantics and
correctness proofs. Concurrent NetCore [4] adds multi-table
support but still depends on manual definition of flow table
layout. Stateful NetKAT [5] and SNAP [21] leverage persistent
switch-local state to enable stateful packet processing. Appar-
ently, the control plane scalability issue is not within the scope
of these study.



Fig. 2: SPARC’s Hybrid Hierarchical Architecture.

3) Scalable SDN control plane: Existing approaches to
alleviate the control plane scalability problem can be divided
into two categories. The first category approach distributes
the administration task to multiple controllers. HyperFlow
[10] is the first distributed event-driven controller architecture
that supports OpenFlow. It synchronizes global network view
among controllers from different clusters through a pub-
lish/subscribe system. DISCO [11] is another extensible SDN
control plane with the capability to differentiate heterogeneous
links of modern overlay networks. ONOS [12] acts as a special
network OS supporting horizontal scaling, and performs better
in network availability and reliability. The other kind of ap-
proach uses hierarchy structural design. For example, Kandoo
[13] processes local applications on local controllers near
datapath, leaving global applications to remote root controller.
Orion [14] adopts a hybrid hierarchical architecture, and is the
most similar literature with our proposed SPARC.

Note that all these works are based on OpenFlow with
limited protocol compatibility, and may be not directly ap-
plicable to SPARC. Nevertheless, they provide useful tips for
enhancing the control plane extensibility, and more generally
building a logically centralized but physically distributed SDN
network.

III. THE SPARC DESIGN

In this section, we present the design of SPARC, a scalable
and programmable control plane architecture of large-scale
SDN networks. We first give a high-level overview of the
proposed network architecture as well as its building blocks,
and then describe the key structural and functional components
of the controllers in more details.

The overall structure of SPARC is demonstrated in Fig.
2. From the figure, we can see that SPARC divides the
entire network into disparate network domains, where each
domain in turn consists of multiple areas with general-purpose
forwarding devices. Moreover, SPARC adopts a two-tier con-
troller deployment with two types of controllers: the Global

Controller GC at the upper layer and the Regional Controller
RC located close to the data plane. In the following, we
describe their functionalities respectively.

Global Controller (GC): Each GC is in charge of an SDN
domain, maintains its own network state and constructs a
global network view using synchronization information from
other GCs. In addition to this east-west communication inter-
face, a global controller also inherits the original northbound
interface of PNPL, i.e., a header specification language and
a set of programmatic APIs, with which users can freely
compose network policies over self-defined protocols. The GC
translates the user program into an intermediate representation
extended tracing tree (xTT), and further separates it into
subtrees based on areas and sends them to corresponding
regional controllers. To minimize control overhead, we enable
the GC to exclusively handle events which require network-
wide visibility or have not been traced by RC’s runtime system.
Examples include inter-domain routing, mobility tracking or
rule installation for newly arriving flows.

Regional Controller (RC): The regional controller, which
operates inside an area, is responsible for gathering network
resources exposed by physical devices and links, and further
reports collected local information to the global controller.
Hence, there is no need to exchange information among RCs
directly, which helps decrease the route convergence time
when POF network scales to large size. Moreover, each RC
has a runtime system that is used to cache the GC-generated
partial tree (henceforth referred to as PT) in memory. When
a Packet-In event occurs, the runtime system first handles the
reported packet by searching it in the PT. If the search process
reaches a leaf node with policy decisions, the runtime system
can immediately produce and deploy forwarding rules that
enforce the deserved network policy. Otherwise, RC will send
the packet (without payload) to remote GC, and incrementally
update local PT with new branch returned by GC for handling
the subsequent packets.

This two-tier approach allows us to improve the control-



lability of POF network. In SPARC, the packet handling
requirements are tried to be satisfied by regional controller
with the aid of PT. The RC’s runtime system caches all the
previous policy decisions from a fine-grained local scope and
lowers the latency of control plane operations by directly
retrieving memory contents. Therefore, it can handle frequent,
load-intensive Packet-In events when flow entry timeout or
replacement happens at the data plane. Put differently, we
offload part of critical tasks from the top-tier controller to
the RCs, and this can significantly reduce the load on the GC
and further enhance the scalability of control plane.

A. Basic Components

As shown in Fig. 2, SPARC contains several basic compo-
nents, which are essential for realizing the intra-domain infor-
mation processing and inter-domain information processing.
We further explain them in more details.

1) Device Discovery Module: The Device Discovery Mod-
ule stores sufficient information regarding network devices,
i.e., switches and hosts, in the data plane. The hosts are
normally user terminals or virtual machines connected to the
POF switches, while the latter are protocol-agnostic packet
processors with generic rules. Note that this module includes
two sub-modules: (a) The Regional Device Discovery Sub-
Module discovers the existence of POF switches in its area
during the initial handshaking process, obtains the intra-
area host information (e.g., network address or entity name)
through the location announcement packet, such as the ARP
packet in IP network and the Publish packet in ICN network.
(b) The Global Device Discovery Sub-Module records the
abstracted information of all switches, such as the datapath
identification (DPID) and the number of ports. By collecting
the host information from each region, it also builds a profile
for other modules to facilitate inquiries.

2) Link Discovery Module: The Link Discovery Module
leverages the Link Layer Discovery Protocol (LLDP) to detect
the inter-connected link between the POF switches. Specifi-
cally, the RC encapsulates an LLDP packet with its unique
fingerprint in a Packet-Out message, and sends it to each port
of all local switches. Upon receiving this LLDP packet, a
neighbor switch forwards it to the controller in the form of
Packet-In message. Then the RC decapsulates the Packet-In
message and updates its link set based on the meta information
(e.g., DPID and ingress port ID). If the extracted fingerprint
differs from its own fingerprint, the RC knows that this link is
an inter-area link and the reported switch is an edge switch,
then it sends the original Packet-In message to GC. The latter
recognizes all area border switches, and stores the inter-area/-
domain link information including the interface connected to
neighbor areas, maximum bandwidth, etc.

3) The Topology Management Module: The Topology Man-
agement Module has two parts to create a complete topol-
ogy view of the entire network. (a) The Regional Topology
Management Sub-Module requires discovery of the network
topology of the assigned area by collecting infrastructure
information from the previous two modules. Meanwhile, it

also adopts a resource abstraction scheme to shield the bot-
tom details when reporting its area network view to GC. In
particular, the reported abstract topology consists of:

• DPIDs of all edge switches and host-attached switches.
• Path capacity information about two kinds of virtual link,

such as hops and bandwidth, etc.

Here, the first kind of virtual link means the pre-computed
path (with shortest hops) from one inner switch to one edge
switch, while the second abstract link is computed between any
pair of area border switches. (b) The Global Topology Man-
agement Sub-Module enriches the area-level network view by
adding the neighbor area relationships drawn from the received
LLDP packets. It further obtains all inter-domain knowledge
on network topology through the below-mentioned Message
Communication Module, and finally reaches a synchronized
network-wide view.

4) Message Communication Module: The Message Com-
munication Module has two sub-modules which are respon-
sible for the horizontal network information synchronization
and the vertical xTT distribution respectively. On one hand,
we use the the Advanced Message Queuing Protocol (AMQP)
[22] to provide a publish/subscribe communication channel
between neighboring GCs. With AMQP, each GC shares its
abstract domain information (including all hosts, switches and
topology information) via network-wide flooding, supports
the cross-domain communication by sending and receiving
segment routing requests. It also uses Keep-Alive messages
to test the presence of peering GCs. On the other hand, we
create a vertical communication channel between the GC and
the RC with asynchronous socket. The asynchronous socket
has a thread pool that calls relative modules to handle the
incoming network events. Examples include: topology updates
when link failure occurs and xTT distribution upon receiving
new arrival flows.

B. Core Compiler

The Core Compiler is the heart of SPARC and encom-
passes the Policy Translation and the Forwarding Pipeline
Deployment modules. The network policies received from user
programs are compiled and split into distinct trace trees for
automatically populating the multiple flow tables on the target
area switches.

1) Policy Translation Module: In SPARC, a programmer
can declare his/her network policies through the appropriate
notations and abstractions inherited from PNPL. However,
such a high-level construct can not be understood directly by
other controller modules. Hence, as shown in Fig. 3(a), the
Policy Translation Module operates as a transpiler that takes
user programs as input and produces the equivalent interme-
diate structure xTT. As a result, the translated xTT encodes
the same packet parsing and network policy functionality as
the source code of user programs. The constructed xTT will
be further partitioned into PTs, which are stored in localized
RCs dispersedly. It is worth mentioning that this translation
process can be triggered in the following three modes:
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Fig. 3: Core Compile Components.

• Dynamical mode–In the dynamical mode, when a new
packet arrives, the GC invokes user program to augment
its xTT with a new growth branch, and distributes the
additional branch to appropriate RCs. Here the new packet
might come from Packet-In messages or routing requests
sent by other GCs.

• Statical mode–In the statical mode, the GC knows all
traffic flow beforehand by keeping a traffic history, and
use it to build an extensive xTT for installing forwarding
rules in advance before network flows arrive at the
switches.

• Hybrid mode–In the hybrid mode, the GC combines the
advantages of both reactive and proactive approaches,
pre-produces an xTT for certain traffic flows and then
modifies (add/update) it in case of network events like
link failures and user mobility.

Another noticeable thing about our transpiler is the com-
pilation of return statement declared in the code of network
policies. From programmers’ point of view, the execution of
user-defined CalcPath() function outputs a forwarding path
and returns a valid action, e.g., drop or forward packets to
specific port, for each switch along the path. What really
happens in SPARC is that the GC takes a centralized view
of the network state and makes hierarchical forwarding deci-
sions to determine optimal traffic routing. Specifically, a GC
first reads the source address and destination address from
the new arriving packet. (a) If both source and destination
address are in the same region, GC then assign the route
computation task to corresponding RC by sending a request
message ⟨IngressDPID, IngressPort, EgressDPID, EgressPort⟩.
(b) If the two address are from the same domain but different
regions, GC uses the Dijkstra algorithm to compute a shortest
path based on the sum of stored link result, then breaks up
the routing path into segments and sends request messages
to RCs in a reverse sequence manner, i.e., destination, transit
and source areas. (c) If the two communication hosts locate
at different domains, GC calculates a global shortest path by
adding inter-domain hops and intra-domain hops together, and
then uses the horizontal communication messenger to send the

original packet and route request to every domain along the
path for triggering the translation process on other GCs.

2) Forwarding Pipeline Deployment Module: As shown in
Fig. 3(b), the Forwarding Pipeline Deployment Module is
responsible for producing dynamic and efficient multi-table
pipelines and installing them on POF switches. The central
component is the runtime system in which each RC stores all
the previous policy decisions using the PT maintained in work-
ing memory. Since the space in flow tables is finite, switches
can only store limited flow rules. Frequent Packet-In events
will occur in the heavy traffic situation due to the existence of
per-flow timeouts and rule replacement mechanisms in SDN.
We argue that the processing of such events should be placed
as close as possible to where they originate by relying on
regional controllers. To handle a new reported packet, RC’s
runtime system simply traverses the PT from root node. (a)
If the policy decision for this packet has already been traced,
then RC can automatically infer forwarding pipelines from the
PT. (b) Otherwise, RC sends the packet without payload to the
connecting GC to invoke user programs, and augments its PT
with the returned branch for subsequent packet handling.

We keep the network control logic centralized and localize
control decision making to each RC to minimize control
plane response time. Unlike GC that explicitly invokes policy
programs to handle the Packet-In packet, RC directly search
the PT in memory, which is relatively faster in terms of
execution time. Moreover, latency-critical or high-load tasks
are offloaded from the global control plane to the RCs.
This can significantly decrease the load on the GC, such as
computational complexity of inter-domain routing. It can also
reduce the latency because there is no need to consult the GC
on each arriving flow.

IV. ENABLING ICN SERVICES WITH SPARC

As an innovative network architecture, Information-Centric
Networking (ICN) shows great potential to solve issues in
traditional IP network, such as mobility, security, energy
efficiency, etc. Meanwhile, the flexible programmability and
manageability of SDN bring convenience to ICN deployment



[23]. However, a simple combined ICN/SDN solution faces
more serious control plane scalability problem because content
resources are highly dynamic. In this section, we reveal the
additional benefit of SPARC from the viewpoints of integrating
ICN into POF network, and conduct simulation experiments
to demonstrate its performance advantages.

A. Name-Oriented Routing

Our preliminary implementation of the ICN controller in
SPARC is fully compliant with PNPL’s language specification.
For the sake of brevity, we employ a simple design of ICN
packet format. For example, as shown in Fig. 4(a), the outmost
Ethernet packet header is retained to be compatible with
existing hardware devices. The ICN Protocol field (4 bits) is
used to distinguish ICN protocol from multiple other protocols
like IP. There are four basic types of ICN packets: Advertising,
Interest, Data and Heart-Beat. Among them, Interest packet
and Data packet have an extra variable-length field for storing
a global Entity Unique Identifier (EUID), which represents a
piece of registered content. Here, each EUID can be either
a flat self-certifying name or a hierarchical human-readable
name. The remaining Payload part of ICN packet includes
signatures, user keys and data, etc. In Fig. 4(b), we also

Path*f (Packet* pkt , struct map* env){  

   port = read_env( env, "port");

   if(search_header(pkt, "eth.type", 0x0901)){

       type = read_packet(pkt, "icn.type");

       euid = read_packet(pkt, "Icn.src_euid");

       if(type == associationEvent){

           mod_env(env, "location", port, euid);}

       if(type == mobilityEvent){

           mod_env(env, "location", port, euid);

           return calcPath();}

        if(type == contentRequestEvent)

           return calcPath();}}

header ethernet {

   fields {

      �

      type}

   next select (type){

      case 0x0800: ipv4;

      case 0x0901: icn;}}

header icn {

   fields {

      euid : 48;

      type : 4;} � }

(a) Self-defined ICN protocol.

Path*f (Packet* pkt , struct map* env){  

   port = read_env( env, "port");

   if(search_header(pkt, "eth.type", 0x0901)){

       type = read_packet(pkt, "icn.type");

       euid = read_packet(pkt, "Icn.euid");

       if(type == associationEvent){

           mod_env(env, "location", port, euid);}

       if(type == mobilityEvent){

           mod_env(env, "location", port, euid);

           return calcPath();}

        if(type == contentRequestEvent)

           return calcPath();}}

header ethernet {

   fields {

      �

      type}

   next select (type){

      case 0x0800: ipv4;

      case 0x0901: icn;}}

header icn {

   fields {

      euid : 48;

      type : 4;} � }

(b) ICN routing and mobility service.

Fig. 4: ICN Service.

schematize the high-level control plane program that enables
network routing in ICN-compatible POF switches [24]. Ac-
cording to program order, the whole content-driven routing
process can be divided into two stages. (a) End hosts first
actively report local content resources to their RC by sending
advertisement packets with EUIDs. The RC further notifies its
GC if new EUIDs are registered. Note that when an EUID is no
longer available in local area, the RC has to evacuate previous
report. (b) In the second stage, a user issues a request with
destination EUID to obtain his/her interested data. If the first-
hop access POF switch has already cached the corresponding
content, the user can retrieve a data copy directly. Otherwise,
the switch will forward Interest request to its RC, and the latter
will ask a GC for help. Then, the GC chooses the best content
provider and plans a reverse path to transfer data packet to
the requester. It also makes caching decisions on intermediate
network nodes along the path.

B. Mobility as a Service

ICN uses location-irrelevant name to recognize a network
entity, it brings built-in mobility support since end-user’s
entity maintains a persistent name when moving around. In
the following, we consider the case of delivering mobility-
as-a-service (MaaS) over the SPARC-programmed network,
which has an additional benefit of being exceptionally easy to
implement (see Fig. 4(b)). Specifically, we give two examples
to illustrate how SPARC carries out the inter-area mobility
management and inter-domain mobility management.

1) Inter-area Mobility Example: The inter-area mobility
management is performed as shown in Fig. 5. The adopted
topology contains one domain and the domain has three areas.
Both content requester and provider are in the same region
(R1) at the beginning. When the provider moves from R1
to R2 within the same domain, the RC which connects to
R1 generates a Packet-In message to de-register the binding
relationship between EUID and the attachment switch. Mean-
while, R2’s regional controller reports the provider’s current
location to the GC it connects, the latter then forges an Interest
packet and recursively calls the user program to re-calculate a
path for delivering content on the updated content information.
Since the newly deployed flow rules have higher priority, the
original rules will eventually expire after a timeout period. By
comparison, the requester move case would be much more
easily achieved due to ICN’s late-binding [25] feature which
allows controller to redirect flows to requester’s new position
in a dynamic manner.

Fig. 5: Inter-area mobility scenario.

2) Inter-domain Mobility Example: As shown in Fig. 6.
The adopted topology contains two domains and each domain
has two areas. The second example shows how to maintain a
persistent communication session between the requester and
provider even when they move from one domain (D1) to
another domain (D2). Despite the control program here is
the same as the one in inter-area mobility case, the actual
operation applied during the movement is different. Specifi-
cally, when regional controller1 announces the departure of
content provider from R1, D1’s global controller encapsulates
the relevant EUID to a simple request and publishes it to all



GCs. When global controller2 which has content provider’s
current location receives the request, it computes an area-
level path and sends messages to GCs on the routing path, the
latter further pass messages to specific RCs. Here, let’s assume
path R1-R2-R3-R4 is chosen. When corresponding regional
controllers receive the message, they extract ⟨IngressDPID,

Fig. 6: Inter-domain mobility scenario.

IngressPort, EgressDPID, EgressPort⟩ and distribute forward-
ing rules on switches along the intra-area path. In addition, the
content requester mobility can also be conducted in a similar
way.

V. IMPLEMENTATION AND EVALUATION

In this part, we present the implementation of SPARC and
realize the described ICN services on top of this framework.
Then, we evaluate the overall performance of our prototype
system in various simulation experiments.

A. Implementation Details

We have developed a SPARC prototype to validate the
feasibility and effectiveness of the proposed system design.
The implementation of SPARC is based on PNPL, which pro-
vides basic topology management, storage and POF message
modules. We use hierarchical design idea to split the policy
compilation functionality of PNPL into two parts, which are
correlated to the policy translation module in upper layer
GC and the pipeline generation module in bottom layer RC.
The communication between this two modules is through
SPARC’s vertical communication channel. To sustain network
scalability, we adopt a distributed domain-based approach
to increase the coordination between GCs. The constructed
regional controller and the global controller of SPARC has
more than 25,000 C/C++ source lines of code (SLOC) respec-
tively. Moreover, we have also implemented an ICN routing
and mobility manager (270 SLOC) as an add-on module of
SPARC. This application gathers both network resources and
content resources, queries the topology module to compute a
path for content transfer on receiving interest requests.

B. Testbed Setup

We build a real-world testbed with four interconnected
Linux servers, where each server has two Intel I7-8700 cores

Fig. 7: The single domain experimental testbed.

(3.2 GHz CPU, 16G RAM) and 256GB memory. Fig. 7
demonstrates the experiment environment considered in a sin-
gle server. We utilizes the VMware virtualization technology
to provide several virtual machines, each server runs one
global controller and four regional controllers. Meanwhile,
on each server, we use Mininet [26] to instantiate a random
network topology with N POF switches, N hosts (connecting
to each switch) and M links. We consider a set of Nx contents
uniformly distributed throughout the simulated network (x is
a variable). The access frequency of content follows a Zipf
distribution, that is, the ith popular content will be requested
with probability of f(i) = c/iα. The arrival process of interest
request at control plane is a Poisson arrival process. In the
simulation, we choose N = 250, M = 500, x = 1.8 and let
the content priority between 0 and 1000. The constant c and
exponent parameter α in f(i) is set as 1 and 0.5 respectively.

C. Performance Evaluation

1) Comparison of Response Time: Firstly, we evaluate the
effectiveness of the proposed pushing down decision mak-
ing strategy, and compare with other controllers including
PNPL [27], and Floodlight [28]. Specifically, we insert code
in POF/OpenFlow switches and measure the control plane
response time, i.e., the latency between sending table miss
Packet-In requests and receiving forwarding rules produced
by controllers. Since Floodlight can not process ICN packets,
we use switch learning as the control program. One Linux
server with 250 switches is involved in this test, and we
employ Pktgen [29] to construct 5000 packets from switches.
Additionally, we start one GC and four RCs in SPARC case.

We repeat this experiment for five times and present the
results in Table. I, where the lowest value in each row has been
highlighted. From the table we can see that SPARC has a larger
flow setup latency in the first trial and performs much better
than the other controllers in the following test. The observation
is easy to understand. For SPARC, all packets are sent to
global controller for making policy decisions once generated
for the first time, which will bring extra delay due to the
vertical communication overhead. After the 1st test, previous
policy decisions will be traced in the form of PT at regional
controllers. Therefore, SPARC can directly handle subsequent
packets with the same policy decision by searching them in



TABLE I: Control plane response time comparison.

Controller SPARC(us) PNPL(us) FloodLight(us)
Exp1 5.61x108 4.25x107 4.92x1011

Exp2 2.57x105 2.53x106 4.83x1011

Exp3 2.61x105 2.45x106 4.85x1011

Exp4 2.57x105 2.55x106 4.96x1011

Exp5 2.59x105 2.66x106 4.87x1011

PT without invoking user programs. Apparently, searching PT
in memory is executed faster than explicitly calling program
as done in Floodlight. The better performance of SPARC over
PNPL can be explained with the fact that PNPL has to deal
with 250 sockets from switches simultaneously and SPARC
exploit the parallelism in multi-controller environment.

Since SPARC benefits from PT caching, people may have a
concern about whether it will impose large memory overhead.
To answer this question, we plot the consumed memory of all
SPARC controllers in Fig. 8, from which one can see that the
memory increases within an acceptable limit (80MB).
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Fig. 8: Memory consumption of SPARC with five experiments.

2) Scalability Evaluation: In the second experiment, all
Linux servers with 1000 switches in total are used. We increase
both the number of regional controllers in each domain as well
as the number of domains to verify the scalability of SPARC.
We run the ICN routing and mobility module on top of
SPARC, and use Pktgen to simulate content announcement and
interest requests from data plane. Note that the total amount of
content resources Nx is approximately 20,715 under the given
parameter configuration, and is far greater than the amount of
network devices, which reflects that SPARC will face more
severe scalability problems.

We evaluate the impact of area and domain partitions on
request handling rate (i.e., flow setup rate) per second of
SPARC. Fig. 9 presents the experimental result, where the
number of employed GCs and RCs is denoted in the form
of g-r in the abscissa. From this figure, we can make the
following two observations. First, when there is only one
domain, a single global controller has to handle all requests
with a number of 39735 per second. Along with the increase
of divided areas, the maximum throughput of SPARC grows
at a near-linear trend. That is because more tasks can be
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Fig. 9: Throughput of SPARC under different amount of GC
and RC.

offloaded from root controller to nearby regional controllers,
where interest requests are tried to be satisfied locally. This
accelerates the processing speed of control plane. Second,
when r = 4, the overall flow setup rate of SPARC rises
significantly as the domain number ranges from 1 to 4. The
reason behind this phenomenon is that more GCs can bring
larger computation capacity. However, it can also be found that
there is a slowing down of the rate growth, and it is caused
by the east-west communication between GCs when handling
inter-domain content delivery.

3) Mobility Evaluation: We conduct the third experiment
to demonstrate the built-in mobility support of SPARC’s ICN
application. We employ four Linux server in this test, the
number of switches/hosts N in each server is varying from
150 to 250, and the link number M = 2N . We let the variable
x in Nx equals 1 and hence get 1,000 content and distribute
these content to simulated hosts. A pair of end hosts is selected
to act as content provider and consumer, then we use Pktgen
to construct packets to randomly fake their mobility event.
During this period, we measure the end-to-end delay variation
by using TracesPlay [30] to analysis captured files. We first
carry out the inter-area mobility test and the evaluation results
are indicated in Fig. 10 (a). From the figure,we can see that
the delay in publisher move scenario is more undulate than
in subscriber move scenario, and the difference between the
average value of these two scenarios is nearly above 0.1s. This
phenomenon can be explain by the re-transmission of interest
packet in the former case, which will introduce additional
overhead. Moreover, we observe that when publisher moves,
the delay time increases gradually with more switches are em-
ployed. This is also the case on subscriber move circumstance.
It is easy to understand since the computational complexity
grows when data plane scales to larger size. We also conduct
the inter-domain mobility test and present results in Fig. 10
(b), and find the aforementioned phenomenons to be even
more pronounced. For example, the average delay has at
most 1.5× and 2.1× increasement respectively under the two
moving scenarios when compared to the previous test. One
important reason is that the inter-domain mobility process is
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Fig. 10: The delay of different mobility scenario.

more complicated and time-consuming as displayed in Fig. 6.

VI. CONCLUSION

In this paper, we design and implement SPARC, a scalable
and programmable control plane architecture for translat-
ing high-level control program to large-scale POF network.
SPARC enables local processing of network events by pushing
down the intermediate representation closer to data plane for
timely producing forwarding rules, and adopts a hybrid control
plane architecture to improve the network scalability. Further,
we realize a basic ICN routing and mobility module on the
top of SPARC, and evaluate the performance of our system
through this application. The experimental results show the
feasibility and effectiveness of SPARC.
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