Analyzing Multiple File Downloading in BitTorrent

Ye Tian, Di Wu and Kam-Wing Ng
Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: {ytian, dwu, kwng} @cse.cuhk.edu.hk

Abstract

Previous studies show that more than 85% of the peers
have joined multiple torrents in BitTorrent, but theoretical
work on multiple files BitTorrent downloading is rare. In
this paper, we first consider the scenario of multi-torrent
downloading. We present a fluid-model based analysis on
the multi-torrent concurrent downloading scheme, which is
implicitly adopted in practical applications, and quantita-
tively compare its performance with an alternative scheme
of multi-torrent sequential downloading. We also consider
the scenario of multi-file torrent downloading (e.g. multi-
ple files shared within a single torrent), and find that the
scheme of multi-file torrent concurrent downloading, which
is explicitly engaged in practical applications, is inefficient.
A new scheme named collaborative multi-file torrent sequen-
tial downloading is proposed, and we show via numerical
analysis that the download performance could be improved
by collaboration among the peers in different subtorrents. Fi-
nally, we propose a self-adaptive mechanism for practically
deploying our multi-file torrent downloading scheme in a dis-
tributed fashion under situations when correlation among the
files and majority peers’ behaviors are unknown.

1 Introduction

BitTorrent [1] is a peer-to-peer (P2P) file sharing proto-
col which is extremely successful in recent years. The main
feature of BitTorrent, as well as other similar protocols, is
that a file is divided into many chunks, and for each peer, it
will download chunks from other peers while uploading the
chunks it keeps at the same time. For the partner selection, a
tit-for-tat (TFT) strategy is adopted, in which a peer simply
chooses to upload to those peers from which it could down-
load at the largest rates, and it will follow the local rarest
first strategy (LRF) to choose to download the chunks which
are rarest replicated among the neighboring peers. For those
peers which have finished downloading all the chunks, they
will upload them in an altruistic fashion. Usually in a torrent,
people call the peers which are currently downloading the
content as the downloaders and the peers which have already
finished the job but have not quit the torrent as the seeds.

Due to its success in real world, many studies have been

proposed to understand the BitTorrent’s performance in re-
cent years [2] [3] [4] [5] [6] [7] [8] [9], these studies pro-
vide insightful and accurate results on the system’s perfor-
mance. However, most of these researches are single-file-
single-torrent based, assuming that the user enters into a tor-
rent for exactly one file with all the available bandwidth,
and there is no correlation between the files requested by the
users. While in practice, many of the files published via Bit-
Torrent are interest-correlated, which means users who have
requested one of them will be very likely to request another.
Examples of the interest-correlated files include the differ-
ent versions of the computer games under the same theme,
the movies featuring the same superstar, or episodes of a TV
play.

In this paper, we consider different scenarios of interest-
correlated multiple file downloading in BitTorrent. Con-
cretely, two scenarios are under consideration: First, we
study the multi-torrent downloading scenario, in which the
user enters into separate torrents for different files. Cur-
rently, most of BitTorrent client softwares will download the
files concurrently, and each instance of a BitTorrent down-
load process competes the available bandwidth with others.
Note that the files requested in separate torrents may have
weak or strong correlation among themselves. So our ques-
tion is: taking the correlation among the files into consider-
ation, is this multi-torrent concurrent downloading (MTCD)
scheme efficient? The second scenario under consideration
is the multi-file torrent downloading. In this scenario, sev-
eral files are published within a single torrent by the pub-
lisher, and the users could choose to request a subset of the
files or download them all. Currently, most BitTorrent client
softwares which support this functionality just download the
chunks of the requested files randomly, as if it is downloading
the chunks of a single file, in this way, the files are actually
downloaded in a concurrent fashion, and we call it the multi-
file torrent concurrent downloading (MFCD) scheme. For
MEFCD, our question is: is it efficient? Since files published
within a single torrent is usually highly interest-correlated,
another question is: is it possible to improve the download-
ing efficiency by making use of the high correlation among
the files, and among the peers downloading them.

We present a fluid model based analysis on the multi-
torrent downloading scenario, and find that the MTCD
scheme, which is implicitly engaged by the users, are not

efficient enough, compared with the alternative scheme of
multi-torrent sequential downloading (MTSD). This ineffi-
ciency is more obvious when the files published are highly
interest-correlated. For the multi-file torrent downloading
scenario, our analysis shows that the performance of the
MFCD scheme, which is explicitly engaged by the content
publishers and the BitTorrent client software, could be im-
proved by exploiting the correlation among the peers request-
ing for the same set of files in the single torrent. Motivated by
the observation, we propose a novel scheme called collabo-
rative multi-file torrent sequential downloading (CMFSD) in
this paper. In our scheme, the content publishers also pub-
lish the highly interest-correlated files in a single torrent, but
the peers download them in a collaborative way by serving
as partial seeds. We show via fluid model based analysis that
the performance gets improved intensively for high interest-
correlated files. Finally, a self-adaptive mechanism is pro-
posed for practical deployment of the protocol by the indi-
vidual peer.

1.1 Related Work

For such a widely deployed protocol as BitTorrent, real-
world application measurement [2] [3] [4] is the most direct
way for people to understand the system’s performance. In
[2], a five-month analysis on the tracker’s log file of a Bit-
Torrent system is presented, the author shows that BitTorrent
is realistic and inexpensive, compared with traditional proto-
cols such as ftp and http. A measurement [3] on the BitTor-
rent/Suprnova architecture is given recently, the influence on
the metrics as content’s availability and integrity by the web-
site user’s behavior are systematically measured and studied.
Also in a recent measurement [4], the new peer arrival is dis-
covered to be deceasing exponentially, and the universal phe-
nomena of peers joining multiple torrents is observed. On the
other hand, to have an insightful understanding of the perfor-
mance of BitTorrent, some theoretical analysis are proposed.
A branching process model is discussed for studying the tran-
sient regime of the BitTorrent system, and a Markov chain
model is proposed for capturing the system’s service capacity
under the stable state in [6]. A fluid model is presented in [7],
where the expressions of the numbers of the downloaders and
the seeds could be obtained under the assumption that peers’
arrival and departure follow a Poisson process. The analy-
sis also shows that BitTorrent achieves very good scalability.
However, recent studies [8] [9] reveal systematic inefficien-
cies at the beginning and the end of the peer’s download job
progess in BitTorrent. Enhancements to BitTorrent could be
found in Slurpie [10] and Avalanche [11]. The Slurpie sys-
tem integrates techniques such as group size estimation, back
off and bandwidth estimation to improve the utilization of
the link bandwidth and to decrease the burden of the topol-
ogy server. For Avalanche, the pieces of the file are encoded
both on the source and on the nodes, which makes the block
propagation of the file more efficient than transmitting the
uncoded blocks.

Our unique contribution is this paper is that unlike the pre-

vious studies, which focus only on one-file-one-torrent sys-
tem, we work on the performance and possible improvement
of a multiple file system with correlations among the files.
To our best knowledge, similar topics are only studied in [4],
however, in [4], the authors make efforts to prolong the tor-
rent’s lifetime, but our work aims to improve individual user’s
performance.

The rest of the paper is organized as follow: we discuss
the fluid model in Section 2; and in Section 3, performance
analysis based on the fluid model for different downloading
schemes is developed, we also present our proposal and anal-
ysis on the collaborative multi-file torrent sequential down-
loading scheme in this section; numerical evaluations and
discussions on deployment are given in Section 4 and finally
we conclude this paper in Section 5.

2 The Fluid Model for BitTorrent

Models of fluid-based methodologies have been proved
powerful for analyzing the performance of the large scaled
networking systems. In [13], a stochastic fluid model is used
for studying the performance of the P2P web catch system
— Squirrel [12]; and in [7], a fluid model is developed for
evaluating the BitTorrent system. Although these models are
simple, they provide accurate and insightful results for the
performance issues, such as the hit probability of Squirrel
and the downloading time for BitTorrent.

We develop our analysis based on the model of [7]. In
the model, z(¢) and y(t) are used to represent the numbers
of the downloaders and the seeds at time ¢ respectively, and
two ordinary differential equations (ODE) are developed to
study the population evolution for these two different kinds
of peers as follows:

{ B — N — p(na(t) + y(t))
W — p(na(t) +y(t) — vy(t)

Here we just assume that the available download bandwidth
of a peer is much larger than the available upload bandwidth,
so the system’s performance is constrained by the upload ca-
pability of the peers. The meanings of the parameters in the
model are listed in Table 1.

2(t) | num. of the downloader peers in the torrent at time ¢

(t) | num. of the seeds in the torrent at time ¢

entry rate of new peers

upload bandwidth

Y
A
n file sharing efficiency between two downloader peers
I
~

rate of the seeds departing the torrent

Table 1. Parameters in BitTorrent fluid model

The parameter 7 is modeled as the ratio of a downloader’s
service capability in uploading the chunks compared with the
capability of a seed. In [7], the authors regard that 7 is the
probability that a downloader could upload chunks to a con-
nected peer, and prove that this probability is near 1 when

the number of the chunks is large enough. However, in [2], it
is reported that over five months, the seeds have contributed
more than twice the amount of the data sent by the download-
ers, while the portion of the seeds among the total peer popu-
lation is consistently lower than the portion of the download-
ers after the initial phase of flash crowds (referring to Fig. 2
(a) and (b) of [2]). Based on this observation, we believe that
the value of 1 should be 0.5 at maximum. The relatively low
uploading efficiency of the downloaders could be explained
with the tit-for-tat strategy played by the downloaders in ex-
changing the chunks: unlike the altruistic uploading by the
seeds, the downloaders only upload chunks conditionally. In
this paper, we will simply set a value of 0.5 for), same as the
value chosen in [6].

The fluid model in [7] treats all the downloaders and the
seeds uniformly, however, in this paper, we wish to know the
performance of the peers categorized into different classes,
respecting their upload/download bandwidths. Suppose the
peers in a torrent could be categorized into S classes as
{Ci(p1,¢1),-..,Cs(ps,cs)}, where a peer of class C; has
a upload bandwidth of y; and a download bandwidth of c;,
and there are x;(t) downloaders and y;(t) seeds of class C;
at time . We make two assumptions:

e For the downloaders of a class C;, the total service
they received from the downloaders in {C1,...,Cs} at
time ¢ is proportional to their upload bandwidth p; and
their population z;(t) as P2iHLi__ Zz Lzt =

1 zu(t)
ni(t) fi-

e For the downloaders of a class C, the total service they
received from the seeds in {C1, ..., Cs} at time ¢ is pro-
portional to their download bandwidth ¢; and their pop-
ulation x;(t) as Pl(t— Zl Ly

The first assumption is based on the TFT strategy in
chunks exchanging between the downloaders; and for the
second assumption, it is an approximation of the altruistic be-
havior of the seeds, since they just upload to peers according
to their ability in receiving the chunks.

3 Performance Analysis for Multiple file
Downloading System

3.1 The Server-Torrent Architecture

BitTorrent is a P2P file sharing protocol which does not
rely on a centralized placement of the shared content. How-
ever, in the real world deployment, at least two centralized
components are required: a web server and a tracker server.
The web server provides an indexing service: it just pro-
vides a collection of links to the metadata file of a BitTorrent
shared content (with .torrent as the extension name). Users
could obtain the metadata of the existing torrents, and prob-
ably the number of the downloaders and the seeds currently
in the torrent from the server. Examples of the BitTorrent
indexing web server include and BitTorrent@China [14] and

Figure 1. The server-torrent architecture.

TorrentSpy [15]. The web server could also be in the form of
a forum, in which the publishers upload the metadata as an
attachment. After the user obtains the metadata file, the Bit-
Torrent client software is launched and connects to the tracker
server, and the user enters into the corresponding torrent to
download the content.

Usually an indexing web server may provide links to tor-
rents belonging to many tracker servers, and conversely a
tracker server’s torrent metadata file might be published on
many web servers. For simplicity, in this paper we assume
that there is only one web server and one tracker server as
shown in Figure 1, the content published on the web server
will only be served by the tracker server, and the web server
will only publish the content served by the tracker server. In
the followings we will investigate the performance of dif-
ferent multiple file downloading schemes under this server-
torrent architecture.

3.2 Multi-Torrent Concurrent Download-
ing

We first consider the situation that users enter into separate
torrents to download different files. The scheme of multi-
torrent concurrent downloading (MTCD) is studied in this
part. In MTCD, a user will enter multiple torrents for the
files he/she has interest in and download them concurrently.
Suppose there are K files and consequently K torrents in the
system, denoted as {t1,ts,...,tx}. For a user who down-
loads multiple files simultaneously, multiple peers are gener-
ated: one for each torrent. If the available upload bandwidth
for a user is p, then for each peer, the average available band-
width is p/4, where 4 is the number of files the user has con-
currently requested. The download bandwidth is also divided
into % shares. We further categorize the peers engaged in the
K torrents into K classes: for the ith class peer, its user has
requested ¢ files simultaneously. For a particular torrent, say
t;, we use)\3 for the entry rate of the new peers of the ¢th
class, and use ’(t) and y/(t) to denote the number of the
downloaders and the seeds of the ith class in ¢; respectively,
then the service contribution from the ith class downloaders
in torrent ¢; could be expressed as ik’ (t); and for the ith
class seeds, the service provided by them is 4y’ (t). Under

the assumptions we have made in Section 2, the downloaders

of the ¢th class receive a portion of & for the total

=1 775 ()
service provided by all the downloaders and the seeds. Ag-

gregating all the analysis, we have the following fluid model
for torrent ¢; as:

dz’ (t) i T [R10) L
d = A) = e 3 ()

dy (1 : Lol (o)
= = k() + p@wﬁ

wherei,j € {1,2,..., K}.

Under the stable state in which do, ()

=0 and Lyjt(t) =0,

dt
we have
l P 141
"Yl 1/\j_ul lTAj
T s\ = =
T} —z)\j —
YHn A
) =1
k3
Y]
Y; ~

for the numbers of the ith class downloaders and the seeds in
torrent ¢; respectively.

We use the online time as the metrics for performance
evaluation, which is the sum of downloading time and the
time of the peer serving as a seed. Applying Little’s law [16],
the average online time for the ith class user at the stable state
is:

s l Kll
YA TN
TMTOD = I 4 2 =1 Kl:l TR

7
! ILDIRY
=1

We could see that a user’s average download time is pro-
portional to the number of the files he/she has requested.

3.3 Multi-Torrent Sequential Downloading

Another way for a user to obtain multiple files from dif-
ferent torrents is to download them sequentially instead of
concurrently. In the multi-torrent sequential downloading
scheme (MTSD), since a user enters into only one torrent
at a time, all the bandwidth of the user is engaged in one
downloading process, thus we could apply the results in [7]
directly in our analysis.

Suppose for a particular torrent, say torrent t;, we use
x;(t) and y;(t) to denote the numbers of the downloaders
and the seeds respectively, and assume that the entry rate of
the new peers for ¢; is A, then the fluid model for torrent ¢;
is:

Z%((;) = Aj — ;i (t) — py; (t) 3)
e = () + s () — vy ()
forj e {1,2,...,K}.

Following the same procedure as in [7] and in the previous
section, we have the average download time in a torrent as
T = 2=E and the average online time for the ith class peer
(peers requesting ¢ files) as

1 —
TMTSD 74 2y =i(L=E 4 2)
o oy

where v > p. As in the multi-torrent concurrent download-
ing, the average download time is proportional to the number
of files the user has requested.

If the number of torrents is 1, we can see that our analysis
results in (2) and (4) degenerate and conform to the result
of the single torrent performance in [7] (set K = 1,7 = 1
and remember that the model is constrained by peers’ upload
bandwidth). In this way, we could prove the correctness of
our model.

3.4 Multi-File Torrent Concurrent Down-
loading

Sometimes, the publisher will publish several files in just
one torrent within one metadata file, and many BitTorrent
clients allow the user to choose a subset of the files included
in a torrent to download. Files published within a single tor-
rent are usually highly interest-correlated (e.g., TV series),
and many users are very likely to choose almost all the files
in the torrent to download. Currently, most of the BitTor-
rent client softwares do not differentiate the single file con-
tent and the multiple file content, but download the chunks
randomly. So, the multiple files within a single torrent are
actually downloaded in a concurrent fashion, and we call
this downloading scheme as the multi-file torrent concurrent
downloading (MFCD).

In MFCD, suppose a peer has chosen i files, we could
simply view it as a set of ¢ virtual peers, and each virtual
peer is competing bandwidth with the other virtual peers. On
average a portion 1/i of upload/download bandwidth is as-
signed to each virtual peer. Under the scheme of MFCD, a
torrent is divided into K subtorrents, and a peer could enter
multiple subtorrents with multiple virtual peers. In this case,
the MFCD scheme could be viewed to be equivalent to the
MTCD scheme, and the only exception is that in the MTCD
scheme, the peers of a user depart the system independently,
while the virtual peers belonging to the same real peer are
departing as a whole under MFCD. However, this difference
will not influence our application of the previous results on
MTCD, since in both cases the average service time of a seed
is 1/~. We will use the result in (2) for evaluating the perfor-
mance of the MFCD scheme.

Although the MFCD scheme is equivalent to the MTCD
scheme in the fluid model, it is worth pointing out that the
files being downloaded in MFCD and MTCD have differ-
ent levels of interest correlation. Usually, users will down-
load all the files provided in a single torrent in the MFCD
scheme, since these files are highly interest-correlated, such
as TV plays. However, although it is observed in [4] that
many peers request more than one files in its lifetime, it is
hard to estimate how many users will download the same set
of files simultaneously in the MTCD scheme (It depends on
the type and the popularity of the content). In this sense,
we believe that it is promising to improve the download per-
formance of MFCD by allowing the peers to collaborate in
the multi-file torrent downloading scenario, since all the files
are highly correlated. Motivated by this consideration, we

present a scheme of collaborative multi-file torrent sequen-
tial downloading (CMFSD) in the next section.

3.5 Collaborative Multi-File Torrent Se-
quential Downloading

In the MFCD scheme studied in the previous section, all
the peers are treated uniformly, even if some peers are be-
longing to the same user. However, when the files shared
are highly interest-correlated, it is very likely that a down-
loader in one subtorrent could be a potential seed in another
subtorrent since it has obtained the complete file. In this case,
allowing collaboration among subtorrents will intuitively im-
prove the overall performance of the multi-file torrent down-
loading system. Based on this observation, in this part, we
propose a scheme of collaborative multi-file torrent sequen-
tial downloading (CMFSD), and present a fluid-model based
analysis on its performance.

In CMFSD, K interest-correlated files are published
within a single torrent, in which there are K subtorrents, one
for each file. A peer entering the torrent could specify the
files it will request in the torrent, but could be allowed to
download them sequentially, and the downloading sequence
is randomized. A peer under CMFSD will allocate all its
downloading bandwidth in the subtorrent it is currently in.
But for a downloader which has requested multiple files and
has finished some of them, it will allocate a part of its upload
bandwidth in one of the subtorrent for which it has a complete
file, serving as a seed partially in the multi-file torrent down-
loading system, and it uses the rest of the upload bandwidth
to play TFT in the subtorrent in which the corresponding file
it is currently downloading. Actually, we could view such a
peer as a combination of a virtual downloader and a virtual
seed.

We call the peers which have requested ¢ files in the torrent
as the ith class peers. For a torrent with K files, suppose
the entry rate of the ith class peer is \;, and we use 2 (t)
and y*(t) (1 < j < 1) to denote the number of the ith class
peers which are downloading their jth file (already finished
j — 1 files) and the ith class seeds in the torrent at time ¢
respectively.

For a downloader of z°(t) in the system, which means
the downloader peer has requested 7 files and has already
finished j — 1 of them, the upload bandwidth p is divided
into two parts, bandwidth of pu(0 < p < 1) is allocated
for its virtual downloader in the subtorrent in which the peer
is downloading its jth file; and the remaining bandwidth
(1 — p)u is allocated for its virtual seed serving one of the
7 — 1 files it has finished. On the other hand, for a down-
loader of 2% (¢) in the system, it could receive service from
three sources: 1) the other downloaders in the same subtor-
rent; 2) the virtual seeds of the downloaders which serve in
the same subtorrent; 3) the real seeds serving in the subtor-
rent which have finished all the files requested.

We define a function P(i, j) as: P(i,7) = 1, when¢ = 1,
or j = 1, this is for a peer which is downloading its first
file, thus has no completed file to serve as a virtual seed; and

P(i,j) = p, p € [0,1], when i # 1 and j # 1, this is
for a downloader with at least one completed file. With the
function P(i, j), the total service provided by the first source
could be expressed as Z{il Zlm:l punP (1, m)xb™(t), and
the total service provided by the second and the third source

are Y10, S0 (1= P(1,m))xb™ (¢) and 3%y (¢) re-

spectively.

Under the assumption made in Section
2, for the peers in a%J(t), the total amount
of service received from the first source is

Py EP(L]);C(Z fﬂ?)wl o (t) (Zl 1 Zm 1/“7P(l m)

=1 m=1
pnP(i, j)x
and the thlrd sources are

() =

J(t); and the serv1|ge re&ewed from the second

=7 (1) lg 1 (L= P(Lm))z"™ (t)
=1 me1 ()

and M respectively. Based on the analysis,

zlm (t
we have the followmg fluid model:

E = — unP(i 1t (1) - 57 (1)
L 2= W?P(Z J =Dzt t) + SHI7(t) (5)
—unP(l J)atI(t) =S4 (1)

dy (t) _ ,U//]P(Z Z) () + Si,i(t) _ »Yyi(t)
g w2 o(® T ampamyat T @)
where S“7(t) = p B = ’
zhm (1)

l=1m=1

j<iandi,je{l,.., K}
4 Evaluation and Discussion

In this section, we will give a numerical evaluation for var-
ious multiple file downloading schemes. From the analysis
results, we could find that under the multi-torrent download-
ing scenario, MTSD outperforms MTCD when the files being
requested are interest-correlated. We also find that under the
multi-file torrent downloading scenario, by allowing peers to
collaborate in their downloading processes, the scheme of
CMFSD improves the performance of MFCD greatly, given
that the files published within a single torrent are highly
interest-correlated.

4.1 File Correlation

In [4], it is reported that more than 85% percent of the
peers are found to have joined multiple torrents, and the av-
erage number of torrents each peer has joined during its life-
time is 7.514. Although it is widely observed that peers
request multiple files, however, from current available mea-
surement results, it is still not clear how many users will re-
quest the same set of the files simultaneously under the multi-
torrent downloading scenario. On the other hand, under the
multi-file torrent downloading scenario, since the files shared
within a single torrent are usually highly correlated, most of
the peers will choose to download all the files shared within
the torrent.

100

90+

701

Avg. online time per file

601

——MTCD
—8—MTSD

0.2 0.4 0.6 0.8 1
File correlation

50
0

Figure 2. The average online time per file with varying file
correlations under MTCD and MTSD. We assume K = 10,
p=0.02,7 = 0.5, and v = 0.05 for the fluid model.

For evaluation of the downloading schemes, we develop
a simple model to describe the peers’ download behaviors.
Suppose for the server-torrent system, there are K files
served in the system, these K files could be served by sepa-
rate torrents as in the multi-torrent downloading scenario, or
they could be served in a single torrent as in the multi-file
torrent scenario. A user who has requested some files from
the system will be likely to request one more file of the K
files at probability p. If the web server’s user visiting rate is
Ao, then, the users who will request ¢ files enter the system at
arate of Ao () p'(1 — p)&—".

Although this model is very simple, we believe it still
could capture some essence of the users’ behaviors under the
multi-torrent downloading or the multi-file torrent download-
ing scenario. For example, it is reasonable to assume that p
should be usually very small under the first scenario, since
the probability that peers downloading the same set of files
simultaneously is small (however, we believe that for some
types of the content, such as TV plays in separate torrents,
this value may also be very large); while under the second
scenario, we believe p is near 1 since most of the peers will
choose to download all the files in a single torrent. Below we
will examine the performance of different download schemes
with the file correlation model.

4.2 Evaluation Results

4.2.1 MTCD vs. MTSD

We study the two schemes for multi-torrent downloading
schemes, MTCD and MTSD, in this part. We use the av-
erage online time per file as our main metrics for evaluating
the performance of a multiple file downloading scheme. It
is calculated as the sum of the online time for all the peers
divided by the total number of files the peers have requested.

Based on our model of file correlation, for the MTCD
scheme, the entry rate for the ith class peers in a torrent
could be calculated as Ai = Ao (F7") p'(L — p)X~", in
the fluid model of (1). Applying the results in (2) and (4),
Figure 2 plots the average online time per file under the
MTCD and MTSD with various file correlation. We could
see that MTCD has a similar performance compared with

—e— MTSD online time

@ MTSD download time
1301 —+— MTCD p=0.1 online time
*+ MTCD p=0.1 download time | |

—+— MTCD p=1.0 online time
110+ MTCD p=1.0 download time |q

Time
1
o
o

e
« * * * 4 -
70 1

2 3 4 5 6 7 8 9 10

Files requested
Figure 3. The online time per file and download time per
file for peers in different classes in MTCD and MTSD with

file correlation of p = 0.1 and p = 1.0. We assume K =
10, = 0.02, 7 = 0.5, and v = 0.05 for the fluid model.

MTSD when the files have little correlation, but its perfor-
mance worsens with the increasing of the correlation among
the shared files. In Figure 3, the average online time per file
and the average download time per file for peers in different
classes are plotted under MTCD and MTSD with a file cor-
relation of 0.1 and 1.0 respectively. It is observed that under
MTCD, peers requesting more files will have a better perfor-
mance, and in conditions of low file correlation, MTCD will
make a lower average online time for the peers requesting
multiple files, but the online time for the majority of peers re-
questing only one file is longer than that of MTSD; however,
when the file correlation is high, both the online time per file
and the download time per file for MTCD are longer than
those of MTSD as shown in the figure. For average down-
load times, both schemes maintain fairness among the peers
in different classes.

Based on the above observations, we conclude that al-
though concurrent downloading is popular in practical ap-
plications, the performance of MTCD is worse than MTSD,
especially when the files requested are highly interest-
correlated. We have two suggestions to avoid this low-
efficiency scheme: 1) users should avoid downloading sev-
eral files concurrently, but should request them one by one;
2) when a user has requested several files in different torrents,
the BitTorrent software should download them one by one in-
stead of downloading them concurrently.

4.2.2 MFCD vs. CMFSD

We study the two schemes for multi-file torrent download-
ing schemes in this part. Note that under the file correla-
tion model, \; = Ao (&) p'(1 — p)*~* in the fluid model
of CMFSD (in (5)). In Figure 4 (a), the average online time
per file under CMFSD is plotted. We vary the file correla-
tion p and the peer’s bandwidth allocation ratio p from 0.0 to
1.0. It is observed that under any file correlation conditions,
setting p to 0.0 will have the best system performance, and
the performance improvement is more obvious for systems
with a high file correlation p. We find that for the extreme
case when peers do not allocate any bandwidth for the virtual
seeds (p = 1), the system performs as in MFCD, which has

PP SRR Gt S o
£ | ——
% 80

@

£ ©

@ E 60

£ =

s

g

<

—e— MFCD download time
-0~ MFCD online time
—— CMFSD p=0.1download time
«-- CMFSD p=0.10nline time
—+— CMFSD p=0.9 download time
CMFSD p=0.9 online time

File correlation p

(a)

5 6 7 8 9
Files requested

(b)

10

Time

90

8575,

60

55

50

45

—e—MFCD download time
++0--MFCD online time
—— CMFSD p=0.1download time
«-- CMFSD p=0.10nline time
——CMFSD p=0.9 download time
CMFSD p=0.9 online time

4

5 6 7 8 9
Files requested

(©)

10

Figure 4. (a) The average online time per file with varying file correlations under CMFSD. The online time per file and download
time per file for peers in different classes under CMFSD with p = 0.1 and p = 0.9, and under MTCD (b) when file correlation of
p=10.9and (c) p = 0.1. We assume K = 10, u = 0.02, 7 = 0.5, and v = 0.05 for the fluid model.

the longest average online time, especially in the high cor-
related multiple file downloading scenario. In Figure 4 (b)
and (c), the average online time per file as well as the aver-
age downloading time per file for peers of different classes
are plotted under the file correlation of p = 0.9 and p = 0.1
respectively; we study two polarized cases of p = 0.1 and
p = 0.9 under CMFSD for each condition, and we also plot
the results of MFCD for comparison. Unlike the scheme of
MTSD, it is clearly observed that an unfairness in download
time per file for peers in different classes exists: peers re-
questing only one file download faster than peers requesting
multiple files, and this unfairness is getting more obvious un-
der the condition that the value of p is large (p = 0.9) and
the file correlation is low (p = 0.1). Based on these re-
sults, we conclude that the scheme of CMFSD could improve
the system’s as well as the individual user’s performance for
the multi-file torrent downloading scenario with high correla-
tion among the files, but will introduce unfairness among the
peers in different classes, especially when the file correlation
is low. However, we could see that under the high file corre-
lation situation (p = 0.9), the unfairness is not obvious, and
when setting the bandwidth allocation ratio p low (p = 0.1),
peers in all the classes get greatly improved performance.

4.3 Deployment of CMFSD

As we have observed in Figure 4, although setting p small
will improve the system’s overall performance, it will intro-
duce unfairness in the download time and the online time
between the peers of different classes. When the file cor-
relation is high, this unfairness is acceptable since setting p
small will benefit all the peers; but in occasional situations
when the files in a single torrent have low correlation, this
unfairness will make the peers requesting more files having
no improvement or even sacrifice on their performance, al-
though the system’s average performance is improved.

Another problem arising from the unfairness is that since
peers requesting one file will always have a shorter download

time compared with peers requesting multiple files, there is
an incentive for multi-file requesting peers to pretend to be
peers requesting one file. In this case, the cheating peers
refuse to upload chunks of the files they have finished via
the virtual seeds and set their individual bandwidth alloca-
tion ratio p as 1. If we view the cheating peer as a spe-
cial kind of peer: once it has finished downloading a file,
it quits and rejoins the torrent with a new ID. This selfish be-
havior will make the system’s file-correlation appeared lower
than the real value, and will recursively aggravate the unfair-
ness. If the portion of the cheating peer is large enough, like
the low file-correlation situation, the obedient peers’ perfor-
mance will also be seriously sacrificed.

Since an individual peer only cares for its own perfor-
mance, choosing a reasonable individual value of p according
to the file correlation, which is a system parameter, as well as
other peers’ behavior, is necessary. We propose an Adapt
mechanism for individual obedient peer for this purpose. In
the Adapt mechanism, a newly joined peer requesting mul-
tiple files in the multi-file torrent will set its p to 0 initially,
which is the best choice for system performance; when the
peer begins to serve as a partial seed, it monitors its band-
width used for uploading the chunks via its virtual seeds and
the downloading bandwidth for chunks it has received from
other peers’ virtual seeds, and calculate the difference be-
tween the two as A. If A is consistently larger than some
threshold ¢4, the peer increases p with a step vy, in order to
protect the benefit of itself; on the other hand, if A is consis-
tently smaller than another threshold ¢o(¢1 < ¢3), the peer
decreases its p with another step v, for improving the sys-
tem’s overall performance. The Adapt mechanism will be
executed periodically until the peer has finished all the files it
has requested.

One of the key features of the Adapt mechanism is the
self-adaptiveness: a peer could probe a better setting of its
individual bandwidth allocation ratio p by observing its con-
tribution to and benefit from the whole system. When the file
correlation is low or the majority of the peers are selfish, with

the Adapt mechanism, all the obedient peers will finally set
their bandwidth allocation ratio p as 1, and the system works
similarly as in MFCD.

Finally, we believe an initial setting of p = 0 for all the
peers joining a multi-file torrent and playing CMFSD is a
good choice. There are two reasons: first, we believe that
all the files provided in the single torrent are highly corre-
lated, and most of the peers will download all of them; sec-
ond, peers in real life would be likely to obey the CMFSD
protocol, since cheating will cause all the other peers run-
ning Adapt and the whole system to degenerate into a low
efficient mode of MFCD.

5 Conclusion and Future Work

In this paper, we have systematically studied the perfor-
mance of BitTorrent under two representative multiple file
downloading scenarios: the multi-torrent downloading sce-
nario and the multi-file torrent downloading scenario. Par-
ticularly, we analyze the schemes of multi-torrent concur-
rent downloading and multi-torrent sequential downloading,
based on the fluid model. We find that when the files are
highly interest-correlated, the latter will have a better over-
all performance. We also consider the multi-file torrent con-
current downloading scheme under the second scenario, and
propose a collaborative multi-file torrent sequential down-
loading scheme. We show via a fluid model based analysis
that when the files have high correlation among themselves,
the user performance could be improved substantially by our
scheme. Finally, a self-adaptive mechanism Adapt is pro-
posed for the deployment of the collaborative multi-file tor-
rent sequential downloading scheme by individual peers in a
distributed fashion.

For future work, the effectiveness of the Adapt mecha-
nism needs to be systematically evaluated, probing the proper
settings for the parameters ¢, ¢2, vy, and vs. Another in-
teresting topic is to measure in what scale the files are cor-
related in the multi-torrent downloading scenario, and how
many users would like to download these correlated files con-
currently.

References

[1] B. Cohen, “Incentives build robustness in bittorrent,” In
Proc. of Workshop on Economics of Peer-to-Peer Sys-
tems (P2PEcon’03), Berkeley, CA, June 2003.

[2] M. Izal, G. Urvoy-Keller, and et. al., “Dissecting bit-
torrent: Five months in a torrent’s lifetime,” In Proc.
of Passive & Active Measurement Workshop (PAM’04),
France, April 2004.

[3] J. Pouwelse, P. Garbacki, D. Epema and H. Sips, “The
bittorrent P2P filesharing system: Measurements and
analysis,” In Proc. of 4th International Workshop on
Peer-to-Peer Systems (IPTPS’05), Ithaca, New York,
Cornell University, February 2005.

[4] L. Guo, S. Chen, and et. al,. “Measurement, analy-
sis, and modeling of BitTorrent-like systems,” In Proc.
of ACM SIGCOMM Internet Measurement Conference,
(IMC’05), Berkeley, CA, October 2005.

[5] A. Bharambe, C. Herley, and V. Padmanabhan, “Ana-
lyzing and improving BitTorrent performance,” In Proc.
of IEEE Infocom 2006, Barcelona, Spain, April 2006.

[6] X. Yang and G. de Veciana, “Service capacity of peer to
peer networks,” In Proc. of IEEE Infocom 2004, Hong
Kong, China, March 2004.

[7] D. Qiu and R. Srikant, “Modeling and performance
analysis of BitTorrent like peer-to-peer networks,” In
Proc. of ACM SIGCOMM 2004, Portland, OR, August
2004.

[8] L. Massoulié and M. Vojnovic, “Coupon replication
systems,” In Proc. of ACM SIGMETRICS 2005, Banff,
Alberta, Canada, June 2005.

[9] Y. Tian, D. Wu, and K.-W. Ng, “Modeling, analysis and
improvement for BitTorrent-like file sharing networks,”
In Proc. of IEEE Infocom 2006, Barcelona, Spain, April
2006.

[10] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie:
A cooperative bulk data transfer protocol,” In Proc. of
IEEFE Infocom 2004, Hong Kong, China, March 2004.

[11] C. Gkantsidis and P. Rodriguez, “Network coding for
large scale content distribution,” In Proc. of IEEE Info-
com 2005, Miami, FL, March 2005.

[12] S. Iyer, A. Rowstron and P. Druschel, “SQUIRREL: A
decentralized, peer-to-peer web cache,” In Proc. of 21st
ACM Symposium on Principles of Distributed Comput-
ing (PODC’02), Monterey, CA, July 2002.

[13] F. Clévenot and P. Nain, “A simple model for the anal-
ysis of the Squirrel peer-to-peer caching system,” In
Proc. of IEEE Infocom 2004, Hong Kong, China, March
2004.

[14] BitTorrent@China. http://www.btchina.net.
[15] BitTorrentSpy. http://www.torrentspy.com.

[16] K.S. Trivedi. Probability and Statistics with Reliability,
Queueing and Computer Science Applications, Second
Edition. John Wiley and Sons, New York, 2002.

